1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
|
-- |
-- Module : Statistics.Constants
-- Copyright : (c) 2009 Bryan O'Sullivan
-- License : BSD3
--
-- Maintainer : bos@serpentine.com
-- Stability : experimental
-- Portability : portable
--
-- Constant values common to much statistics code.
module Statistics.Constants
(
m_epsilon
, m_huge
, m_1_sqrt_2
, m_2_sqrt_pi
, m_max_exp
, m_sqrt_2
, m_sqrt_2_pi
) where
-- | A very large number.
m_huge :: Double
m_huge = 1.7976931348623157e308
{-# INLINE m_huge #-}
-- | The largest 'Int' /x/ such that 2**(/x/-1) is approximately
-- representable as a 'Double'.
m_max_exp :: Int
m_max_exp = 1024
-- | @sqrt 2@
m_sqrt_2 :: Double
m_sqrt_2 = 1.4142135623730950488016887242096980785696718753769480731766
{-# INLINE m_sqrt_2 #-}
-- | @sqrt (2 * pi)@
m_sqrt_2_pi :: Double
m_sqrt_2_pi = 2.5066282746310005024157652848110452530069867406099383166299
{-# INLINE m_sqrt_2_pi #-}
-- | @2 / sqrt pi@
m_2_sqrt_pi :: Double
m_2_sqrt_pi = 1.1283791670955125738961589031215451716881012586579977136881
{-# INLINE m_2_sqrt_pi #-}
-- | @1 / sqrt 2@
m_1_sqrt_2 :: Double
m_1_sqrt_2 = 0.7071067811865475244008443621048490392848359376884740365883
{-# INLINE m_1_sqrt_2 #-}
-- | The smallest 'Double' larger than 1.
m_epsilon :: Double
m_epsilon = encodeFloat (signif+1) expo - 1.0
where (signif,expo) = decodeFloat (1.0::Double)
|