1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
|
{-# LANGUAGE FlexibleContexts #-}
-- |
-- Module : Statistics.Sample
-- Copyright : (c) 2008 Don Stewart, 2009 Bryan O'Sullivan
-- License : BSD3
--
-- Maintainer : bos@serpentine.com
-- Stability : experimental
-- Portability : portable
--
-- Commonly used sample statistics, also known as descriptive
-- statistics.
module Statistics.Sample
(
-- * Types
Sample
, WeightedSample
-- * Descriptive functions
, range
-- * Statistics of location
, mean
, welfordMean
, meanWeighted
, harmonicMean
, geometricMean
-- * Statistics of dispersion
-- $variance
-- ** Functions over central moments
, centralMoment
, centralMoments
, skewness
, kurtosis
-- ** Two-pass functions (numerically robust)
-- $robust
, variance
, varianceUnbiased
, meanVariance
, meanVarianceUnb
, stdDev
, varianceWeighted
, stdErrMean
-- ** Single-pass functions (faster, less safe)
-- $cancellation
, fastVariance
, fastVarianceUnbiased
, fastStdDev
-- * Joint distributions
, covariance
, correlation
, pair
-- * References
-- $references
) where
import Statistics.Function (minMax)
import Statistics.Sample.Internal (robustSumVar, sum)
import Statistics.Types.Internal (Sample,WeightedSample)
import qualified Data.Vector as V
import qualified Data.Vector.Generic as G
import qualified Data.Vector.Unboxed as U
-- Operator ^ will be overridden
import Prelude hiding ((^), sum)
-- | /O(n)/ Range. The difference between the largest and smallest
-- elements of a sample.
range :: (G.Vector v Double) => v Double -> Double
range s = hi - lo
where (lo , hi) = minMax s
{-# INLINE range #-}
-- | /O(n)/ Arithmetic mean. This uses Kahan-Babuška-Neumaier
-- summation, so is more accurate than 'welfordMean' unless the input
-- values are very large.
mean :: (G.Vector v Double) => v Double -> Double
mean xs = sum xs / fromIntegral (G.length xs)
{-# SPECIALIZE mean :: U.Vector Double -> Double #-}
{-# SPECIALIZE mean :: V.Vector Double -> Double #-}
-- | /O(n)/ Arithmetic mean. This uses Welford's algorithm to provide
-- numerical stability, using a single pass over the sample data.
--
-- Compared to 'mean', this loses a surprising amount of precision
-- unless the inputs are very large.
welfordMean :: (G.Vector v Double) => v Double -> Double
welfordMean = fini . G.foldl' go (T 0 0)
where
fini (T a _) = a
go (T m n) x = T m' n'
where m' = m + (x - m) / fromIntegral n'
n' = n + 1
{-# SPECIALIZE welfordMean :: U.Vector Double -> Double #-}
{-# SPECIALIZE welfordMean :: V.Vector Double -> Double #-}
-- | /O(n)/ Arithmetic mean for weighted sample. It uses a single-pass
-- algorithm analogous to the one used by 'welfordMean'.
meanWeighted :: (G.Vector v (Double,Double)) => v (Double,Double) -> Double
meanWeighted = fini . G.foldl' go (V 0 0)
where
fini (V a _) = a
go (V m w) (x,xw) = V m' w'
where m' | w' == 0 = 0
| otherwise = m + xw * (x - m) / w'
w' = w + xw
{-# INLINE meanWeighted #-}
-- | /O(n)/ Harmonic mean. This algorithm performs a single pass over
-- the sample.
harmonicMean :: (G.Vector v Double) => v Double -> Double
harmonicMean = fini . G.foldl' go (T 0 0)
where
fini (T b a) = fromIntegral a / b
go (T x y) n = T (x + (1/n)) (y+1)
{-# INLINE harmonicMean #-}
-- | /O(n)/ Geometric mean of a sample containing no negative values.
geometricMean :: (G.Vector v Double) => v Double -> Double
geometricMean = exp . mean . G.map log
{-# INLINE geometricMean #-}
-- | Compute the /k/th central moment of a sample. The central moment
-- is also known as the moment about the mean.
--
-- This function performs two passes over the sample, so is not subject
-- to stream fusion.
