File: KolmogorovSmirnov.hs

package info (click to toggle)
haskell-statistics 0.10.1.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 304 kB
  • sloc: haskell: 2,225; python: 33; makefile: 2
file content (308 lines) | stat: -rw-r--r-- 10,933 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
-- |
-- Module    : Statistics.Test.KolmogorovSmirnov
-- Copyright : (c) 2011 Aleksey Khudyakov
-- License   : BSD3
--
-- Maintainer  : bos@serpentine.com
-- Stability   : experimental
-- Portability : portable
--
-- Kolmogov-Smirnov tests are non-parametric tests for assesing
-- whether given sample could be described by distribution or whether
-- two samples have the same distribution.
module Statistics.Test.KolmogorovSmirnov (
    -- * Kolmogorov-Smirnov test
    kolmogorovSmirnovTest
  , kolmogorovSmirnovTestCdf
  , kolmogorovSmirnovTest2
    -- * Evaluate statistics
  , kolmogorovSmirnovCdfD
  , kolmogorovSmirnovD
  , kolmogorovSmirnov2D
    -- * Probablities
  , kolmogorovSmirnovProbability
    -- * Data types
  , TestType(..)
  , TestResult(..)
    -- * References
    -- $references
  ) where

import Control.Monad
import Control.Monad.ST  (ST)

import qualified Data.Vector.Unboxed         as U
import qualified Data.Vector.Unboxed.Mutable as M

import Statistics.Distribution        (Distribution(..))
import Statistics.Types               (Sample)
import Statistics.Function            (sort)
import Statistics.Test.Types

import Text.Printf



----------------------------------------------------------------
-- Test
----------------------------------------------------------------

-- | Check that sample could be described by
--   distribution. 'Significant' means distribution is not compatible
--   with data for given p-value.
--
--   This test uses Marsaglia-Tsang-Wang exact alogorithm for
--   calculation of p-value.
kolmogorovSmirnovTest :: Distribution d
                      => d      -- ^ Distribution
                      -> Double -- ^ p-value
                      -> Sample -- ^ Data sample
                      -> TestResult
kolmogorovSmirnovTest d = kolmogorovSmirnovTestCdf (cumulative d)
{-# INLINE kolmogorovSmirnovTest #-}

-- | Variant of 'kolmogorovSmirnovTest' which uses CFD in form of
--   function.
kolmogorovSmirnovTestCdf :: (Double -> Double) -- ^ CDF of distribution
                         -> Double             -- ^ p-value
                         -> Sample             -- ^ Data sample
                         -> TestResult
kolmogorovSmirnovTestCdf cdf p sample
  | p > 0 && p < 1 = significant $ 1 - prob < p
  | otherwise      = error "Statistics.Test.KolmogorovSmirnov.kolmogorovSmirnovTestCdf:bad p-value"
  where
    d    = kolmogorovSmirnovCdfD cdf sample
    prob = kolmogorovSmirnovProbability (U.length sample) d

-- | Two sample Kolmogorov-Smirnov test. It tests whether two data
--   samples could be described by the same distribution without
--   making any assumptions about it.
--
--   This test uses approxmate formula for computing p-value.
kolmogorovSmirnovTest2 :: Double -- ^ p-value
                       -> Sample -- ^ Sample 1
                       -> Sample -- ^ Sample 2
                       -> TestResult
kolmogorovSmirnovTest2 p xs1 xs2
  | p > 0 && p < 1 = significant $ 1 - prob( d*(en + 0.12 + 0.11/en) ) < p
  | otherwise      = error "Statistics.Test.KolmogorovSmirnov.kolmogorovSmirnovTest2:bad p-value"
  where
    d    = kolmogorovSmirnov2D xs1 xs2
    -- Effective number of data points
    n1   = fromIntegral (U.length xs1)
    n2   = fromIntegral (U.length xs2)
    en   = sqrt $ n1 * n2 / (n1 + n2)
    --
    prob z
      | z <  0    = error "kolmogorovSmirnov2D: internal error"
      | z == 0    = 1
      | z <  1.18 = let y = exp( -1.23370055013616983 / (z*z) )
                    in  2.25675833419102515 * sqrt( -log(y) ) * (y + y**9 + y**25 + y**49)
      | otherwise = let x = exp(-2 * z * z)
                    in  1 - 2*(x - x**4 + x**9)
-- FIXME: Find source for approximation for D



