1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
{-# LANGUAGE TypeOperators #-}
-- |
-- Module : Statistics.Quantile
-- Copyright : (c) 2009 Bryan O'Sullivan
-- License : BSD3
--
-- Maintainer : bos@serpentine.com
-- Stability : experimental
-- Portability : portable
--
-- Functions for approximating quantiles, i.e. points taken at regular
-- intervals from the cumulative distribution function of a random
-- variable.
--
-- The number of quantiles is described below by the variable /q/, so
-- with /q/=4, a 4-quantile (also known as a /quartile/) has 4
-- intervals, and contains 5 points. The parameter /k/ describes the
-- desired point, where 0 ≤ /k/ ≤ /q/.
module Statistics.Quantile
(
-- * Quantile estimation functions
weightedAvg
, ContParam(..)
, continuousBy
, midspread
-- * Parameters for the continuous sample method
, cadpw
, hazen
, s
, spss
, medianUnbiased
, normalUnbiased
-- * References
-- $references
) where
import Control.Exception (assert)
import Data.Vector.Unboxed ((!))
import Statistics.Constants (m_epsilon)
import Statistics.Function (partialSort)
import Statistics.Types (Sample)
import qualified Data.Vector.Unboxed as U
-- | O(/n/ log /n/). Estimate the /k/th /q/-quantile of a sample,
-- using the weighted average method.
weightedAvg :: Int -- ^ /k/, the desired quantile.
-> Int -- ^ /q/, the number of quantiles.
-> Sample -- ^ /x/, the sample data.
-> Double
weightedAvg k q x =
assert (q >= 2) .
assert (k >= 0) .
assert (k < q) .
assert (U.all (not . isNaN) x) $
xj + g * (xj1 - xj)
where
j = floor idx
idx = fromIntegral (U.length x - 1) * fromIntegral k / fromIntegral q
g = idx - fromIntegral j
xj = sx ! j
xj1 = sx ! (j+1)
sx = partialSort (j+2) x
{-# INLINE weightedAvg #-}
-- | Parameters /a/ and /b/ to the 'continuousBy' function.
data ContParam = ContParam {-# UNPACK #-} !Double {-# UNPACK #-} !Double
-- | O(/n/ log /n/). Estimate the /k/th /q/-quantile of a sample /x/,
-- using the continuous sample method with the given parameters. This
-- is the method used by most statistical software, such as R,
-- Mathematica, SPSS, and S.
continuousBy :: ContParam -- ^ Parameters /a/ and /b/.
-> Int -- ^ /k/, the desired quantile.
-> Int -- ^ /q/, the number of quantiles.
-> Sample -- ^ /x/, the sample data.
-> Double
continuousBy (ContParam a b) k q x =
assert (q >= 2) .
assert (k >= 0) .
assert (k <= q) .
assert (U.all (not . isNaN) x) $
(1-h) * item (j-1) + h * item j
where
j = floor (t + eps)
t = a + p * (fromIntegral n + 1 - a - b)
p = fromIntegral k / fromIntegral q
h | abs r < eps = 0
| otherwise = r
where r = t - fromIntegral j
eps = m_epsilon * 4
n = U.length x
item = (sx !) . bracket
sx = partialSort (bracket j + 1) x
bracket m = min (max m 0) (n - 1)
{-# INLINE continuousBy #-}
-- | O(/n/ log /n/). Estimate the range between /q/-quantiles 1 and
-- /q/-1 of a sample /x/, using the continuous sample method with the
-- given parameters.
--
-- For instance, the interquartile range (IQR) can be estimated as
-- follows:
--
-- > midspread medianUnbiased 4 (U.to [1,1,2,2,3])
-- > ==> 1.333333
midspread :: ContParam -- ^ Parameters /a/ and /b/.
-> Int -- ^ /q/, the number of quantiles.
-> Sample -- ^ /x/, the sample data.
-> Double
midspread (ContParam a b) k x =
assert (U.all (not . isNaN) x) .
assert (k > 0) $
quantile (1-frac) - quantile frac
where
quantile i = (1-h i) * item (j i-1) + h i * item (j i)
j i = floor (t i + eps) :: Int
t i = a + i * (fromIntegral n + 1 - a - b)
h i | abs r < eps = 0
| otherwise = r
where r = t i - fromIntegral (j i)
eps = m_epsilon * 4
n = U.length x
item = (sx !) . bracket
sx = partialSort (bracket (j (1-frac)) + 1) x
bracket m = min (max m 0) (n - 1)
frac = 1 / fromIntegral k
{-# INLINE midspread #-}
-- | California Department of Public Works definition, /a/=0, /b/=1.
-- Gives a linear interpolation of the empirical CDF. This
-- corresponds to method 4 in R and Mathematica.
cadpw :: ContParam
cadpw = ContParam 0 1
{-# INLINE cadpw #-}
-- | Hazen's definition, /a/=0.5, /b/=0.5. This is claimed to be
-- popular among hydrologists. This corresponds to method 5 in R and
-- Mathematica.
hazen :: ContParam
hazen = ContParam 0.5 0.5
{-# INLINE hazen #-}
-- | Definition used by the SPSS statistics application, with /a/=0,
-- /b/=0 (also known as Weibull's definition). This corresponds to
-- method 6 in R and Mathematica.
spss :: ContParam
spss = ContParam 0 0
{-# INLINE spss #-}
-- | Definition used by the S statistics application, with /a/=1,
-- /b/=1. The interpolation points divide the sample range into @n-1@
-- intervals. This corresponds to method 7 in R and Mathematica.
s :: ContParam
s = ContParam 1 1
{-# INLINE s #-}
-- | Median unbiased definition, /a/=1\/3, /b/=1\/3. The resulting
-- quantile estimates are approximately median unbiased regardless of
-- the distribution of /x/. This corresponds to method 8 in R and
-- Mathematica.
medianUnbiased :: ContParam
medianUnbiased = ContParam third third
where third = 1/3
{-# INLINE medianUnbiased #-}
-- | Normal unbiased definition, /a/=3\/8, /b/=3\/8. An approximately
-- unbiased estimate if the empirical distribution approximates the
-- normal distribution. This corresponds to method 9 in R and
-- Mathematica.
normalUnbiased :: ContParam
normalUnbiased = ContParam ta ta
where ta = 3/8
{-# INLINE normalUnbiased #-}
-- $references
--
-- * Weisstein, E.W. Quantile. /MathWorld/.
-- <http://mathworld.wolfram.com/Quantile.html>
--
-- * Hyndman, R.J.; Fan, Y. (1996) Sample quantiles in statistical
-- packages. /American Statistician/
-- 50(4):361–365. <http://www.jstor.org/stable/2684934>
|