--
-- For samples containing many values very close to the mean, this
-- function is subject to inaccuracy due to catastrophic cancellation.
centralMoment :: (G.Vector v Double) => Int -> v Double -> Double
centralMoment a xs
| a < 0 = error "Statistics.Sample.centralMoment: negative input"
| a == 0 = 1
| a == 1 = 0
| otherwise = sum (G.map go xs) / fromIntegral (G.length xs)
where
go x = (x-m) ^ a
m = mean xs
{-# SPECIALIZE centralMoment :: Int -> U.Vector Double -> Double #-}
{-# SPECIALIZE centralMoment :: Int -> V.Vector Double -> Double #-}
-- | Compute the /k/th and /j/th central moments of a sample.
--
-- This function performs two passes over the sample, so is not subject
-- to stream fusion.
--
-- For samples containing many values very close to the mean, this
-- function is subject to inaccuracy due to catastrophic cancellation.
centralMoments :: (G.Vector v Double) => Int -> Int -> v Double -> (Double, Double)
centralMoments a b xs
| a < 2 || b < 2 = (centralMoment a xs , centralMoment b xs)
| otherwise = fini . G.foldl' go (V 0 0) $ xs
where go (V i j) x = V (i + d^a) (j + d^b)
where d = x - m
fini (V i j) = (i / n , j / n)
m = mean xs
n = fromIntegral (G.length xs)
{-# SPECIALIZE
centralMoments :: Int -> Int -> U.Vector Double -> (Double, Double) #-}
{-# SPECIALIZE
centralMoments :: Int -> Int -> V.Vector Double -> (Double, Double) #-}
-- | Compute the skewness of a sample. This is a measure of the
-- asymmetry of its distribution.
--
-- A sample with negative skew is said to be /left-skewed/. Most of
-- its mass is on the right of the distribution, with the tail on the
-- left.
--
-- > skewness $ U.to [1,100,101,102,103]
-- > ==> -1.497681449918257
--
-- A sample with positive skew is said to be /right-skewed/.
--
-- > skewness $ U.to [1,2,3,4,100]
-- > ==> 1.4975367033335198
--
-- A sample's skewness is not defined if its 'variance' is zero.
--
-- This function performs two passes over the sample, so is not subject
-- to stream fusion.
--
-- For samples containing many values very close to the mean, this
-- function is subject to inaccuracy due to catastrophic cancellation.
skewness :: (G.Vector v Double) => v Double -> Double
skewness xs = c3 * c2 ** (-1.5)
where (c3 , c2) = centralMoments 3 2 xs
{-# SPECIALIZE skewness :: U.Vector Double -> Double #-}
{-# SPECIALIZE skewness :: V.Vector Double -> Double #-}
-- | Compute the excess kurtosis of a sample. This is a measure of
-- the \"peakedness\" of its distribution. A high kurtosis indicates
-- that more of the sample's variance is due to infrequent severe
-- deviations, rather than more frequent modest deviations.
--
-- A sample's excess kurtosis is not defined if its 'variance' is
-- zero.
--
-- This function performs two passes over the sample, so is not subject
-- to stream fusion.
--
-- For samples containing many values very close to the mean, this
-- function is subject to inaccuracy due to catastrophic cancellation.
kurtosis :: (G.Vector v Double) => v Double -> Double
kurtosis xs = c4 / (c2 * c2) - 3
where (c4 , c2) = centralMoments 4 2 xs
{-# SPECIALIZE kurtosis :: U.Vector Double -> Double #-}
{-# SPECIALIZE kurtosis :: V.Vector Double -> Double #-}
-- $variance
--
-- The variance — and hence the standard deviation — of a
-- sample of fewer than two elements are both defined to be zero.
-- $robust
--
-- These functions use the compensated summation algorithm of Chan et
-- al. for numerical robustness, but require two passes over the
-- sample data as a result.
