File: Hypergeometric.hs

package info (click to toggle)
haskell-statistics 0.16.2.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 640 kB
  • sloc: haskell: 6,819; ansic: 35; python: 33; makefile: 9
file content (183 lines) | stat: -rw-r--r-- 5,846 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE DeriveDataTypeable, DeriveGeneric #-}
-- |
-- Module    : Statistics.Distribution.Hypergeometric
-- Copyright : (c) 2009 Bryan O'Sullivan
-- License   : BSD3
--
-- Maintainer  : bos@serpentine.com
-- Stability   : experimental
-- Portability : portable
--
-- The Hypergeometric distribution.  This is the discrete probability
-- distribution that measures the probability of /k/ successes in /l/
-- trials, without replacement, from a finite population.
--
-- The parameters of the distribution describe /k/ elements chosen
-- from a population of /l/, with /m/ elements of one type, and
-- /l/-/m/ of the other (all are positive integers).

module Statistics.Distribution.Hypergeometric
    (
      HypergeometricDistribution
    -- * Constructors
    , hypergeometric
    , hypergeometricE
    -- ** Accessors
    , hdM
    , hdL
    , hdK
    ) where

import Control.Applicative
import Data.Aeson           (FromJSON(..), ToJSON, Value(..), (.:))
import Data.Binary          (Binary(..))
import Data.Data            (Data, Typeable)
import GHC.Generics         (Generic)
import Numeric.MathFunctions.Constants (m_epsilon,m_neg_inf)
import Numeric.SpecFunctions (choose,logChoose)

import qualified Statistics.Distribution as D
import Statistics.Internal


data HypergeometricDistribution = HD {
      hdM :: {-# UNPACK #-} !Int
    , hdL :: {-# UNPACK #-} !Int
    , hdK :: {-# UNPACK #-} !Int
    } deriving (Eq, Typeable, Data, Generic)

instance Show HypergeometricDistribution where
  showsPrec i (HD m l k) = defaultShow3 "hypergeometric" m l k i
instance Read HypergeometricDistribution where
  readPrec = defaultReadPrecM3 "hypergeometric" hypergeometricE

instance ToJSON HypergeometricDistribution
instance FromJSON HypergeometricDistribution where
  parseJSON (Object v) = do
    m <- v .: "hdM"
    l <- v .: "hdL"
    k <- v .: "hdK"
    maybe (fail $ errMsg m l k) return $ hypergeometricE m l k
  parseJSON _ = empty

instance Binary HypergeometricDistribution where
  put (HD m l k) = put m >> put l >> put k
  get = do
    m <- get
    l <- get
    k <- get
    maybe (fail $ errMsg m l k) return $ hypergeometricE m l k

instance D.Distribution HypergeometricDistribution where
    cumulative = cumulative
    complCumulative = complCumulative

instance D.DiscreteDistr HypergeometricDistribution where
    probability    = probability
    logProbability = logProbability

instance D.Mean HypergeometricDistribution where
    mean = mean

instance D.Variance HypergeometricDistribution where
    variance = variance

instance D.MaybeMean HypergeometricDistribution where
    maybeMean = Just . D.mean

instance D.MaybeVariance HypergeometricDistribution where
    maybeStdDev   = Just . D.stdDev
    maybeVariance = Just . D.variance

instance D.Entropy HypergeometricDistribution where
  entropy = directEntropy

instance D.MaybeEntropy HypergeometricDistribution where
  maybeEntropy = Just . D.entropy

variance :: HypergeometricDistribution -> Double
variance (HD m l k) = (k' * ml) * (1 - ml) * (l' - k') / (l' - 1)
  where m' = fromIntegral m
        l' = fromIntegral l
        k' = fromIntegral k
        ml = m' / l'

mean :: HypergeometricDistribution -> Double
mean (HD m l k) = fromIntegral k * fromIntegral m / fromIntegral l

directEntropy :: HypergeometricDistribution -> Double
directEntropy d@(HD m _ _)
  = negate . sum
  $ takeWhile (< negate m_epsilon)
  $ dropWhile (not . (< negate m_epsilon))
    [ let x = probability d n in x * log x | n <- [0..m]]


hypergeometric :: Int               -- ^ /m/
               -> Int               -- ^ /l/
               -> Int               -- ^ /k/
               -> HypergeometricDistribution
hypergeometric m l k
  = maybe (error $ errMsg m l k) id $ hypergeometricE m l k

hypergeometricE :: Int               -- ^ /m/
                -> Int               -- ^ /l/
                -> Int               -- ^ /k/
                -> Maybe HypergeometricDistribution
hypergeometricE m l k
  | not (l > 0)            = Nothing
  | not (m >= 0 && m <= l) = Nothing
  | not (k > 0  && k <= l) = Nothing
  | otherwise              = Just (HD m l k)


errMsg :: Int -> Int -> Int -> String
errMsg m l k
  =  "Statistics.Distribution.Hypergeometric.hypergeometric:"
  ++ " m=" ++ show m
  ++ " l=" ++ show l
  ++ " k=" ++ show k
  ++ " should hold: l>0 & m in [0,l] & k in (0,l]"

-- Naive implementation
probability :: HypergeometricDistribution -> Int -> Double
probability (HD mi li ki) n
  | n < max 0 (mi+ki-li) || n > min mi ki = 0
    -- No overflow
  | li < 1000 = choose mi n * choose (li - mi) (ki - n)
              / choose li ki
  | otherwise = exp $ logChoose mi n
                    + logChoose (li - mi) (ki - n)
                    - logChoose li ki

logProbability :: HypergeometricDistribution -> Int -> Double
logProbability (HD mi li ki) n
  | n < max 0 (mi+ki-li) || n > min mi ki = m_neg_inf
  | otherwise = logChoose mi n
              + logChoose (li - mi) (ki - n)
              - logChoose li ki

cumulative :: HypergeometricDistribution -> Double -> Double
cumulative d@(HD mi li ki) x
  | isNaN x      = error "Statistics.Distribution.Hypergeometric.cumulative: NaN argument"
  | isInfinite x = if x > 0 then 1 else 0
  | n <  minN    = 0
  | n >= maxN    = 1
  | otherwise    = D.sumProbabilities d minN n
  where
    n    = floor x
    minN = max 0 (mi+ki-li)
    maxN = min mi ki

complCumulative :: HypergeometricDistribution -> Double -> Double
complCumulative d@(HD mi li ki) x
  | isNaN x      = error "Statistics.Distribution.Hypergeometric.complCumulative: NaN argument"
  | isInfinite x = if x > 0 then 0 else 1
  | n <  minN    = 1
  | n >= maxN    = 0
  | otherwise    = D.sumProbabilities d (n + 1) maxN
  where
    n    = floor x
    minN = max 0 (mi+ki-li)
    maxN = min mi ki