1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
{-# LANGUAGE FlexibleContexts #-}
-- |
-- Module : Statistics.Test.KolmogorovSmirnov
-- Copyright : (c) 2011 Aleksey Khudyakov
-- License : BSD3
--
-- Maintainer : bos@serpentine.com
-- Stability : experimental
-- Portability : portable
--
-- Kolmogov-Smirnov tests are non-parametric tests for assessing
-- whether given sample could be described by distribution or whether
-- two samples have the same distribution. It's only applicable to
-- continuous distributions.
module Statistics.Test.KolmogorovSmirnov (
-- * Kolmogorov-Smirnov test
kolmogorovSmirnovTest
, kolmogorovSmirnovTestCdf
, kolmogorovSmirnovTest2
-- * Evaluate statistics
, kolmogorovSmirnovCdfD
, kolmogorovSmirnovD
, kolmogorovSmirnov2D
-- * Probabilities
, kolmogorovSmirnovProbability
-- * References
-- $references
, module Statistics.Test.Types
) where
import Control.Monad (when)
import Prelude hiding (exponent, sum)
import Statistics.Distribution (Distribution(..))
import Statistics.Function (gsort, unsafeModify)
import Statistics.Matrix (center, for, fromVector)
import qualified Statistics.Matrix as Mat
import Statistics.Test.Types
import Statistics.Types (mkPValue)
import qualified Data.Vector as V
import qualified Data.Vector.Storable as S
import qualified Data.Vector.Unboxed as U
import qualified Data.Vector.Generic as G
import Data.Vector.Generic ((!))
import qualified Data.Vector.Unboxed.Mutable as M
----------------------------------------------------------------
-- Test
----------------------------------------------------------------
-- | Check that sample could be described by distribution. Returns
-- @Nothing@ is sample is empty
--
-- This test uses Marsaglia-Tsang-Wang exact algorithm for
-- calculation of p-value.
kolmogorovSmirnovTest :: (Distribution d, G.Vector v Double)
=> d -- ^ Distribution
-> v Double -- ^ Data sample
-> Maybe (Test ())
{-# INLINE kolmogorovSmirnovTest #-}
kolmogorovSmirnovTest d
= kolmogorovSmirnovTestCdf (cumulative d)
-- | Variant of 'kolmogorovSmirnovTest' which uses CDF in form of
-- function.
kolmogorovSmirnovTestCdf :: (G.Vector v Double)
=> (Double -> Double) -- ^ CDF of distribution
-> v Double -- ^ Data sample
-> Maybe (Test ())
{-# INLINE kolmogorovSmirnovTestCdf #-}
kolmogorovSmirnovTestCdf cdf sample
| G.null sample = Nothing
| otherwise = Just Test
{ testSignificance = mkPValue $ 1 - prob
, testStatistics = d
, testDistribution = ()
}
where
d = kolmogorovSmirnovCdfD cdf sample
prob = kolmogorovSmirnovProbability (G.length sample) d
-- | Two sample Kolmogorov-Smirnov test. It tests whether two data
-- samples could be described by the same distribution without
-- making any assumptions about it. If either of samples is empty
-- returns Nothing.
--
-- This test uses approximate formula for computing p-value.
kolmogorovSmirnovTest2 :: (G.Vector v Double)
=> v Double -- ^ Sample 1
-> v Double -- ^ Sample 2
-> Maybe (Test ())
kolmogorovSmirnovTest2 xs1 xs2
| G.null xs1 || G.null xs2 = Nothing
| otherwise = Just Test
{ testSignificance = mkPValue $ 1 - prob d
, testStatistics = d
, testDistribution = ()
}
where
d = kolmogorovSmirnov2D xs1 xs2
* (en + 0.12 + 0.11/en)
-- Effective number of data points
n1 = fromIntegral (G.length xs1)
n2 = fromIntegral (G.length xs2)
en = sqrt $ n1 * n2 / (n1 + n2)
--
prob z
| z < 0 = error "kolmogorovSmirnov2D: internal error"
| z == 0 = 0
| z < 1.18 = let y = exp( -1.23370055013616983 / (z*z) )
in 2.25675833419102515 * sqrt( -log y ) * (y + y**9 + y**25 + y**49)
| otherwise = let x = exp(-2 * z * z)
in 1 - 2*(x - x**4 + x**9)
{-# INLINABLE kolmogorovSmirnovTest2 #-}
{-# SPECIALIZE kolmogorovSmirnovTest2 :: U.Vector Double -> U.Vector Double -> Maybe (Test ()) #-}
{-# SPECIALIZE kolmogorovSmirnovTest2 :: V.Vector Double -> V.Vector Double -> Maybe (Test ()) #-}
{-# SPECIALIZE kolmogorovSmirnovTest2 :: S.Vector Double -> S.Vector Double -> Maybe (Test ()) #-}
-- FIXME: Find source for approximation for D
----------------------------------------------------------------
-- Kolmogorov's statistic
----------------------------------------------------------------
-- | Calculate Kolmogorov's statistic /D/ for given cumulative
-- distribution function (CDF) and data sample. If sample is empty
-- returns 0.
kolmogorovSmirnovCdfD :: G.Vector v Double
=> (Double -> Double) -- ^ CDF function
-> v Double -- ^ Sample
-> Double
kolmogorovSmirnovCdfD cdf sample
| G.null sample = 0
| otherwise = G.maximum
$ G.zipWith3 (\p a b -> abs (p-a) `max` abs (p-b))
ps steps (G.tail steps)
where
xs = gsort sample
n = G.length xs
--
ps = G.map cdf xs
steps = G.map (/ fromIntegral n)
$ G.generate (n+1) fromIntegral
{-# INLINABLE kolmogorovSmirnovCdfD #-}
{-# SPECIALIZE kolmogorovSmirnovCdfD :: (Double -> Double) -> U.Vector Double -> Double #-}
{-# SPECIALIZE kolmogorovSmirnovCdfD :: (Double -> Double) -> V.Vector Double -> Double #-}
{-# SPECIALIZE kolmogorovSmirnovCdfD :: (Double -> Double) -> S.Vector Double -> Double #-}
-- | Calculate Kolmogorov's statistic /D/ for given cumulative
-- distribution function (CDF) and data sample. If sample is empty
-- returns 0.