----------------------------------------------------------------
-- Kolmogorov's statistic
----------------------------------------------------------------

-- | Calculate Kolmogorov's statistic /D/ for given cumulative
--   distribution function (CDF) and data sample. If sample is empty
--   returns 0.
kolmogorovSmirnovCdfD :: (Double -> Double) -- ^ CDF function
                      -> Sample             -- ^ Sample
                      -> Double
kolmogorovSmirnovCdfD cdf sample
  | U.null xs = 0
  | otherwise = U.maximum
              $ U.zipWith3 (\p a b -> abs (p-a) `max` abs (p-b))
                  ps steps (U.tail steps)
  where
    xs = sort sample
    n  = U.length xs
    --
    ps    = U.map cdf xs
    steps = U.map ((/ fromIntegral n) . fromIntegral)
          $ U.generate (n+1) id


-- | Calculate Kolmogorov's statistic /D/ for given cumulative
--   distribution function (CDF) and data sample. If sample is empty
--   returns 0.
kolmogorovSmirnovD :: (Distribution d)
                   => d         -- ^ Distribution
                   -> Sample    -- ^ Sample
                   -> Double
kolmogorovSmirnovD d = kolmogorovSmirnovCdfD (cumulative d)
{-# INLINE kolmogorovSmirnovD #-}

-- | Calculate Kolmogorov's statistic /D/ for two data samples. If
--   either of samples is empty returns 0.
kolmogorovSmirnov2D :: Sample   -- ^ First sample
                    -> Sample   -- ^ Second sample
                    -> Double
kolmogorovSmirnov2D sample1 sample2
  | U.null sample1 || U.null sample2 = 0
  | otherwise                        = worker 0 0 0
  where
    xs1 = sort sample1
    xs2 = sort sample2
    n1  = U.length xs1
    n2  = U.length xs2
    en1 = fromIntegral n1
    en2 = fromIntegral n2
    -- Find new index
    skip x i xs = go (i+1)
      where go n | n >= U.length xs = n
                 | xs U.! n == x    = go (n+1)
                 | otherwise        = n
    -- Main loop
    worker d i1 i2
      | i1 >= n1 || i2 >= n2 = d
      | otherwise            = worker d' i1' i2'
      where
        d1  = xs1 U.! i1
        d2  = xs2 U.! i2
        i1' | d1 <= d2  = skip d1 i1 xs1
            | otherwise = i1
        i2' | d2 <= d1  = skip d2 i2 xs2
            | otherwise = i2
        d'  = max d (abs $ fromIntegral i1' / en1 - fromIntegral i2' / en2)



-- | Calculate cumulative probability function for Kolmogorov's
--   distribution with /n/ parameters or probability of getting value
--   smaller than /d/ with n-elements sample.
--
--   It uses algorithm by Marsgalia et. al. and provide at least
--   7-digit accuracy.
kolmogorovSmirnovProbability :: Int    -- ^ Size of the sample
                             -> Double -- ^ D value
                             -> Double
kolmogorovSmirnovProbability n d
  -- Avoid potencially lengthy calculations for large N and D > 0.999
  | s > 7.24 || (s > 3.76 && n > 99) = 1 - 2 * exp( -(2.000071 + 0.331 / sqrt n' + 1.409 / n') * s)
  -- Exact computation
  | otherwise = fini $ matrixPower matrix n
  where
    s  = n' * d * d
    n' = fromIntegral n

