File: Normalize.hs

package info (click to toggle)
haskell-statistics 0.16.2.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 640 kB
  • sloc: haskell: 6,819; ansic: 35; python: 33; makefile: 9
file content (43 lines) | stat: -rw-r--r-- 1,363 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
{-# LANGUAGE FlexibleContexts #-}

-- |
-- Module    : Statistics.Sample.Normalize
-- Copyright : (c) 2017 Gregory W. Schwartz
-- License   : BSD3
--
-- Maintainer  : gsch@mail.med.upenn.edu
-- Stability   : experimental
-- Portability : portable
--
-- Functions for normalizing samples.

module Statistics.Sample.Normalize
    (
      standardize
    ) where

import Statistics.Sample
import qualified Data.Vector.Generic  as G
import qualified Data.Vector          as V
import qualified Data.Vector.Unboxed  as U
import qualified Data.Vector.Storable as S

-- | /O(n)/ Normalize a sample using standard scores:
--
--   \[ z = \frac{x - \mu}{\sigma} \]
--
--   Where μ is sample mean and σ is standard deviation computed from
--   unbiased variance estimation. If sample to small to compute σ or
--   it's equal to 0 @Nothing@ is returned.
standardize :: (G.Vector v Double) => v Double -> Maybe (v Double)
standardize xs
  | G.length xs < 2 = Nothing
  | sigma == 0      = Nothing
  | otherwise       = Just $ G.map (\x -> (x - mu) / sigma) xs
  where
    mu    = mean   xs
    sigma = stdDev xs
{-# INLINABLE  standardize #-}
{-# SPECIALIZE standardize :: V.Vector Double -> Maybe (V.Vector Double) #-}
{-# SPECIALIZE standardize :: U.Vector Double -> Maybe (U.Vector Double) #-}
{-# SPECIALIZE standardize :: S.Vector Double -> Maybe (S.Vector Double) #-}