File: Normal.hs

package info (click to toggle)
haskell-statistics 0.10.1.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 304 kB
  • sloc: haskell: 2,225; python: 33; makefile: 2
file content (113 lines) | stat: -rw-r--r-- 3,730 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
{-# LANGUAGE DeriveDataTypeable #-}
-- |
-- Module    : Statistics.Distribution.Normal
-- Copyright : (c) 2009 Bryan O'Sullivan
-- License   : BSD3
--
-- Maintainer  : bos@serpentine.com
-- Stability   : experimental
-- Portability : portable
--
-- The normal distribution.  This is a continuous probability
-- distribution that describes data that cluster around a mean.

module Statistics.Distribution.Normal
    (
      NormalDistribution
    -- * Constructors
    , normalDistr
    , normalFromSample
    , standard
    ) where

import Data.Number.Erf (erfc)
import Data.Typeable (Typeable)
import Numeric.MathFunctions.Constants (m_sqrt_2, m_sqrt_2_pi)
import qualified Statistics.Distribution as D
import qualified Statistics.Sample as S
import qualified System.Random.MWC.Distributions as MWC

-- | The normal distribution.
data NormalDistribution = ND {
      mean       :: {-# UNPACK #-} !Double
    , stdDev     :: {-# UNPACK #-} !Double
    , ndPdfDenom :: {-# UNPACK #-} !Double
    , ndCdfDenom :: {-# UNPACK #-} !Double
    } deriving (Eq, Read, Show, Typeable)

instance D.Distribution NormalDistribution where
    cumulative      = cumulative
    complCumulative = complCumulative

instance D.ContDistr NormalDistribution where
    density    = density
    quantile   = quantile

instance D.MaybeMean NormalDistribution where
    maybeMean = Just . D.mean

instance D.Mean NormalDistribution where
    mean = mean

instance D.MaybeVariance NormalDistribution where
    maybeStdDev   = Just . D.stdDev
    maybeVariance = Just . D.variance

instance D.Variance NormalDistribution where
    stdDev = stdDev

instance D.ContGen NormalDistribution where
    genContVar d gen = do x <- MWC.standard gen
                          return $! stdDev d * (x - mean d)

-- | Standard normal distribution with mean equal to 0 and variance equal to 1
standard :: NormalDistribution
standard = ND { mean       = 0.0
              , stdDev     = 1.0
              , ndPdfDenom = m_sqrt_2_pi
              , ndCdfDenom = m_sqrt_2
              }

-- | Create normal distribution from parameters.
--
-- IMPORTANT: prior to 0.10 release second parameter was variance not
-- standard deviation.
normalDistr :: Double            -- ^ Mean of distribution
            -> Double            -- ^ Standard deviation of distribution
            -> NormalDistribution
normalDistr m sd
  | sd > 0    = ND { mean       = m
                   , stdDev     = sd
                   , ndPdfDenom = m_sqrt_2_pi * sd
                   , ndCdfDenom = m_sqrt_2 * sd
                   }
  | otherwise = 
    error $ "Statistics.Distribution.Normal.normalDistr: standard deviation must be positive. Got " ++ show sd

-- | Create distribution using parameters estimated from
--   sample. Variance is estimated using maximum likelihood method
--   (biased estimation).
normalFromSample :: S.Sample -> NormalDistribution
normalFromSample a = normalDistr (S.mean a) (S.stdDev a)

density :: NormalDistribution -> Double -> Double
density d x = exp (-xm * xm / (2 * sd * sd)) / ndPdfDenom d
    where xm = x - mean d
          sd = stdDev d

cumulative :: NormalDistribution -> Double -> Double
cumulative d x = erfc ((mean d - x) / ndCdfDenom d) / 2

complCumulative :: NormalDistribution -> Double -> Double
complCumulative d x = erfc ((x - mean d) / ndCdfDenom d) / 2

quantile :: NormalDistribution -> Double -> Double
quantile d p
  | p == 0         = -inf
  | p == 1         = inf
  | p == 0.5       = mean d
  | p > 0 && p < 1 = x * stdDev d + mean d
  | otherwise      =
    error $ "Statistics.Distribution.Normal.quantile: p must be in [0,1] range. Got: "++show p
  where x          = D.findRoot standard p 0 (-100) 100
        inf        = 1/0