1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
|
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE DeriveDataTypeable, DeriveGeneric #-}
-- |
-- Module : Statistics.Types
-- Copyright : (c) 2009 Bryan O'Sullivan
-- License : BSD3
--
-- Maintainer : bos@serpentine.com
-- Stability : experimental
-- Portability : portable
--
-- Data types common used in statistics
module Statistics.Types
( -- * Confidence level
CL
-- ** Accessors
, confidenceLevel
, significanceLevel
-- ** Constructors
, mkCL
, mkCLE
, mkCLFromSignificance
, mkCLFromSignificanceE
-- ** Constants and conversion to nσ
, cl90
, cl95
, cl99
-- *** Normal approximation
, nSigma
, nSigma1
, getNSigma
, getNSigma1
-- * p-value
, PValue
-- ** Accessors
, pValue
-- ** Constructors
, mkPValue
, mkPValueE
-- * Estimates and upper/lower limits
, Estimate(..)
, NormalErr(..)
, ConfInt(..)
, UpperLimit(..)
, LowerLimit(..)
-- ** Constructors
, estimateNormErr
, (±)
, estimateFromInterval
, estimateFromErr
-- ** Accessors
, confidenceInterval
, asymErrors
, Scale(..)
-- * Other
, Sample
, WeightedSample
, Weights
) where
import Control.Monad ((<=<), liftM2, liftM3)
import Control.DeepSeq (NFData(..))
import Data.Aeson (FromJSON(..), ToJSON)
import Data.Binary (Binary(..))
import Data.Data (Data,Typeable)
import Data.Maybe (fromMaybe)
import Data.Vector.Unboxed (Unbox)
import Data.Vector.Unboxed.Deriving (derivingUnbox)
import GHC.Generics (Generic)
import Statistics.Internal
import Statistics.Types.Internal
import Statistics.Distribution
import Statistics.Distribution.Normal
----------------------------------------------------------------
-- Data type for confidence level
----------------------------------------------------------------
-- |
-- Confidence level. In context of confidence intervals it's
-- probability of said interval covering true value of measured
-- value. In context of statistical tests it's @1-α@ where α is
-- significance of test.
--
-- Since confidence level are usually close to 1 they are stored as
-- @1-CL@ internally. There are two smart constructors for @CL@:
-- 'mkCL' and 'mkCLFromSignificance' (and corresponding variant
-- returning @Maybe@). First creates @CL@ from confidence level and
-- second from @1 - CL@ or significance level.
--
-- >>> cl95
-- mkCLFromSignificance 0.05
--
-- Prior to 0.14 confidence levels were passed to function as plain
-- @Doubles@. Use 'mkCL' to convert them to @CL@.
newtype CL a = CL a
deriving (Eq, Typeable, Data, Generic)
instance Show a => Show (CL a) where
showsPrec n (CL p) = defaultShow1 "mkCLFromSignificance" p n
instance (Num a, Ord a, Read a) => Read (CL a) where
readPrec = defaultReadPrecM1 "mkCLFromSignificance" mkCLFromSignificanceE
instance (Binary a, Num a, Ord a) => Binary (CL a) where
put (CL p) = put p
get = maybe (fail errMkCL) return . mkCLFromSignificanceE =<< get
instance (ToJSON a) => ToJSON (CL a)
instance (FromJSON a, Num a, Ord a) => FromJSON (CL a) where
parseJSON = maybe (fail errMkCL) return . mkCLFromSignificanceE <=< parseJSON
instance NFData a => NFData (CL a) where
rnf (CL a) = rnf a
-- |
-- >>> cl95 > cl90
-- True
instance Ord a => Ord (CL a) where
CL a < CL b = a > b
CL a <= CL b = a >= b
CL a > CL b = a < b
CL a >= CL b = a <= b
max (CL a) (CL b) = CL (min a b)
min (CL a) (CL b) = CL (max a b)
-- | Create confidence level from probability β or probability
-- confidence interval contain true value of estimate. Will throw
-- exception if parameter is out of [0,1] range
--
-- >>> mkCL 0.95 -- same as cl95
-- mkCLFromSignificance 0.05
mkCL :: (Ord a, Num a) => a -> CL a
mkCL
= fromMaybe (error "Statistics.Types.mkCL: probability is out if [0,1] range")
. mkCLE
-- | Same as 'mkCL' but returns @Nothing@ instead of error if
-- parameter is out of [0,1] range
--
-- >>> mkCLE 0.95 -- same as cl95
-- Just (mkCLFromSignificance 0.05)
mkCLE :: (Ord a, Num a) => a -> Maybe (CL a)
mkCLE p
| p >= 0 && p <= 1 = Just $ CL (1 - p)
| otherwise = Nothing
-- | Create confidence level from probability α or probability that
-- confidence interval does not contain true value of estimate. Will
-- throw exception if parameter is out of [0,1] range