--
-- Because of the need for two passes, these functions are /not/
-- subject to stream fusion.
data V = V {-# UNPACK #-} !Double {-# UNPACK #-} !Double
-- | Maximum likelihood estimate of a sample's variance. Also known
-- as the population variance, where the denominator is /n/.
variance :: (G.Vector v Double) => v Double -> Double
variance samp
| n > 1 = robustSumVar (mean samp) samp / fromIntegral n
| otherwise = 0
where
n = G.length samp
{-# SPECIALIZE variance :: U.Vector Double -> Double #-}
{-# SPECIALIZE variance :: V.Vector Double -> Double #-}
-- | Unbiased estimate of a sample's variance. Also known as the
-- sample variance, where the denominator is /n/-1.
varianceUnbiased :: (G.Vector v Double) => v Double -> Double
varianceUnbiased samp
| n > 1 = robustSumVar (mean samp) samp / fromIntegral (n-1)
| otherwise = 0
where
n = G.length samp
{-# SPECIALIZE varianceUnbiased :: U.Vector Double -> Double #-}
{-# SPECIALIZE varianceUnbiased :: V.Vector Double -> Double #-}
-- | Calculate mean and maximum likelihood estimate of variance. This
-- function should be used if both mean and variance are required
-- since it will calculate mean only once.
meanVariance :: (G.Vector v Double) => v Double -> (Double,Double)
meanVariance samp
| n > 1 = (m, robustSumVar m samp / fromIntegral n)
| otherwise = (m, 0)
where
n = G.length samp
m = mean samp
{-# SPECIALIZE meanVariance :: U.Vector Double -> (Double,Double) #-}
{-# SPECIALIZE meanVariance :: V.Vector Double -> (Double,Double) #-}
-- | Calculate mean and unbiased estimate of variance. This
-- function should be used if both mean and variance are required
-- since it will calculate mean only once.
meanVarianceUnb :: (G.Vector v Double) => v Double -> (Double,Double)
meanVarianceUnb samp
| n > 1 = (m, robustSumVar m samp / fromIntegral (n-1))
| otherwise = (m, 0)
where
n = G.length samp
m = mean samp
{-# SPECIALIZE meanVarianceUnb :: U.Vector Double -> (Double,Double) #-}
{-# SPECIALIZE meanVarianceUnb :: V.Vector Double -> (Double,Double) #-}
-- | Standard deviation. This is simply the square root of the
-- unbiased estimate of the variance.
stdDev :: (G.Vector v Double) => v Double -> Double
stdDev = sqrt . varianceUnbiased
{-# SPECIALIZE stdDev :: U.Vector Double -> Double #-}
{-# SPECIALIZE stdDev :: V.Vector Double -> Double #-}
-- | Standard error of the mean. This is the standard deviation
-- divided by the square root of the sample size.
stdErrMean :: (G.Vector v Double) => v Double -> Double
stdErrMean samp = stdDev samp / (sqrt . fromIntegral . G.length) samp
{-# SPECIALIZE stdErrMean :: U.Vector Double -> Double #-}
{-# SPECIALIZE stdErrMean :: V.Vector Double -> Double #-}
robustSumVarWeighted :: (G.Vector v (Double,Double)) => v (Double,Double) -> V
robustSumVarWeighted samp = G.foldl' go (V 0 0) samp
where
go (V s w) (x,xw) = V (s + xw*d*d) (w + xw)
where d = x - m
m = meanWeighted samp
{-# INLINE robustSumVarWeighted #-}
-- | Weighted variance. This is biased estimation.
varianceWeighted :: (G.Vector v (Double,Double)) => v (Double,Double) -> Double
varianceWeighted samp
| G.length samp > 1 = fini $ robustSumVarWeighted samp
| otherwise = 0
where
fini (V s w) = s / w
{-# SPECIALIZE varianceWeighted :: U.Vector (Double,Double) -> Double #-}
{-# SPECIALIZE varianceWeighted :: V.Vector (Double,Double) -> Double #-}
-- $cancellation
--
-- The functions prefixed with the name @fast@ below perform a single
-- pass over the sample data using Knuth's algorithm. They usually
-- work well, but see below for caveats. These functions are subject
-- to array fusion.