kolmogorovSmirnovD :: (Distribution d, G.Vector v Double)
=> d -- ^ Distribution
-> v Double -- ^ Sample
-> Double
kolmogorovSmirnovD d = kolmogorovSmirnovCdfD (cumulative d)
{-# INLINE kolmogorovSmirnovD #-}
-- | Calculate Kolmogorov's statistic /D/ for two data samples. If
-- either of samples is empty returns 0.
kolmogorovSmirnov2D :: (G.Vector v Double)
=> v Double -- ^ First sample
-> v Double -- ^ Second sample
-> Double
kolmogorovSmirnov2D sample1 sample2
| G.null sample1 || G.null sample2 = 0
| otherwise = worker 0 0 0
where
xs1 = gsort sample1
xs2 = gsort sample2
n1 = G.length xs1
n2 = G.length xs2
en1 = fromIntegral n1
en2 = fromIntegral n2
-- Find new index
skip x i xs = go (i+1)
where go n | n >= G.length xs = n
| xs ! n == x = go (n+1)
| otherwise = n
-- Main loop
worker d i1 i2
| i1 >= n1 || i2 >= n2 = d
| otherwise = worker d' i1' i2'
where
d1 = xs1 ! i1
d2 = xs2 ! i2
i1' | d1 <= d2 = skip d1 i1 xs1
| otherwise = i1
i2' | d2 <= d1 = skip d2 i2 xs2
| otherwise = i2
d' = max d (abs $ fromIntegral i1' / en1 - fromIntegral i2' / en2)
{-# INLINABLE kolmogorovSmirnov2D #-}
{-# SPECIALIZE kolmogorovSmirnov2D :: U.Vector Double -> U.Vector Double -> Double #-}
{-# SPECIALIZE kolmogorovSmirnov2D :: V.Vector Double -> V.Vector Double -> Double #-}
{-# SPECIALIZE kolmogorovSmirnov2D :: S.Vector Double -> S.Vector Double -> Double #-}
-- | Calculate cumulative probability function for Kolmogorov's
-- distribution with /n/ parameters or probability of getting value
-- smaller than /d/ with n-elements sample.
--
-- It uses algorithm by Marsgalia et. al. and provide at least
-- 7-digit accuracy.
kolmogorovSmirnovProbability :: Int -- ^ Size of the sample
-> Double -- ^ D value
-> Double
kolmogorovSmirnovProbability n d
-- Avoid potentially lengthy calculations for large N and D > 0.999
| s > 7.24 || (s > 3.76 && n > 99) = 1 - 2 * exp( -(2.000071 + 0.331 / sqrt n' + 1.409 / n') * s)
-- Exact computation
| otherwise = fini $ KSMatrix 0 matrix `power` n
where
s = n' * d * d
n' = fromIntegral n
size = 2*k - 1
k = floor (n' * d) + 1
h = fromIntegral k - n' * d
-- Calculate initial matrix
matrix =
let m = U.create $ do
mat <- M.new (size*size)
-- Fill matrix with 0 and 1s
for 0 size $ \row ->
for 0 size $ \col -> do
let val | row + 1 >= col = 1
| otherwise = 0 :: Double
M.write mat (row * size + col) val
-- Correct left column/bottom row
for 0 size $ \i -> do
let delta = h ^^ (i + 1)
unsafeModify mat (i * size) (subtract delta)
unsafeModify mat (size * size - 1 - i) (subtract delta)
-- Correct corner element if needed
when (2*h > 1) $ do
unsafeModify mat ((size - 1) * size) (+ ((2*h - 1) ^ size))
-- Divide diagonals by factorial
let divide g num
| num == size = return ()
| otherwise = do for num size $ \i ->
unsafeModify mat (i * (size + 1) - num) (/ g)
divide (g * fromIntegral (num+2)) (num+1)
divide 2 1
return mat
in fromVector size size m
-- Last calculation
fini (KSMatrix e m) = loop 1 (center m) e
where
loop i ss eQ
| i > n = ss * 10 ^^ eQ
| ss' < 1e-140 = loop (i+1) (ss' * 1e140) (eQ - 140)
| otherwise = loop (i+1) ss' eQ
where ss' = ss * fromIntegral i / fromIntegral n
data KSMatrix = KSMatrix Int Mat.Matrix
multiply :: KSMatrix -> KSMatrix -> KSMatrix
multiply (KSMatrix e1 m1) (KSMatrix e2 m2) = KSMatrix (e1+e2) (Mat.multiply m1 m2)
power :: KSMatrix -> Int -> KSMatrix
power mat 1 = mat
power mat n = avoidOverflow res
where
mat2 = power mat (n `quot` 2)
pow = multiply mat2 mat2
res | odd n = multiply pow mat
| otherwise = pow
avoidOverflow :: KSMatrix -> KSMatrix
avoidOverflow ksm@(KSMatrix e m)
| center m > 1e140 = KSMatrix (e + 140) (Mat.map (* 1e-140) m)
| otherwise = ksm
----------------------------------------------------------------
-- $references
--
-- * G. Marsaglia, W. W. Tsang, J. Wang (2003) Evaluating Kolmogorov's
-- distribution, Journal of Statistical Software, American
-- Statistical Association, vol. 8(i18).
|