--
-- >>> mkCLFromSignificance 0.05 -- same as cl95
-- mkCLFromSignificance 0.05
mkCLFromSignificance :: (Ord a, Num a) => a -> CL a
mkCLFromSignificance = fromMaybe (error errMkCL) . mkCLFromSignificanceE
-- | Same as 'mkCLFromSignificance' but returns @Nothing@ instead of error if
-- parameter is out of [0,1] range
--
-- >>> mkCLFromSignificanceE 0.05 -- same as cl95
-- Just (mkCLFromSignificance 0.05)
mkCLFromSignificanceE :: (Ord a, Num a) => a -> Maybe (CL a)
mkCLFromSignificanceE p
| p >= 0 && p <= 1 = Just $ CL p
| otherwise = Nothing
errMkCL :: String
errMkCL = "Statistics.Types.mkPValCL: probability is out if [0,1] range"
-- | Get confidence level. This function is subject to rounding
-- errors. If @1 - CL@ is needed use 'significanceLevel' instead
confidenceLevel :: (Num a) => CL a -> a
confidenceLevel (CL p) = 1 - p
-- | Get significance level.
significanceLevel :: CL a -> a
significanceLevel (CL p) = p
-- | 90% confidence level
cl90 :: Fractional a => CL a
cl90 = CL 0.10
-- | 95% confidence level
cl95 :: Fractional a => CL a
cl95 = CL 0.05
-- | 99% confidence level
cl99 :: Fractional a => CL a
cl99 = CL 0.01
----------------------------------------------------------------
-- Data type for p-value
----------------------------------------------------------------
-- | Newtype wrapper for p-value.
newtype PValue a = PValue a
deriving (Eq,Ord, Typeable, Data, Generic)
instance Show a => Show (PValue a) where
showsPrec n (PValue p) = defaultShow1 "mkPValue" p n
instance (Num a, Ord a, Read a) => Read (PValue a) where
readPrec = defaultReadPrecM1 "mkPValue" mkPValueE
instance (Binary a, Num a, Ord a) => Binary (PValue a) where
put (PValue p) = put p
get = maybe (fail errMkPValue) return . mkPValueE =<< get
instance (ToJSON a) => ToJSON (PValue a)
instance (FromJSON a, Num a, Ord a) => FromJSON (PValue a) where
parseJSON = maybe (fail errMkPValue) return . mkPValueE <=< parseJSON
instance NFData a => NFData (PValue a) where
rnf (PValue a) = rnf a
-- | Construct PValue. Throws error if argument is out of [0,1] range.
--
mkPValue :: (Ord a, Num a) => a -> PValue a
mkPValue = fromMaybe (error errMkPValue) . mkPValueE
-- | Construct PValue. Returns @Nothing@ if argument is out of [0,1] range.
mkPValueE :: (Ord a, Num a) => a -> Maybe (PValue a)
mkPValueE p
| p >= 0 && p <= 1 = Just $ PValue p
| otherwise = Nothing
-- | Get p-value
pValue :: PValue a -> a
pValue (PValue p) = p
-- | P-value expressed in sigma. This is convention widely used in
-- experimental physics. N sigma confidence level corresponds to
-- probability within N sigma of normal distribution.
--
-- Note that this correspondence is for normal distribution. Other
-- distribution will have different dependency. Also experimental
-- distribution usually only approximately normal (especially at
-- extreme tails).
nSigma :: Double -> PValue Double
nSigma n
| n > 0 = PValue $ 2 * cumulative standard (-n)
| otherwise = error "Statistics.Extra.Error.nSigma: non-positive number of sigma"
-- | P-value expressed in sigma for one-tail hypothesis. This correspond to
-- probability of obtaining value less than @N·σ@.
nSigma1 :: Double -> PValue Double
nSigma1 n
| n > 0 = PValue $ cumulative standard (-n)
| otherwise = error "Statistics.Extra.Error.nSigma1: non-positive number of sigma"
-- | Express confidence level in sigmas
getNSigma :: PValue Double -> Double
getNSigma (PValue p) = negate $ quantile standard (p / 2)
-- | Express confidence level in sigmas for one-tailed hypothesis.
getNSigma1 :: PValue Double -> Double
getNSigma1 (PValue p) = negate $ quantile standard p
errMkPValue :: String
errMkPValue = "Statistics.Types.mkPValue: probability is out if [0,1] range"
----------------------------------------------------------------
-- Point estimates
----------------------------------------------------------------
-- |
-- A point estimate and its confidence interval. It's parametrized by
-- both error type @e@ and value type @a@. This module provides two
-- types of error: 'NormalErr' for normally distributed errors and
-- 'ConfInt' for error with normal distribution. See their
-- documentation for more details.
