1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
|
-- | Helpers for testing
module Tests.Helpers (
-- * helpers
T(..)
, typeName
, eq
, eqC
, (=~)
-- * Generic QC tests
, monotonicallyIncreases
, monotonicallyIncreasesIEEE
-- * HUnit helpers
, testAssertion
, testEquality
) where
import Data.Complex
import Data.Typeable
import qualified Numeric.IEEE as IEEE
import qualified Test.HUnit as HU
import Test.Framework
import Test.Framework.Providers.HUnit
import Numeric.MathFunctions.Constants
----------------------------------------------------------------
-- Helpers
----------------------------------------------------------------
-- | Phantom typed value used to select right instance in QC tests
data T a = T
-- | String representation of type name
typeName :: Typeable a => T a -> String
typeName = show . typeOf . typeParam
where
typeParam :: T a -> a
typeParam _ = undefined
-- | Approximate equality for 'Double'. Doesn't work well for numbers
-- which are almost zero.
eq :: Double -- ^ Relative error
-> Double -> Double -> Bool
eq eps a b
| a == 0 && b == 0 = True
| otherwise = abs (a - b) <= eps * max (abs a) (abs b)
-- | Approximate equality for 'Complex Double'
eqC :: Double -- ^ Relative error
-> Complex Double
-> Complex Double
-> Bool
eqC eps a@(ar :+ ai) b@(br :+ bi)
| a == 0 && b == 0 = True
| otherwise = abs (ar - br) <= eps * d
&& abs (ai - bi) <= eps * d
where
d = max (realPart $ abs a) (realPart $ abs b)
-- | Approximately equal up to 1 ulp
(=~) :: Double -> Double -> Bool
(=~) = eq m_epsilon
----------------------------------------------------------------
-- Generic QC
----------------------------------------------------------------
-- Check that function is nondecreasing
monotonicallyIncreases :: (Ord a, Ord b) => (a -> b) -> a -> a -> Bool
monotonicallyIncreases f x1 x2 = f (min x1 x2) <= f (max x1 x2)
-- Check that function is nondecreasing taking rounding errors into
-- account.
--
-- In fact funstion is allowed to decrease less than one ulp in order
-- to guard againist problems with excess precision. On x86 FPU works
-- with 80-bit numbers but doubles are 64-bit so rounding happens
-- whenever values are moved from registers to memory
monotonicallyIncreasesIEEE :: (Ord a, IEEE.IEEE b) => (a -> b) -> a -> a -> Bool
monotonicallyIncreasesIEEE f x1 x2 =
y1 <= y2 || (y1 - y2) < y2 * IEEE.epsilon
where
y1 = f (min x1 x2)
y2 = f (max x1 x2)
----------------------------------------------------------------
-- HUnit helpers
----------------------------------------------------------------
testAssertion :: String -> Bool -> Test
testAssertion str cont = testCase str $ HU.assertBool str cont
testEquality :: (Show a, Eq a) => String -> a -> a -> Test
testEquality msg a b = testCase msg $ HU.assertEqual msg a b
|