1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
|
{-# LANGUAGE DeriveDataTypeable #-}
-- |
-- Module : Statistics.Distribution.Hypergeometric
-- Copyright : (c) 2009 Bryan O'Sullivan
-- License : BSD3
--
-- Maintainer : bos@serpentine.com
-- Stability : experimental
-- Portability : portable
--
-- The Hypergeometric distribution. This is the discrete probability
-- distribution that measures the probability of /k/ successes in /l/
-- trials, without replacement, from a finite population.
--
-- The parameters of the distribution describe /k/ elements chosen
-- from a population of /l/, with /m/ elements of one type, and
-- /l/-/m/ of the other (all are positive integers).
module Statistics.Distribution.Hypergeometric
(
HypergeometricDistribution
-- * Constructors
, hypergeometric
-- ** Accessors
, hdM
, hdL
, hdK
) where
import Data.Typeable (Typeable)
import Numeric.SpecFunctions (choose)
import qualified Statistics.Distribution as D
data HypergeometricDistribution = HD {
hdM :: {-# UNPACK #-} !Int
, hdL :: {-# UNPACK #-} !Int
, hdK :: {-# UNPACK #-} !Int
} deriving (Eq, Read, Show, Typeable)
instance D.Distribution HypergeometricDistribution where
cumulative = cumulative
instance D.DiscreteDistr HypergeometricDistribution where
probability = probability
instance D.Mean HypergeometricDistribution where
mean = mean
instance D.Variance HypergeometricDistribution where
variance = variance
instance D.MaybeMean HypergeometricDistribution where
maybeMean = Just . D.mean
instance D.MaybeVariance HypergeometricDistribution where
maybeStdDev = Just . D.stdDev
maybeVariance = Just . D.variance
variance :: HypergeometricDistribution -> Double
variance (HD m l k) = (k' * ml) * (1 - ml) * (l' - k') / (l' - 1)
where m' = fromIntegral m
l' = fromIntegral l
k' = fromIntegral k
ml = m' / l'
{-# INLINE variance #-}
mean :: HypergeometricDistribution -> Double
mean (HD m l k) = fromIntegral k * fromIntegral m / fromIntegral l
{-# INLINE mean #-}
hypergeometric :: Int -- ^ /m/
-> Int -- ^ /l/
-> Int -- ^ /k/
-> HypergeometricDistribution
hypergeometric m l k
| not (l > 0) = error $ msg ++ "l must be positive"
| not (m >= 0 && m <= l) = error $ msg ++ "m must lie in [0,l] range"
| not (k > 0 && k <= l) = error $ msg ++ "k must lie in (0,l] range"
| otherwise = HD m l k
where
msg = "Statistics.Distribution.Hypergeometric.hypergeometric: "
{-# INLINE hypergeometric #-}
-- Naive implementation
probability :: HypergeometricDistribution -> Int -> Double
probability (HD mi li ki) n
| n < max 0 (mi+ki-li) || n > min mi ki = 0
| otherwise =
choose mi n * choose (li - mi) (ki - n) / choose li ki
{-# INLINE probability #-}
cumulative :: HypergeometricDistribution -> Double -> Double
cumulative d@(HD mi li ki) x
| n < minN = 0
| n >= maxN = 1
| otherwise = D.sumProbabilities d minN n
where
n = floor x
minN = max 0 (mi+ki-li)
maxN = min mi ki
|