1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
{-# LANGUAGE FlexibleInstances, OverlappingInstances, ScopedTypeVariables,
ViewPatterns #-}
module Tests.Distribution (tests) where
import Control.Applicative ((<$), (<$>), (<*>))
import qualified Control.Exception as E
import Data.List (find)
import Data.Typeable (Typeable)
import qualified Numeric.IEEE as IEEE
import Numeric.MathFunctions.Constants (m_tiny,m_epsilon)
import Numeric.MathFunctions.Comparison
import Statistics.Distribution
import Statistics.Distribution.Beta (BetaDistribution)
import Statistics.Distribution.Binomial (BinomialDistribution)
import Statistics.Distribution.CauchyLorentz
import Statistics.Distribution.ChiSquared (ChiSquared)
import Statistics.Distribution.Exponential (ExponentialDistribution)
import Statistics.Distribution.FDistribution (FDistribution,fDistribution)
import Statistics.Distribution.Gamma (GammaDistribution,gammaDistr)
import Statistics.Distribution.Geometric
import Statistics.Distribution.Hypergeometric
import Statistics.Distribution.Laplace (LaplaceDistribution)
import Statistics.Distribution.Normal (NormalDistribution)
import Statistics.Distribution.Poisson (PoissonDistribution)
import Statistics.Distribution.StudentT
import Statistics.Distribution.Transform (LinearTransform, linTransDistr)
import Statistics.Distribution.Uniform (UniformDistribution)
import Statistics.Distribution.DiscreteUniform (DiscreteUniform, discreteUniformAB)
import Test.Framework (Test, testGroup)
import Test.Framework.Providers.QuickCheck2 (testProperty)
import Test.QuickCheck as QC
import Test.QuickCheck.Monadic as QC
import Text.Printf (printf)
import Tests.ApproxEq (ApproxEq(..))
import Tests.Helpers (T(..), Double01(..), testAssertion, typeName)
import Tests.Helpers (monotonicallyIncreasesIEEE,isDenorm)
import Tests.Orphanage ()
-- | Tests for all distributions
tests :: Test
tests = testGroup "Tests for all distributions"
[ contDistrTests (T :: T BetaDistribution )
, contDistrTests (T :: T CauchyDistribution )
, contDistrTests (T :: T ChiSquared )
, contDistrTests (T :: T ExponentialDistribution )
, contDistrTests (T :: T GammaDistribution )
, contDistrTests (T :: T LaplaceDistribution )
, contDistrTests (T :: T NormalDistribution )
, contDistrTests (T :: T UniformDistribution )
, contDistrTests (T :: T StudentT )
, contDistrTests (T :: T (LinearTransform NormalDistribution))
, contDistrTests (T :: T FDistribution )
, discreteDistrTests (T :: T BinomialDistribution )
, discreteDistrTests (T :: T GeometricDistribution )
, discreteDistrTests (T :: T GeometricDistribution0 )
, discreteDistrTests (T :: T HypergeometricDistribution )
, discreteDistrTests (T :: T PoissonDistribution )
, discreteDistrTests (T :: T DiscreteUniform )
, unitTests
]
----------------------------------------------------------------
-- Tests
----------------------------------------------------------------
-- Tests for continuous distribution
contDistrTests :: (Param d, ContDistr d, QC.Arbitrary d, Typeable d, Show d) => T d -> Test
contDistrTests t = testGroup ("Tests for: " ++ typeName t) $
cdfTests t ++
[ testProperty "PDF sanity" $ pdfSanityCheck t
