1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
-- |
-- Module : Data.ByteString.Lazy.Search
-- Copyright : Daniel Fischer
-- Chris Kuklewicz
-- Licence : BSD3
-- Maintainer : Daniel Fischer <daniel.is.fischer@googlemail.com>
-- Stability : Provisional
-- Portability : non-portable (BangPatterns)
--
-- Fast overlapping Boyer-Moore search of lazy
-- 'L.ByteString' values. Breaking, splitting and replacing
-- using the Boyer-Moore algorithm.
--
-- Descriptions of the algorithm can be found at
-- <http://www-igm.univ-mlv.fr/~lecroq/string/node14.html#SECTION00140>
-- and
-- <http://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm>
--
-- Original authors: Daniel Fischer (daniel.is.fischer at googlemail.com) and
-- Chris Kuklewicz (haskell at list.mightyreason.com).
module Data.ByteString.Lazy.Search( -- * Overview
-- $overview
-- ** Performance
-- $performance
-- ** Caution
-- $caution
-- ** Complexity
-- $complexity
-- ** Partial application
-- $partial
-- ** Integer overflow
-- $overflow
-- * Finding substrings
indices
, nonOverlappingIndices
-- * Breaking on substrings
, breakOn
, breakAfter
, breakFindAfter
-- * Replacing
, replace
-- * Splitting
, split
, splitKeepEnd
, splitKeepFront
-- * Convenience
, strictify
) where
import qualified Data.ByteString.Lazy.Search.Internal.BoyerMoore as BM
import Data.ByteString.Search.Substitution
import qualified Data.ByteString as S
import qualified Data.ByteString.Lazy as L
import Data.Int (Int64)
-- $overview
--
-- This module provides functions related to searching a substring within
-- a string, using the Boyer-Moore algorithm with minor modifications
-- to improve the overall performance and ameliorate the worst case
-- performance degradation of the original Boyer-Moore algorithm for
-- periodic patterns.
--
-- Efficiency demands that the pattern be a strict 'S.ByteString',
-- to work with a lazy pattern, convert it to a strict 'S.ByteString'
-- first via 'strictify' (provided it is not too long).
-- If support for long lazy patterns is needed, mail a feature-request.
--
-- When searching a pattern in a UTF-8-encoded 'S.ByteString', be aware that
-- these functions work on bytes, not characters, so the indices are
-- byte-offsets, not character offsets.
-- $performance
--
-- In general, the Boyer-Moore algorithm is the most efficient method to
-- search for a pattern inside a string. The advantage over other algorithms
-- (e.g. Naïve, Knuth-Morris-Pratt, Horspool, Sunday) can be made
-- arbitrarily large for specially selected patterns and targets, but
-- usually, it's a factor of 2–3 versus Knuth-Morris-Pratt and of
-- 6–10 versus the naïve algorithm. The Horspool and Sunday
-- algorithms, which are simplified variants of the Boyer-Moore algorithm,
-- typically have performance between Boyer-Moore and Knuth-Morris-Pratt,
-- mostly closer to Boyer-Moore. The advantage of the Boyer-moore variants
-- over other algorithms generally becomes larger for longer patterns. For
-- very short patterns (or patterns with a very short period), other
-- algorithms, e.g. "Data.ByteString.Lazy.Search.DFA" can be faster (my
-- tests suggest that \"very short\" means two, maybe three bytes).
--
-- In general, searching in a strict 'S.ByteString' is slightly faster
-- than searching in a lazy 'L.ByteString', but for long targets the
-- smaller memory footprint of lazy 'L.ByteString's can make searching
-- those (sometimes much) faster. On the other hand, there are cases
-- where searching in a strict target is much faster, even for long targets.
--
-- On 32-bit systems, 'Int'-arithmetic is much faster than 'Int64'-arithmetic,
-- so when there are many matches, that can make a significant difference.
--
-- Also, the modification to ameliorate the case of periodic patterns
-- is defeated by chunk-boundaries, so long patterns with a short period
-- and many matches exhibit poor behaviour (consider using @indices@ from
-- "Data.ByteString.Lazy.Search.DFA" or "Data.ByteString.Lazy.Search.KMP"
-- in those cases, the former for medium-length patterns, the latter for
-- long patterns; none of the functions except 'indices' suffer from
-- this problem, though).
-- $caution
--
-- When working with a lazy target string, the relation between the pattern
-- length and the chunk size can play a big rôle.
-- Crossing chunk boundaries is relatively expensive, so when that becomes
-- a frequent occurrence, as may happen when the pattern length is close
-- to or larger than the chunk size, performance is likely to degrade.
-- If it is needed, steps can be taken to ameliorate that effect, but unless
-- entirely separate functions are introduced, that would hurt the
-- performance for the more common case of patterns much shorter than
-- the default chunk size.
-- $complexity
--
-- Preprocessing the pattern is /O/(@patternLength@ + σ) in time and
-- space (σ is the alphabet size, 256 here) for all functions.
