1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
|
{-# LANGUAGE FlexibleContexts #-}
module Statistics.Test.Internal (
rank
, splitByTags
) where
import qualified Data.Vector.Generic as G
-- Private data type for unfolding
data Rank v a = Rank {
rankCnt :: {-# UNPACK #-} !Int -- Number of ranks to return
, rankVal :: {-# UNPACK #-} !Double -- Rank to return
, rankNum :: {-# UNPACK #-} !Double -- Current rank
, rankVec :: v a -- Remaining vector
}
-- | Calculate rank of sample. Sample should be already sorted.
rank :: (G.Vector v a, G.Vector v Double)
=> (a -> a -> Bool) -- ^ Equivalence relation
-> v a -- ^ Vector to rank
-> v Double
rank eq vec = G.unfoldr go (Rank 0 (-1) 1 vec)
where
go (Rank 0 _ r v)
| G.null v = Nothing
| otherwise =
case G.length h of
1 -> Just (r, Rank 0 0 (r+1) rest)
n -> go Rank { rankCnt = n
, rankVal = 0.5 * (r*2 + fromIntegral (n-1))
, rankNum = r + fromIntegral n
, rankVec = rest
}
where
(h,rest) = G.span (eq $ G.head v) v
go (Rank n val r v) = Just (val, Rank (n-1) val r v)
{-# INLINE rank #-}
-- | Split tagged vector
splitByTags :: (G.Vector v a, G.Vector v (Bool,a)) => v (Bool,a) -> (v a, v a)
splitByTags vs = (G.map snd a, G.map snd b)
where
(a,b) = G.unstablePartition fst vs
{-# INLINE splitByTags #-}
|