, testProperty "Quantile is CDF inverse" $ quantileIsInvCDF t
, testProperty "quantile fails p<0||p>1" $ quantileShouldFail t
, testProperty "log density check" $ logDensityCheck t
, testProperty "complQuantile" $ complQuantileCheck t
]
-- Tests for discrete distribution
discreteDistrTests :: (Param d, DiscreteDistr d, QC.Arbitrary d, Typeable d, Show d) => T d -> Test
discreteDistrTests t = testGroup ("Tests for: " ++ typeName t) $
cdfTests t ++
[ testProperty "Prob. sanity" $ probSanityCheck t
, testProperty "CDF is sum of prob." $ discreteCDFcorrect t
, testProperty "Discrete CDF is OK" $ cdfDiscreteIsCorrect t
, testProperty "log probabilty check" $ logProbabilityCheck t
]
-- Tests for distributions which have CDF
cdfTests :: (Param d, Distribution d, QC.Arbitrary d, Show d) => T d -> [Test]
cdfTests t =
[ testProperty "C.D.F. sanity" $ cdfSanityCheck t
, testProperty "CDF limit at +inf" $ cdfLimitAtPosInfinity t
, testProperty "CDF limit at -inf" $ cdfLimitAtNegInfinity t
, testProperty "CDF at +inf = 1" $ cdfAtPosInfinity t
, testProperty "CDF at -inf = 1" $ cdfAtNegInfinity t
, testProperty "CDF is nondecreasing" $ cdfIsNondecreasing t
, testProperty "1-CDF is correct" $ cdfComplementIsCorrect t
]
----------------------------------------------------------------
-- CDF is in [0,1] range
cdfSanityCheck :: (Distribution d) => T d -> d -> Double -> Bool
cdfSanityCheck _ d x = c >= 0 && c <= 1
where c = cumulative d x
-- CDF never decreases
cdfIsNondecreasing :: (Distribution d) => T d -> d -> Double -> Double -> Bool
cdfIsNondecreasing _ d = monotonicallyIncreasesIEEE $ cumulative d
-- cumulative d +∞ = 1
cdfAtPosInfinity :: (Distribution d) => T d -> d -> Bool
cdfAtPosInfinity _ d
= cumulative d (1/0) == 1
-- cumulative d - ∞ = 0
cdfAtNegInfinity :: (Distribution d) => T d -> d -> Bool
cdfAtNegInfinity _ d
= cumulative d (-1/0) == 0
-- CDF limit at +∞ is 1
cdfLimitAtPosInfinity :: (Param d, Distribution d) => T d -> d -> Property
cdfLimitAtPosInfinity _ d =
okForInfLimit d ==> counterexample ("Last elements: " ++ show (drop 990 probs))
$ Just 1.0 == (find (>=1) probs)
where
probs = take 1000 $ map (cumulative d) $ iterate (*1.4) 1000
-- CDF limit at -∞ is 0
cdfLimitAtNegInfinity :: (Param d, Distribution d) => T d -> d -> Property
cdfLimitAtNegInfinity _ d =
okForInfLimit d ==> counterexample ("Last elements: " ++ show (drop 990 probs))
$ case find (< IEEE.epsilon) probs of
Nothing -> False
Just p -> p >= 0
where
probs = take 1000 $ map (cumulative d) $ iterate (*1.4) (-1)
-- CDF's complement is implemented correctly
cdfComplementIsCorrect :: (Distribution d) => T d -> d -> Double -> Bool
cdfComplementIsCorrect _ d x = (eq 1e-14) 1 (cumulative d x + complCumulative d x)
-- CDF for discrete distribution uses <= for comparison
cdfDiscreteIsCorrect :: (DiscreteDistr d) => T d -> d -> Property
cdfDiscreteIsCorrect _ d
= counterexample (unlines badN)
$ null badN
where
-- We are checking that:
--
-- > CDF(i) - CDF(i-e) = P(i)
--
-- Apporixmate equality is tricky here. Scale is set by maximum
-- value of CDF and probability. Case when all proabilities are
-- zero should be trated specially.