--
-- For example @144 ± 5@ (assuming normality) could be expressed as
--
-- > Estimate { estPoint = 144
-- > , estError = NormalErr 5
-- > }
--
-- Or if we want to express @144 + 6 - 4@ at CL95 we could write:
--
-- > Estimate { estPoint = 144
-- > , estError = ConfInt
-- > { confIntLDX = 4
-- > , confIntUDX = 6
-- > , confIntCL = cl95
-- > }
--
-- Prior to statistics 0.14 @Estimate@ data type used following definition:
--
-- > data Estimate = Estimate {
-- > estPoint :: {-# UNPACK #-} !Double
-- > , estLowerBound :: {-# UNPACK #-} !Double
-- > , estUpperBound :: {-# UNPACK #-} !Double
-- > , estConfidenceLevel :: {-# UNPACK #-} !Double
-- > }
--
-- Now type @Estimate ConfInt Double@ should be used instead. Function
-- 'estimateFromInterval' allow to easily construct estimate from same inputs.
data Estimate e a = Estimate
{ estPoint :: !a
-- ^ Point estimate.
, estError :: !(e a)
-- ^ Confidence interval for estimate.
} deriving (Eq, Read, Show, Generic
, Typeable, Data
)
instance (Binary (e a), Binary a) => Binary (Estimate e a) where
get = liftM2 Estimate get get
put (Estimate ep ee) = put ep >> put ee
instance (FromJSON (e a), FromJSON a) => FromJSON (Estimate e a)
instance (ToJSON (e a), ToJSON a) => ToJSON (Estimate e a)
instance (NFData (e a), NFData a) => NFData (Estimate e a) where
rnf (Estimate x dx) = rnf x `seq` rnf dx
-- |
-- Normal errors. They are stored as 1σ errors which corresponds to
-- 68.8% CL. Since we can recalculate them to any confidence level if
-- needed we don't store it.
newtype NormalErr a = NormalErr
{ normalError :: a
}
deriving (Eq, Read, Show, Typeable, Data, Generic)
instance Binary a => Binary (NormalErr a) where
get = fmap NormalErr get
put = put . normalError
instance FromJSON a => FromJSON (NormalErr a)
instance ToJSON a => ToJSON (NormalErr a)
instance NFData a => NFData (NormalErr a) where
rnf (NormalErr x) = rnf x
-- | Confidence interval. It assumes that confidence interval forms
-- single interval and isn't set of disjoint intervals.
data ConfInt a = ConfInt
{ confIntLDX :: !a
-- ^ Lower error estimate, or distance between point estimate and
-- lower bound of confidence interval.
, confIntUDX :: !a
-- ^ Upper error estimate, or distance between point estimate and
-- upper bound of confidence interval.
, confIntCL :: !(CL Double)
-- ^ Confidence level corresponding to given confidence interval.
}
deriving (Read,Show,Eq,Typeable,Data,Generic)
instance Binary a => Binary (ConfInt a) where
get = liftM3 ConfInt get get get
put (ConfInt l u cl) = put l >> put u >> put cl
instance FromJSON a => FromJSON (ConfInt a)
instance ToJSON a => ToJSON (ConfInt a)
instance NFData a => NFData (ConfInt a) where
rnf (ConfInt x y _) = rnf x `seq` rnf y
----------------------------------------
-- Constructors
-- | Create estimate with normal errors
estimateNormErr :: a -- ^ Point estimate
-> a -- ^ 1σ error
-> Estimate NormalErr a
estimateNormErr x dx = Estimate x (NormalErr dx)
-- | Synonym for 'estimateNormErr'
(±) :: a -- ^ Point estimate
-> a -- ^ 1σ error
-> Estimate NormalErr a
(±) = estimateNormErr
-- | Create estimate with asymmetric error.
estimateFromErr
:: a -- ^ Central estimate
-> (a,a) -- ^ Lower and upper errors. Both should be
-- positive but it's not checked.
