1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
{-# OPTIONS_GHC -fno-warn-orphans #-}
{-# LANGUAGE ScopedTypeVariables #-}
-- Required for Param
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE OverlappingInstances #-}
{-# LANGUAGE ViewPatterns #-}
module Tests.Distribution (
distributionTests
) where
import Control.Applicative
import Control.Exception
import Data.List (find)
import Data.Typeable (Typeable)
import qualified Numeric.IEEE as IEEE
import Test.Framework (Test,testGroup)
import Test.Framework.Providers.QuickCheck2 (testProperty)
import Test.QuickCheck as QC
import Test.QuickCheck.Monadic as QC
import Text.Printf
import Statistics.Distribution
import Statistics.Distribution.Beta
import Statistics.Distribution.Binomial
import Statistics.Distribution.ChiSquared
import Statistics.Distribution.CauchyLorentz
import Statistics.Distribution.Exponential
import Statistics.Distribution.FDistribution
import Statistics.Distribution.Gamma
import Statistics.Distribution.Geometric
import Statistics.Distribution.Hypergeometric
import Statistics.Distribution.Normal
import Statistics.Distribution.Poisson
import Statistics.Distribution.StudentT
import Statistics.Distribution.Uniform
import Prelude hiding (catch)
import Tests.Helpers
-- | Tests for all distributions
distributionTests :: Test
distributionTests = testGroup "Tests for all distributions"
[ contDistrTests (T :: T BetaDistribution )
, contDistrTests (T :: T CauchyDistribution )
, contDistrTests (T :: T ChiSquared )
, contDistrTests (T :: T ExponentialDistribution )
, contDistrTests (T :: T GammaDistribution )
, contDistrTests (T :: T NormalDistribution )
, contDistrTests (T :: T UniformDistribution )
, contDistrTests (T :: T StudentT )
, contDistrTests (T :: T FDistribution )
, discreteDistrTests (T :: T BinomialDistribution )
, discreteDistrTests (T :: T GeometricDistribution )
, discreteDistrTests (T :: T HypergeometricDistribution )
, discreteDistrTests (T :: T PoissonDistribution )
, unitTests
]
----------------------------------------------------------------
-- Tests
----------------------------------------------------------------
-- Tests for continous distribution
contDistrTests :: (Param d, ContDistr d, QC.Arbitrary d, Typeable d, Show d) => T d -> Test
contDistrTests t = testGroup ("Tests for: " ++ typeName t) $
cdfTests t ++
[ testProperty "PDF sanity" $ pdfSanityCheck t
, testProperty "Quantile is CDF inverse" $ quantileIsInvCDF t
, testProperty "quantile fails p<0||p>1" $ quantileShouldFail t
]
-- Tests for discrete distribution
discreteDistrTests :: (Param d, DiscreteDistr d, QC.Arbitrary d, Typeable d, Show d) => T d -> Test
discreteDistrTests t = testGroup ("Tests for: " ++ typeName t) $
cdfTests t ++
[ testProperty "Prob. sanity" $ probSanityCheck t
, testProperty "CDF is sum of prob." $ discreteCDFcorrect t
]
-- Tests for distributions which have CDF
cdfTests :: (Param d, Distribution d, QC.Arbitrary d, Show d) => T d -> [Test]
cdfTests t =
[ testProperty "C.D.F. sanity" $ cdfSanityCheck t
, testProperty "CDF limit at +∞" $ cdfLimitAtPosInfinity t
, testProperty "CDF limit at -∞" $ cdfLimitAtNegInfinity t
, testProperty "CDF is nondecreasing" $ cdfIsNondecreasing t
, testProperty "1-CDF is correct" $ cdfComplementIsCorrect t
]
