File: Normal.hs

package info (click to toggle)
haskell-statistics 0.16.2.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 640 kB
  • sloc: haskell: 6,819; ansic: 35; python: 33; makefile: 9
file content (186 lines) | stat: -rw-r--r-- 6,231 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE DeriveDataTypeable, DeriveGeneric #-}
-- |
-- Module    : Statistics.Distribution.Normal
-- Copyright : (c) 2009 Bryan O'Sullivan
-- License   : BSD3
--
-- Maintainer  : bos@serpentine.com
-- Stability   : experimental
-- Portability : portable
--
-- The normal distribution.  This is a continuous probability
-- distribution that describes data that cluster around a mean.

module Statistics.Distribution.Normal
    (
      NormalDistribution
    -- * Constructors
    , normalDistr
    , normalDistrE
    , normalDistrErr
    , standard
    ) where

import Control.Applicative
import Data.Aeson            (FromJSON(..), ToJSON, Value(..), (.:))
import Data.Binary           (Binary(..))
import Data.Data             (Data, Typeable)
import GHC.Generics          (Generic)
import Numeric.MathFunctions.Constants (m_sqrt_2, m_sqrt_2_pi)
import Numeric.SpecFunctions (erfc, invErfc)
import qualified System.Random.MWC.Distributions as MWC
import qualified Data.Vector.Generic as G

import qualified Statistics.Distribution as D
import qualified Statistics.Sample as S
import Statistics.Internal


-- | The normal distribution.
data NormalDistribution = ND {
      mean       :: {-# UNPACK #-} !Double
    , stdDev     :: {-# UNPACK #-} !Double
    , ndPdfDenom :: {-# UNPACK #-} !Double
    , ndCdfDenom :: {-# UNPACK #-} !Double
    } deriving (Eq, Typeable, Data, Generic)

instance Show NormalDistribution where
  showsPrec i (ND m s _ _) = defaultShow2 "normalDistr" m s i
instance Read NormalDistribution where
  readPrec = defaultReadPrecM2 "normalDistr" normalDistrE

instance ToJSON NormalDistribution
instance FromJSON NormalDistribution where
  parseJSON (Object v) = do
    m  <- v .: "mean"
    sd <- v .: "stdDev"
    either fail return $ normalDistrErr m sd
  parseJSON _ = empty

instance Binary NormalDistribution where
    put (ND m sd _ _) = put m >> put sd
    get = do
      m  <- get
      sd <- get
      either fail return $ normalDistrErr m sd

instance D.Distribution NormalDistribution where
    cumulative      = cumulative
    complCumulative = complCumulative

instance D.ContDistr NormalDistribution where
    logDensity    = logDensity
    quantile      = quantile
    complQuantile = complQuantile

instance D.MaybeMean NormalDistribution where
    maybeMean = Just . D.mean

instance D.Mean NormalDistribution where
    mean = mean

instance D.MaybeVariance NormalDistribution where
    maybeStdDev   = Just . D.stdDev
    maybeVariance = Just . D.variance

instance D.Variance NormalDistribution where
    stdDev = stdDev

instance D.Entropy NormalDistribution where
  entropy d = 0.5 * log (2 * pi * exp 1 * D.variance d)

instance D.MaybeEntropy NormalDistribution where
  maybeEntropy = Just . D.entropy

instance D.ContGen NormalDistribution where
    genContVar d = MWC.normal (mean d) (stdDev d)

-- | Standard normal distribution with mean equal to 0 and variance equal to 1
standard :: NormalDistribution
standard = ND { mean       = 0.0
              , stdDev     = 1.0
              , ndPdfDenom = log m_sqrt_2_pi
              , ndCdfDenom = m_sqrt_2
              }

-- | Create normal distribution from parameters.
--
-- IMPORTANT: prior to 0.10 release second parameter was variance not
-- standard deviation.
normalDistr :: Double            -- ^ Mean of distribution
            -> Double            -- ^ Standard deviation of distribution
            -> NormalDistribution
normalDistr m sd = either error id $ normalDistrErr m sd

-- | Create normal distribution from parameters.
--
-- IMPORTANT: prior to 0.10 release second parameter was variance not
-- standard deviation.
normalDistrE :: Double            -- ^ Mean of distribution
             -> Double            -- ^ Standard deviation of distribution
             -> Maybe NormalDistribution
normalDistrE m sd = either (const Nothing) Just $ normalDistrErr m sd

-- | Create normal distribution from parameters.
--
normalDistrErr :: Double            -- ^ Mean of distribution
               -> Double            -- ^ Standard deviation of distribution
               -> Either String NormalDistribution
normalDistrErr m sd
  | sd > 0    = Right $ ND { mean       = m
                           , stdDev     = sd
                           , ndPdfDenom = log $ m_sqrt_2_pi * sd
                           , ndCdfDenom = m_sqrt_2 * sd
                           }
  | otherwise = Left $ errMsg m sd

errMsg :: Double -> Double -> String
errMsg _ sd = "Statistics.Distribution.Normal.normalDistr: standard deviation must be positive. Got " ++ show sd

-- | Variance is estimated using maximum likelihood method
--   (biased estimation).
--
--   Returns @Nothing@ if sample contains less than one element or
--   variance is zero (all elements are equal)
instance D.FromSample NormalDistribution Double where
  fromSample xs
    | G.length xs <= 1 = Nothing
    | v == 0           = Nothing
    | otherwise        = Just $! normalDistr m (sqrt v)
    where
      (m,v) = S.meanVariance xs

logDensity :: NormalDistribution -> Double -> Double
logDensity d x = (-xm * xm / (2 * sd * sd)) - ndPdfDenom d
    where xm = x - mean d
          sd = stdDev d

cumulative :: NormalDistribution -> Double -> Double
cumulative d x = erfc ((mean d - x) / ndCdfDenom d) / 2

complCumulative :: NormalDistribution -> Double -> Double
complCumulative d x = erfc ((x - mean d) / ndCdfDenom d) / 2

quantile :: NormalDistribution -> Double -> Double
quantile d p
  | p == 0         = -inf
  | p == 1         = inf
  | p == 0.5       = mean d
  | p > 0 && p < 1 = x * ndCdfDenom d + mean d
  | otherwise      =
    error $ "Statistics.Distribution.Normal.quantile: p must be in [0,1] range. Got: "++show p
  where x          = - invErfc (2 * p)
        inf        = 1/0

complQuantile :: NormalDistribution -> Double -> Double
complQuantile d p
  | p == 0         = inf
  | p == 1         = -inf
  | p == 0.5       = mean d
  | p > 0 && p < 1 = x * ndCdfDenom d + mean d
  | otherwise      =
    error $ "Statistics.Distribution.Normal.complQuantile: p must be in [0,1] range. Got: "++show p
  where x          = invErfc (2 * p)
        inf        = 1/0