1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE DeriveDataTypeable, DeriveGeneric #-}
-- |
-- Module : Statistics.Distribution.FDistribution
-- Copyright : (c) 2011 Aleksey Khudyakov
-- License : BSD3
--
-- Maintainer : bos@serpentine.com
-- Stability : experimental
-- Portability : portable
--
-- Fisher F distribution
module Statistics.Distribution.FDistribution (
FDistribution
-- * Constructors
, fDistribution
, fDistributionE
, fDistributionReal
, fDistributionRealE
-- * Accessors
, fDistributionNDF1
, fDistributionNDF2
) where
import Control.Applicative
import Data.Aeson (FromJSON(..), ToJSON, Value(..), (.:))
import Data.Binary (Binary(..))
import Data.Data (Data, Typeable)
import GHC.Generics (Generic)
import Numeric.SpecFunctions (
logBeta, incompleteBeta, invIncompleteBeta, digamma)
import Numeric.MathFunctions.Constants (m_neg_inf)
import qualified Statistics.Distribution as D
import Statistics.Function (square)
import Statistics.Internal
-- | F distribution
data FDistribution = F { fDistributionNDF1 :: {-# UNPACK #-} !Double
, fDistributionNDF2 :: {-# UNPACK #-} !Double
, _pdfFactor :: {-# UNPACK #-} !Double
}
deriving (Eq, Typeable, Data, Generic)
instance Show FDistribution where
showsPrec i (F n m _) = defaultShow2 "fDistributionReal" n m i
instance Read FDistribution where
readPrec = defaultReadPrecM2 "fDistributionReal" fDistributionRealE
instance ToJSON FDistribution
instance FromJSON FDistribution where
parseJSON (Object v) = do
n <- v .: "fDistributionNDF1"
m <- v .: "fDistributionNDF2"
maybe (fail $ errMsgR n m) return $ fDistributionRealE n m
parseJSON _ = empty
instance Binary FDistribution where
put (F n m _) = put n >> put m
get = do
n <- get
m <- get
maybe (fail $ errMsgR n m) return $ fDistributionRealE n m
fDistribution :: Int -> Int -> FDistribution
fDistribution n m = maybe (error $ errMsg n m) id $ fDistributionE n m
fDistributionReal :: Double -> Double -> FDistribution
fDistributionReal n m = maybe (error $ errMsgR n m) id $ fDistributionRealE n m
fDistributionE :: Int -> Int -> Maybe FDistribution
fDistributionE n m
| n > 0 && m > 0 =
let n' = fromIntegral n
m' = fromIntegral m
f' = 0.5 * (log m' * m' + log n' * n') - logBeta (0.5*n') (0.5*m')
in Just $ F n' m' f'
| otherwise = Nothing
fDistributionRealE :: Double -> Double -> Maybe FDistribution
fDistributionRealE n m
| n > 0 && m > 0 =
let f' = 0.5 * (log m * m + log n * n) - logBeta (0.5*n) (0.5*m)
in Just $ F n m f'
| otherwise = Nothing
errMsg :: Int -> Int -> String
errMsg _ _ = "Statistics.Distribution.FDistribution.fDistribution: non-positive number of degrees of freedom"
errMsgR :: Double -> Double -> String
errMsgR _ _ = "Statistics.Distribution.FDistribution.fDistribution: non-positive number of degrees of freedom"
instance D.Distribution FDistribution where
cumulative = cumulative
complCumulative = complCumulative
instance D.ContDistr FDistribution where
density d x
| x <= 0 = 0
| otherwise = exp $ logDensity d x
logDensity d x
| x <= 0 = m_neg_inf
| otherwise = logDensity d x
quantile = quantile
cumulative :: FDistribution -> Double -> Double
cumulative (F n m _) x
| x <= 0 = 0
-- Only matches +∞
| isInfinite x = 1
-- NOTE: Here we rely on implementation detail of incompleteBeta. It
-- computes using series expansion for sufficiently small x
-- and uses following identity otherwise:
--
-- I(x; a, b) = 1 - I(1-x; b, a)
--
-- Point is we can compute 1-x as m/(m+y) without loss of
-- precision for large x. Sadly this switchover point is
-- implementation detail.
| n >= (n+m)*bx = incompleteBeta (0.5 * n) (0.5 * m) bx
| otherwise = 1 - incompleteBeta (0.5 * m) (0.5 * n) bx1
where
y = n * x
bx = y / (m + y)
bx1 = m / (m + y)
complCumulative :: FDistribution -> Double -> Double
complCumulative (F n m _) x
| x <= 0 = 1
-- Only matches +∞
| isInfinite x = 0
-- See NOTE at cumulative
| m >= (n+m)*bx = incompleteBeta (0.5 * m) (0.5 * n) bx
| otherwise = 1 - incompleteBeta (0.5 * n) (0.5 * m) bx1
where
y = n*x
bx = m / (m + y)
bx1 = y / (m + y)
logDensity :: FDistribution -> Double -> Double
logDensity (F n m fac) x
= fac + log x * (0.5 * n - 1) - log(m + n*x) * 0.5 * (n + m)
quantile :: FDistribution -> Double -> Double
quantile (F n m _) p
| p >= 0 && p <= 1 =
let x = invIncompleteBeta (0.5 * n) (0.5 * m) p
in m * x / (n * (1 - x))
| otherwise =
error $ "Statistics.Distribution.Uniform.quantile: p must be in [0,1] range. Got: "++show p
instance D.MaybeMean FDistribution where
maybeMean (F _ m _) | m > 2 = Just $ m / (m - 2)
| otherwise = Nothing
instance D.MaybeVariance FDistribution where
maybeStdDev (F n m _)
| m > 4 = Just $ 2 * square m * (m + n - 2) / (n * square (m - 2) * (m - 4))
| otherwise = Nothing
instance D.Entropy FDistribution where
entropy (F n m _) =
let nHalf = 0.5 * n
mHalf = 0.5 * m in
log (n/m)
+ logBeta nHalf mHalf
+ (1 - nHalf) * digamma nHalf
- (1 + mHalf) * digamma mHalf
+ (nHalf + mHalf) * digamma (nHalf + mHalf)
instance D.MaybeEntropy FDistribution where
maybeEntropy = Just . D.entropy
instance D.ContGen FDistribution where
genContVar = D.genContinuous
|