----------------------------------------------------------------
-- CDF is in [0,1] range
cdfSanityCheck :: (Distribution d) => T d -> d -> Double -> Bool
cdfSanityCheck _ d x = c >= 0 && c <= 1
where c = cumulative d x
-- CDF never decreases
cdfIsNondecreasing :: (Distribution d) => T d -> d -> Double -> Double -> Bool
cdfIsNondecreasing _ d = monotonicallyIncreasesIEEE $ cumulative d
-- CDF limit at +∞ is 1
cdfLimitAtPosInfinity :: (Param d, Distribution d) => T d -> d -> Property
cdfLimitAtPosInfinity _ d =
okForInfLimit d ==> printTestCase ("Last elements: " ++ show (drop 990 probs))
$ Just 1.0 == (find (>=1) probs)
where
probs = take 1000 $ map (cumulative d) $ iterate (*1.4) 1
-- CDF limit at -∞ is 0
cdfLimitAtNegInfinity :: (Param d, Distribution d) => T d -> d -> Property
cdfLimitAtNegInfinity _ d =
okForInfLimit d ==> printTestCase ("Last elements: " ++ show (drop 990 probs))
$ case find (< IEEE.epsilon) probs of
Nothing -> False
Just p -> p >= 0
where
probs = take 1000 $ map (cumulative d) $ iterate (*1.4) (-1)
-- CDF's complement is implemented correctly
cdfComplementIsCorrect :: (Distribution d) => T d -> d -> Double -> Bool
cdfComplementIsCorrect _ d x = (eq 1e-14) 1 (cumulative d x + complCumulative d x)
-- PDF is positive
pdfSanityCheck :: (ContDistr d) => T d -> d -> Double -> Bool
pdfSanityCheck _ d x = p >= 0
where p = density d x
-- Quantile is inverse of CDF
quantileIsInvCDF :: (Param d, ContDistr d) => T d -> d -> Double -> Property
quantileIsInvCDF _ d (snd . properFraction -> p) =
p > 0 && p < 1 ==> ( printTestCase (printf "Quantile = %g" q )
$ printTestCase (printf "Probability = %g" p )
$ printTestCase (printf "Probability' = %g" p')
$ printTestCase (printf "Error = %e" (abs $ p - p'))
$ abs (p - p') < invQuantilePrec d
)
where
q = quantile d p
p' = cumulative d q
-- Test that quantile fails if p<0 or p>1
quantileShouldFail :: (ContDistr d) => T d -> d -> Double -> Property
quantileShouldFail _ d p =
p < 0 || p > 1 ==> QC.monadicIO $ do r <- QC.run $ catch
(do { return $! quantile d p; return False })
(\(e :: SomeException) -> return True)
QC.assert r
-- Probability is in [0,1] range
probSanityCheck :: (DiscreteDistr d) => T d -> d -> Int -> Bool
probSanityCheck _ d x = p >= 0 && p <= 1
where p = probability d x
-- Check that discrete CDF is correct
discreteCDFcorrect :: (DiscreteDistr d) => T d -> d -> Int -> Int -> Property
discreteCDFcorrect _ d a b
= printTestCase (printf "CDF = %g" p1)
$ printTestCase (printf "Sum = %g" p2)
$ printTestCase (printf "Δ = %g" (abs (p1 - p2)))
$ abs (p1 - p2) < 3e-10
-- Avoid too large differeneces. Otherwise there is to much to sum
--
-- Absolute difference is used guard againist precision loss when
-- close values of CDF are subtracted
where
n = min a b
m = n + (abs (a - b) `mod` 100)
p1 = cumulative d (fromIntegral m + 0.5) - cumulative d (fromIntegral n - 0.5)
p2 = sum $ map (probability d) [n .. m]
----------------------------------------------------------------
-- Arbitrary instances for ditributions
----------------------------------------------------------------
instance QC.Arbitrary BinomialDistribution where
arbitrary = binomial <$> QC.choose (1,100) <*> QC.choose (0,1)
instance QC.Arbitrary ExponentialDistribution where
arbitrary = exponential <$> QC.choose (0,100)
