File: Binomial.hs

package info (click to toggle)
haskell-statistics 0.10.1.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 304 kB
  • sloc: haskell: 2,225; python: 33; makefile: 2
file content (99 lines) | stat: -rw-r--r-- 2,878 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
{-# LANGUAGE DeriveDataTypeable #-}
-- |
-- Module    : Statistics.Distribution.Binomial
-- Copyright : (c) 2009 Bryan O'Sullivan
-- License   : BSD3
--
-- Maintainer  : bos@serpentine.com
-- Stability   : experimental
-- Portability : portable
--
-- The binomial distribution.  This is the discrete probability
-- distribution of the number of successes in a sequence of /n/
-- independent yes\/no experiments, each of which yields success with
-- probability /p/.

module Statistics.Distribution.Binomial
    (
      BinomialDistribution
    -- * Constructors
    , binomial
    -- * Accessors
    , bdTrials
    , bdProbability
    ) where

import Data.Typeable (Typeable)
import qualified Statistics.Distribution as D
import Numeric.SpecFunctions (choose)


-- | The binomial distribution.
data BinomialDistribution = BD {
      bdTrials      :: {-# UNPACK #-} !Int
    -- ^ Number of trials.
    , bdProbability :: {-# UNPACK #-} !Double
    -- ^ Probability.
    } deriving (Eq, Read, Show, Typeable)

instance D.Distribution BinomialDistribution where
    cumulative = cumulative

instance D.DiscreteDistr BinomialDistribution where
    probability = probability

instance D.Mean BinomialDistribution where
    mean = mean

instance D.Variance BinomialDistribution where
    variance = variance

instance D.MaybeMean BinomialDistribution where
    maybeMean = Just . D.mean

instance D.MaybeVariance BinomialDistribution where
    maybeStdDev   = Just . D.stdDev
    maybeVariance = Just . D.variance


-- This could be slow for big n
probability :: BinomialDistribution -> Int -> Double
probability (BD n p) k 
  | k < 0 || k > n = 0
  | n == 0         = 1
  | otherwise      = choose n k * p^k * (1-p)^(n-k)
{-# INLINE probability #-}

-- Summation from different sides required to reduce roundoff errors
cumulative :: BinomialDistribution -> Double -> Double
cumulative d@(BD n _) x
  | k <  0    = 0
  | k >= n    = 1
  | k <  m    = D.sumProbabilities d 0 k
  | otherwise = 1 - D.sumProbabilities d (k+1) n
    where
      m = floor (mean d)
      k = floor x
{-# INLINE cumulative #-}

mean :: BinomialDistribution -> Double
mean (BD n p) = fromIntegral n * p
{-# INLINE mean #-}

variance :: BinomialDistribution -> Double
variance (BD n p) = fromIntegral n * p * (1 - p)
{-# INLINE variance #-}

-- | Construct binomial distribution. Number of trials must be
--   positive and probability must be in [0,1] range
binomial :: Int                 -- ^ Number of trials.
         -> Double              -- ^ Probability.
         -> BinomialDistribution
binomial n p 
  | n <= 0         = 
    error $ msg ++ "number of trials must be positive. Got " ++ show n
  | p < 0 || p > 1 = 
    error $ msg++"probability must be in [0,1] range. Got " ++ show p
  | otherwise      = BD n p
    where msg = "Statistics.Distribution.Binomial.binomial: "
{-# INLINE binomial #-}