badN = [ printf "N=%3i p[i]=%g\tp[i+1]=%g\tdP=%g\trelerr=%g" i p p1 dp ((p1-p-dp) / max p1 dp)
| i <- [0 .. 100]
, let p = cumulative d $ fromIntegral i - 1e-6
p1 = cumulative d $ fromIntegral i
dp = probability d i
relerr = ((p1 - p) - dp) / max p1 dp
, not (p == 0 && p1 == 0 && dp == 0)
&& relerr > 1e-14
]
logDensityCheck :: (ContDistr d) => T d -> d -> Double -> Property
logDensityCheck _ d x
= not (isDenorm x)
==> ( counterexample (printf "density = %g" p)
$ counterexample (printf "logDensity = %g" logP)
$ counterexample (printf "log p = %g" (log p))
$ counterexample (printf "eps = %g" (abs (logP - log p) / max (abs (log p)) (abs logP)))
$ or [ p == 0 && logP == (-1/0)
, p <= m_tiny && logP < log m_tiny
, eq 1e-14 (log p) logP
])
where
p = density d x
logP = logDensity d x
-- PDF is positive
pdfSanityCheck :: (ContDistr d) => T d -> d -> Double -> Bool
pdfSanityCheck _ d x = p >= 0
where p = density d x
complQuantileCheck :: (ContDistr d) => T d -> d -> Double01 -> Property
complQuantileCheck _ d (Double01 p) =
-- We avoid extreme tails of distributions
--
-- FIXME: all parameters are arbitrary at the moment
p > 0.01 && p < 0.99 ==> (abs (x1 - x0) < 1e-6)
where
x0 = quantile d (1 - p)
x1 = complQuantile d p
-- Quantile is inverse of CDF
quantileIsInvCDF :: (ContDistr d) => T d -> d -> Double01 -> Property
quantileIsInvCDF _ d (Double01 p) =
and [ p > 1e-250
, p < 1
, x > m_tiny
, dens > 0
] ==>
( counterexample (printf "Quantile = %g" x )
$ counterexample (printf "Probability = %g" p )
$ counterexample (printf "Probability' = %g" p')
$ counterexample (printf "Expected err. = %g" err)
$ counterexample (printf "Rel. error = %g" (relativeError p p'))
$ counterexample (printf "Abs. error = %e" (abs $ p - p'))
$ eqRelErr err p p'
)
where
-- Algorithm for error estimation is taken from here
--
-- http://sepulcarium.org/posts/2012-07-19-rounding_effect_on_inverse.html
dens = density d x
err = 64 * m_epsilon * (1 + abs (x / p) * dens)
--
x = quantile d p
p' = cumulative d x
-- Test that quantile fails if p<0 or p>1
quantileShouldFail :: (ContDistr d) => T d -> d -> Double -> Property
quantileShouldFail _ d p =
p < 0 || p > 1 ==> QC.monadicIO $ do r <- QC.run $ E.catch
(False <$ (return $! quantile d p))
(\(_ :: E.SomeException) -> return True)
QC.assert r
-- Probability is in [0,1] range
probSanityCheck :: (DiscreteDistr d) => T d -> d -> Int -> Bool
probSanityCheck _ d x = p >= 0 && p <= 1
where p = probability d x
-- Check that discrete CDF is correct
discreteCDFcorrect :: (DiscreteDistr d) => T d -> d -> Int -> Int -> Property
discreteCDFcorrect _ d a b
= counterexample (printf "CDF = %g" p1)
$ counterexample (printf "Sum = %g" p2)
$ counterexample (printf "Delta = %g" (abs (p1 - p2)))
$ abs (p1 - p2) < 3e-10
-- Avoid too large differeneces. Otherwise there is to much to sum
--
-- Absolute difference is used guard againist precision loss when
-- close values of CDF are subtracted
where
n = min a b
m = n + (abs (a - b) `mod` 100)
p1 = cumulative d (fromIntegral m + 0.5) - cumulative d (fromIntegral n - 0.5)
p2 = sum $ map (probability d) [n .. m]
logProbabilityCheck :: (DiscreteDistr d) => T d -> d -> Int -> Property
logProbabilityCheck _ d x
= counterexample (printf "probability = %g" p)
$ counterexample (printf "logProbability = %g" logP)