-> CL Double -- ^ Confidence level for interval
-> Estimate ConfInt a
estimateFromErr x (ldx,udx) cl = Estimate x (ConfInt ldx udx cl)
-- | Create estimate with asymmetric error.
estimateFromInterval
:: Num a
=> a -- ^ Point estimate. Should lie within
-- interval but it's not checked.
-> (a,a) -- ^ Lower and upper bounds of interval
-> CL Double -- ^ Confidence level for interval
-> Estimate ConfInt a
estimateFromInterval x (lx,ux) cl
= Estimate x (ConfInt (x-lx) (ux-x) cl)
----------------------------------------
-- Accessors
-- | Get confidence interval
confidenceInterval :: Num a => Estimate ConfInt a -> (a,a)
confidenceInterval (Estimate x (ConfInt ldx udx _))
= (x - ldx, x + udx)
-- | Get asymmetric errors
asymErrors :: Estimate ConfInt a -> (a,a)
asymErrors (Estimate _ (ConfInt ldx udx _)) = (ldx,udx)
-- | Data types which could be multiplied by constant.
class Scale e where
scale :: (Ord a, Num a) => a -> e a -> e a
instance Scale NormalErr where
scale a (NormalErr e) = NormalErr (abs a * e)
instance Scale ConfInt where
scale a (ConfInt l u cl) | a >= 0 = ConfInt (a*l) (a*u) cl
| otherwise = ConfInt (-a*u) (-a*l) cl
instance Scale e => Scale (Estimate e) where
scale a (Estimate x dx) = Estimate (a*x) (scale a dx)
----------------------------------------------------------------
-- Upper/lower limit
----------------------------------------------------------------
-- | Upper limit. They are usually given for small non-negative values
-- when it's not possible detect difference from zero.
data UpperLimit a = UpperLimit
{ upperLimit :: !a
-- ^ Upper limit
, ulConfidenceLevel :: !(CL Double)
-- ^ Confidence level for which limit was calculated
} deriving (Eq, Read, Show, Typeable, Data, Generic)
instance Binary a => Binary (UpperLimit a) where
get = liftM2 UpperLimit get get
put (UpperLimit l cl) = put l >> put cl
instance FromJSON a => FromJSON (UpperLimit a)
instance ToJSON a => ToJSON (UpperLimit a)
instance NFData a => NFData (UpperLimit a) where
rnf (UpperLimit x cl) = rnf x `seq` rnf cl
-- | Lower limit. They are usually given for large quantities when
-- it's not possible to measure them. For example: proton half-life
data LowerLimit a = LowerLimit {
lowerLimit :: !a
-- ^ Lower limit
, llConfidenceLevel :: !(CL Double)
-- ^ Confidence level for which limit was calculated
} deriving (Eq, Read, Show, Typeable, Data, Generic)
instance Binary a => Binary (LowerLimit a) where
get = liftM2 LowerLimit get get
put (LowerLimit l cl) = put l >> put cl
instance FromJSON a => FromJSON (LowerLimit a)
instance ToJSON a => ToJSON (LowerLimit a)
instance NFData a => NFData (LowerLimit a) where
rnf (LowerLimit x cl) = rnf x `seq` rnf cl
----------------------------------------------------------------
-- Deriving unbox instances
----------------------------------------------------------------
derivingUnbox "CL"
[t| forall a. Unbox a => CL a -> a |]
[| \(CL a) -> a |]
[| CL |]
derivingUnbox "PValue"
[t| forall a. Unbox a => PValue a -> a |]
[| \(PValue a) -> a |]
[| PValue |]
derivingUnbox "Estimate"
[t| forall a e. (Unbox a, Unbox (e a)) => Estimate e a -> (a, e a) |]
[| \(Estimate x dx) -> (x,dx) |]
[| \(x,dx) -> (Estimate x dx) |]
derivingUnbox "NormalErr"
[t| forall a. Unbox a => NormalErr a -> a |]
[| \(NormalErr a) -> a |]
[| NormalErr |]
derivingUnbox "ConfInt"
[t| forall a. Unbox a => ConfInt a -> (a, a, CL Double) |]
[| \(ConfInt a b c) -> (a,b,c) |]
[| \(a,b,c) -> ConfInt a b c |]
derivingUnbox "UpperLimit"
[t| forall a. Unbox a => UpperLimit a -> (a, CL Double) |]
[| \(UpperLimit a b) -> (a,b) |]
[| \(a,b) -> UpperLimit a b |]
derivingUnbox "LowerLimit"
[t| forall a. Unbox a => LowerLimit a -> (a, CL Double) |]
[| \(LowerLimit a b) -> (a,b) |]
[| \(a,b) -> LowerLimit a b |]
|