instance QC.Arbitrary GammaDistribution where
arbitrary = gammaDistr <$> QC.choose (0.1,10) <*> QC.choose (0.1,10)
instance QC.Arbitrary BetaDistribution where
arbitrary = betaDistr <$> QC.choose (1e-3,10) <*> QC.choose (1e-3,10)
instance QC.Arbitrary GeometricDistribution where
arbitrary = geometric <$> QC.choose (0,1)
instance QC.Arbitrary HypergeometricDistribution where
arbitrary = do l <- QC.choose (1,20)
m <- QC.choose (0,l)
k <- QC.choose (1,l)
return $ hypergeometric m l k
instance QC.Arbitrary NormalDistribution where
arbitrary = normalDistr <$> QC.choose (-100,100) <*> QC.choose (1e-3, 1e3)
instance QC.Arbitrary PoissonDistribution where
arbitrary = poisson <$> QC.choose (0,1)
instance QC.Arbitrary ChiSquared where
arbitrary = chiSquared <$> QC.choose (1,100)
instance QC.Arbitrary UniformDistribution where
arbitrary = do a <- QC.arbitrary
b <- QC.arbitrary `suchThat` (/= a)
return $ uniformDistr a b
instance QC.Arbitrary CauchyDistribution where
arbitrary = cauchyDistribution
<$> arbitrary
<*> ((abs <$> arbitrary) `suchThat` (> 0))
instance QC.Arbitrary StudentT where
arbitrary = studentT <$> ((abs <$> arbitrary) `suchThat` (>0))
instance QC.Arbitrary FDistribution where
arbitrary = fDistribution
<$> ((abs <$> arbitrary) `suchThat` (>0))
<*> ((abs <$> arbitrary) `suchThat` (>0))
-- Parameters for distribution testing. Some distribution require
-- relaxing parameters a bit
class Param a where
-- Precision for quantileIsInvCDF
invQuantilePrec :: a -> Double
invQuantilePrec _ = 1e-14
-- Distribution is OK for testing limits
okForInfLimit :: a -> Bool
okForInfLimit _ = True
instance Param a
instance Param StudentT where
invQuantilePrec _ = 1e-13
okForInfLimit d = studentTndf d > 0.75
instance Param FDistribution where
invQuantilePrec _ = 1e-12
----------------------------------------------------------------
-- Unit tests
----------------------------------------------------------------
unitTests :: Test
unitTests = testGroup "Unit tests"
[ testAssertion "density (gammaDistr 150 1/150) 1 == 4.883311" $
4.883311418525483 =~ (density (gammaDistr 150 (1/150)) 1)
-- Student-T
, testStudentPDF 0.3 1.34 0.0648215 -- PDF
, testStudentPDF 1 0.42 0.27058
, testStudentPDF 4.4 0.33 0.352994
, testStudentCDF 0.3 3.34 0.757146 -- CDF
, testStudentCDF 1 0.42 0.626569
, testStudentCDF 4.4 0.33 0.621739
-- F-distribution
, testFdistrPDF 1 3 3 (1/(6 * pi)) -- PDF
, testFdistrPDF 2 2 1.2 0.206612
, testFdistrPDF 10 12 8 0.000385613179281892790166
, testFdistrCDF 1 3 3 0.81830988618379067153 -- CDF
, testFdistrCDF 2 2 1.2 0.545455
, testFdistrCDF 10 12 8 0.99935509863451408041
]
where
-- Student-T
testStudentPDF ndf x exact
= testAssertion (printf "density (studentT %f) %f ≈ %f" ndf x exact)
$ eq 1e-5 exact (density (studentT ndf) x)
testStudentCDF ndf x exact
= testAssertion (printf "cumulative (studentT %f) %f ≈ %f" ndf x exact)
$ eq 1e-5 exact (cumulative (studentT ndf) x)
-- F-distribution
testFdistrPDF n m x exact
= testAssertion (printf "density (fDistribution %i %i) %f ≈ %f [got %f]" n m x exact d)
$ eq 1e-5 exact d
where d = density (fDistribution n m) x
testFdistrCDF n m x exact
= testAssertion (printf "cumulative (fDistribution %i %i) %f ≈ %f [got %f]" n m x exact d)
$ eq 1e-5 exact d
where d = cumulative (fDistribution n m) x
|