$ counterexample (printf "log p = %g" (log p))
$ counterexample (printf "eps = %g" (abs (logP - log p) / max (abs (log p)) (abs logP)))
$ or [ p == 0 && logP == (-1/0)
, p < 1e-308 && logP < 609
, eq 1e-14 (log p) logP
]
where
p = probability d x
logP = logProbability d x
instance QC.Arbitrary DiscreteUniform where
arbitrary = discreteUniformAB <$> QC.choose (1,1000) <*> QC.choose(1,1000)
-- Parameters for distribution testing. Some distribution require
-- relaxing parameters a bit
class Param a where
-- Precision for quantileIsInvCDF
invQuantilePrec :: a -> Double
invQuantilePrec _ = 1e-14
-- Distribution is OK for testing limits
okForInfLimit :: a -> Bool
okForInfLimit _ = True
instance Param a
instance Param StudentT where
invQuantilePrec _ = 1e-13
okForInfLimit d = studentTndf d > 0.75
instance Param (LinearTransform StudentT) where
invQuantilePrec _ = 1e-13
okForInfLimit d = (studentTndf . linTransDistr) d > 0.75
instance Param FDistribution where
invQuantilePrec _ = 1e-12
----------------------------------------------------------------
-- Unit tests
----------------------------------------------------------------
unitTests :: Test
unitTests = testGroup "Unit tests"
[ testAssertion "density (gammaDistr 150 1/150) 1 == 4.883311" $
4.883311418525483 =~ density (gammaDistr 150 (1/150)) 1
-- Student-T
, testStudentPDF 0.3 1.34 0.0648215 -- PDF
, testStudentPDF 1 0.42 0.27058
, testStudentPDF 4.4 0.33 0.352994
, testStudentCDF 0.3 3.34 0.757146 -- CDF
, testStudentCDF 1 0.42 0.626569
, testStudentCDF 4.4 0.33 0.621739
-- Student-T General
, testStudentUnstandardizedPDF 0.3 1.2 4 0.45 0.0533456 -- PDF
, testStudentUnstandardizedPDF 4.3 (-2.4) 3.22 (-0.6) 0.0971141
, testStudentUnstandardizedPDF 3.8 0.22 7.62 0.14 0.0490523
, testStudentUnstandardizedCDF 0.3 1.2 4 0.45 0.458035 -- CDF
, testStudentUnstandardizedCDF 4.3 (-2.4) 3.22 (-0.6) 0.698001
, testStudentUnstandardizedCDF 3.8 0.22 7.62 0.14 0.496076
-- F-distribution
, testFdistrPDF 1 3 3 (1/(6 * pi)) -- PDF
, testFdistrPDF 2 2 1.2 0.206612
, testFdistrPDF 10 12 8 0.000385613179281892790166
, testFdistrCDF 1 3 3 0.81830988618379067153 -- CDF
, testFdistrCDF 2 2 1.2 0.545455
, testFdistrCDF 10 12 8 0.99935509863451408041
]
where
-- Student-T
testStudentPDF ndf x exact
= testAssertion (printf "density (studentT %f) %f ~ %f" ndf x exact)
$ eq 1e-5 exact (density (studentT ndf) x)
testStudentCDF ndf x exact
= testAssertion (printf "cumulative (studentT %f) %f ~ %f" ndf x exact)
$ eq 1e-5 exact (cumulative (studentT ndf) x)
-- Student-T General
testStudentUnstandardizedPDF ndf mu sigma x exact
= testAssertion (printf "density (studentTUnstandardized %f %f %f) %f ~ %f" ndf mu sigma x exact)
$ eq 1e-5 exact (density (studentTUnstandardized ndf mu sigma) x)
testStudentUnstandardizedCDF ndf mu sigma x exact
= testAssertion (printf "cumulative (studentTUnstandardized %f %f %f) %f ~ %f" ndf mu sigma x exact)
$ eq 1e-5 exact (cumulative (studentTUnstandardized ndf mu sigma) x)
-- F-distribution
testFdistrPDF n m x exact
= testAssertion (printf "density (fDistribution %i %i) %f ~ %f [got %f]" n m x exact d)
$ eq 1e-5 exact d
where d = density (fDistribution n m) x
testFdistrCDF n m x exact
= testAssertion (printf "cumulative (fDistribution %i %i) %f ~ %f [got %f]" n m x exact d)
$ eq 1e-5 exact d
where d = cumulative (fDistribution n m) x
|