--
-- /Note/: in cases where most sample data is close to the sample's
-- mean, Knuth's algorithm gives inaccurate results due to
-- catastrophic cancellation.
fastVar :: (G.Vector v Double) => v Double -> T1
fastVar = G.foldl' go (T1 0 0 0)
where
go (T1 n m s) x = T1 n' m' s'
where n' = n + 1
m' = m + d / fromIntegral n'
s' = s + d * (x - m')
d = x - m
-- | Maximum likelihood estimate of a sample's variance.
fastVariance :: (G.Vector v Double) => v Double -> Double
fastVariance = fini . fastVar
where fini (T1 n _m s)
| n > 1 = s / fromIntegral n
| otherwise = 0
{-# INLINE fastVariance #-}
-- | Unbiased estimate of a sample's variance.
fastVarianceUnbiased :: (G.Vector v Double) => v Double -> Double
fastVarianceUnbiased = fini . fastVar
where fini (T1 n _m s)
| n > 1 = s / fromIntegral (n - 1)
| otherwise = 0
{-# INLINE fastVarianceUnbiased #-}
-- | Standard deviation. This is simply the square root of the
-- maximum likelihood estimate of the variance.
fastStdDev :: (G.Vector v Double) => v Double -> Double
fastStdDev = sqrt . fastVariance
{-# INLINE fastStdDev #-}
-- | Covariance of sample of pairs. For empty sample it's set to
-- zero
covariance :: (G.Vector v (Double,Double), G.Vector v Double)
=> v (Double,Double)
-> Double
covariance xy
| n == 0 = 0
| otherwise = mean $ G.zipWith (*)
(G.map (\x -> x - muX) xs)
(G.map (\y -> y - muY) ys)
where
n = G.length xy
(xs,ys) = G.unzip xy
muX = mean xs
muY = mean ys
{-# SPECIALIZE covariance :: U.Vector (Double,Double) -> Double #-}
{-# SPECIALIZE covariance :: V.Vector (Double,Double) -> Double #-}
-- | Correlation coefficient for sample of pairs. Also known as
-- Pearson's correlation. For empty sample it's set to zero.
correlation :: (G.Vector v (Double,Double), G.Vector v Double)
=> v (Double,Double)
-> Double
correlation xy
| n == 0 = 0
| otherwise = cov / sqrt (varX * varY)
where
n = G.length xy
(xs,ys) = G.unzip xy
(muX,varX) = meanVariance xs
(muY,varY) = meanVariance ys
cov = mean $ G.zipWith (*)
(G.map (\x -> x - muX) xs)
(G.map (\y -> y - muY) ys)
{-# SPECIALIZE correlation :: U.Vector (Double,Double) -> Double #-}
{-# SPECIALIZE correlation :: V.Vector (Double,Double) -> Double #-}
-- | Pair two samples. It's like 'G.zip' but requires that both
-- samples have equal size.
pair :: (G.Vector v a, G.Vector v b, G.Vector v (a,b)) => v a -> v b -> v (a,b)
pair va vb
| G.length va == G.length vb = G.zip va vb
| otherwise = error "Statistics.Sample.pair: vector must have same length"
{-# INLINE pair #-}
------------------------------------------------------------------------
-- Helper code. Monomorphic unpacked accumulators.
-- (^) operator from Prelude is just slow.
(^) :: Double -> Int -> Double
x ^ 1 = x
x ^ n = x * (x ^ (n-1))
{-# INLINE (^) #-}
-- don't support polymorphism, as we can't get unboxed returns if we use it.
data T = T {-# UNPACK #-}!Double {-# UNPACK #-}!Int
data T1 = T1 {-# UNPACK #-}!Int {-# UNPACK #-}!Double {-# UNPACK #-}!Double
{-
Consider this core:
with data T a = T !a !Int
$wfold :: Double#
-> Int#
-> Int#
-> (# Double, Int# #)
and without,
$wfold :: Double#
-> Int#
-> Int#
-> (# Double#, Int# #)
yielding to boxed returns and heap checks.
-}
-- $references
--
-- * Chan, T. F.; Golub, G.H.; LeVeque, R.J. (1979) Updating formulae
-- and a pairwise algorithm for computing sample
-- variances. Technical Report STAN-CS-79-773, Department of
-- Computer Science, Stanford
-- University. <ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf>
--
-- * Knuth, D.E. (1998) The art of computer programming, volume 2:
-- seminumerical algorithms, 3rd ed., p. 232.
--
-- * Welford, B.P. (1962) Note on a method for calculating corrected
-- sums of squares and products. /Technometrics/
-- 4(3):419–420. <http://www.jstor.org/stable/1266577>
--
-- * West, D.H.D. (1979) Updating mean and variance estimates: an
-- improved method. /Communications of the ACM/
-- 22(9):532–535. <http://doi.acm.org/10.1145/359146.359153>
|