    size = 2*k - 1
    k    = floor (n' * d) + 1
    h    = fromIntegral k - n' * d
    -- Calculate initial matrix
    matrix =
      let m = U.create $ do
            mat <- M.new (size*size)
            -- Fill matrix with 0 and 1s
            for 0 size $ \row ->
              for 0 size $ \col -> do
                let val | row + 1 >= col = 1
                        | otherwise      = 0 :: Double
                M.write mat (row * size + col) val
            -- Correct left column/bottom row
            for 0 size $ \i -> do
              let delta = h ^^ (i + 1)
              modify mat (i    * size)         (subtract delta)
              modify mat (size * size - 1 - i) (subtract delta)
            -- Correct corner element if needed
            when (2*h > 1) $ do
              modify mat ((size - 1) * size) (+ ((2*h - 1) ^ size))
            -- Divide diagonals by factorial
            let divide g num
                  | num == size = return ()
                  | otherwise   = do for num size $ \i ->
                                       modify mat (i * (size + 1) - num) (/ g)
                                     divide (g * fromIntegral (num+2)) (num+1)
            divide 2 1
            return mat
      in Matrix size m 0
    -- Last calculation
    fini m@(Matrix _ _ e) = loop 1 (matrixCenter m) e
      where
        loop i ss eQ
          | i  > n       = ss * 10 ^^ eQ
          | ss' < 1e-140 = loop (i+1) (ss' * 1e140) (eQ - 140)
          | otherwise    = loop (i+1)  ss'           eQ
          where ss' = ss * fromIntegral i / fromIntegral n


----------------------------------------------------------------

-- Maxtrix operations.
--
-- There isn't the matrix package for haskell yet so nessesary minimum
-- is implemented here.

-- Square matrix stored in row-major order
data Matrix = Matrix
              {-# UNPACK #-} !Int -- Size of matrix
              !(U.Vector Double)  -- Matrix data
              {-# UNPACK #-} !Int -- In order to avoid overflows
                                  -- during matrix multiplication large
                                  -- exponent is stored seprately

-- Show instance useful mostly for debugging
instance Show Matrix where
  show (Matrix n vs _) = unlines $ map (unwords . map (printf "%.4f")) $ split $ U.toList vs
    where
      split [] = []
      split xs = row : split rest where (row, rest) = splitAt n xs


-- Avoid overflow in the matrix
avoidOverflow :: Matrix -> Matrix
avoidOverflow m@(Matrix n xs e)
  | matrixCenter m > 1e140 = Matrix n (U.map (* 1e-140) xs) (e + 140)
  | otherwise              = m

-- Unsafe matrix-matrix multiplication. Matrices must be of the same
-- size. This is not checked.
matrixMultiply :: Matrix -> Matrix -> Matrix
matrixMultiply (Matrix n xs e1) (Matrix _ ys e2) =
  Matrix n (U.generate (n*n) go) (e1 + e2)
  where
    go i = U.sum $ U.zipWith (*) row col
      where
        nCol = i `rem` n
        row  = U.slice (i - nCol) n xs
        col  = U.backpermute ys $ U.enumFromStepN nCol n n

-- Raise matrix to power N. power must be positive it's not checked
matrixPower :: Matrix -> Int -> Matrix
matrixPower mat 1 = mat
matrixPower mat n = avoidOverflow res
  where
    mat2 = matrixPower mat (n `quot` 2)
    pow  = matrixMultiply mat2 mat2
    res | odd n     = matrixMultiply pow mat
        | otherwise = pow

-- Element in the center of matrix (Not corrected for exponent)
matrixCenter :: Matrix -> Double
matrixCenter (Matrix n xs _) = (U.!) xs (k*n + k) where k = n `quot` 2

-- Simple for loop
for :: Monad m => Int -> Int -> (Int -> m ()) -> m ()
for n0 n f = loop n0
  where
    loop i | i == n    = return ()
           | otherwise = f i >> loop (i+1)

-- Modify element in the vector
modify :: U.Unbox a => M.MVector s a -> Int -> (a -> a) -> ST s ()
modify arr i f = do x <- M.read arr i
                    M.write arr i (f x)
{-# INLINE modify #-}

----------------------------------------------------------------

-- $references
--
-- * G. Marsaglia, W. W. Tsang, J. Wang (2003) Evaluating Kolmogorov's
--   distribution, Journal of Statistical Software, American
--   Statistical Association, vol. 8(i18).