-- The time complexity of the searching phase for 'indices'
-- is /O/(@targetLength@ \/ @patternLength@) in the best case.
-- For non-periodic patterns, the worst case complexity is
-- /O/(@targetLength@), but for periodic patterns, the worst case complexity
-- is /O/(@targetLength@ * @patternLength@) for the original Boyer-Moore
-- algorithm.
--
-- The searching functions in this module contain a modification which
-- drastically improves the performance for periodic patterns, although
-- less for lazy targets than for strict ones.
-- If I'm not mistaken, the worst case complexity for periodic patterns
-- is /O/(@targetLength@ * (1 + @patternLength@ \/ @chunkSize@)).
--
-- The other functions don't have to deal with possible overlapping
-- patterns, hence the worst case complexity for the processing phase
-- is /O/(@targetLength@) (respectively /O/(@firstIndex + patternLength@)
-- for the breaking functions if the pattern occurs).
-- $partial
--
-- All functions can usefully be partially applied. Given only a pattern,
-- the pattern is preprocessed only once, allowing efficient re-use.
-- $overflow
--
-- The current code uses @Int@ to keep track of the locations in the
-- target string. If the length of the pattern plus the length of any
-- strict chunk of the target string is greater or equal to
-- @'maxBound' :: 'Int'@ then this will overflow causing an error. We try
-- to detect this and call 'error' before a segfault occurs.
------------------------------------------------------------------------------
-- Exported Functions --
------------------------------------------------------------------------------
-- | @'indices'@ finds the starting indices of all possibly overlapping
-- occurrences of the pattern in the target string.
-- If the pattern is empty, the result is @[0 .. 'length' target]@.
{-# INLINE indices #-}
indices :: S.ByteString -- ^ Strict pattern to find
-> L.ByteString -- ^ Lazy string to search
-> [Int64] -- ^ Offsets of matches
indices = BM.matchSL
-- | @'nonOverlappingIndices'@ finds the starting indices of all
-- non-overlapping occurrences of the pattern in the target string.
-- It is more efficient than removing indices from the list produced
-- by 'indices'.
{-# INLINE nonOverlappingIndices #-}
nonOverlappingIndices :: S.ByteString -- ^ Strict pattern to find
-> L.ByteString -- ^ Lazy string to search
-> [Int64] -- ^ Offsets of matches
nonOverlappingIndices = BM.matchNOL
-- | @'breakOn' pattern target@ splits @target@ at the first occurrence
-- of @pattern@. If the pattern does not occur in the target, the
-- second component of the result is empty, otherwise it starts with
-- @pattern@. If the pattern is empty, the first component is empty.
-- For a non-empty pattern, the first component is generated lazily,
-- thus the first parts of it can be available before the pattern has
-- been found or determined to be absent.
--
-- @
-- 'uncurry' 'L.append' . 'breakOn' pattern = 'id'
-- @
{-# INLINE breakOn #-}
breakOn :: S.ByteString -- ^ Strict pattern to search for
-> L.ByteString -- ^ Lazy string to search in
-> (L.ByteString, L.ByteString)
-- ^ Head and tail of string broken at substring
breakOn = BM.breakSubstringL
-- | @'breakAfter' pattern target@ splits @target@ behind the first occurrence
-- of @pattern@. An empty second component means that either the pattern
-- does not occur in the target or the first occurrence of pattern is at
-- the very end of target. If you need to discriminate between those cases,
-- use breakFindAfter.
-- If the pattern is empty, the first component is empty.
-- For a non-empty pattern, the first component is generated lazily,
-- thus the first parts of it can be available before the pattern has
-- been found or determined to be absent.
--
-- @
-- 'uncurry' 'L.append' . 'breakAfter' pattern = 'id'
-- @
{-# INLINE breakAfter #-}
breakAfter :: S.ByteString -- ^ Strict pattern to search for
-> L.ByteString -- ^ Lazy string to search in
-> (L.ByteString, L.ByteString)
-- ^ Head and tail of string broken after substring
breakAfter = BM.breakAfterL
-- | @'breakFindAfter'@ does the same as 'breakAfter' but additionally indicates
-- whether the pattern is present in the target.
--
-- @
-- 'fst' . 'breakFindAfter' pat = 'breakAfter' pat
-- @
{-# INLINE breakFindAfter #-}
breakFindAfter :: S.ByteString -- ^ Strict pattern to search for
-> L.ByteString -- ^ Lazy string to search in
-> ((L.ByteString, L.ByteString), Bool)
-- ^ Head and tail of string broken after substring
-- and presence of pattern
breakFindAfter = BM.breakFindAfterL
-- | @'replace' pat sub text@ replaces all (non-overlapping) occurrences of
-- @pat@ in @text@ with @sub@. If occurrences of @pat@ overlap, the first
-- occurrence that does not overlap with a replaced previous occurrence
-- is substituted. Occurrences of @pat@ arising from a substitution
-- will not be substituted. For example:
--
-- @
-- 'replace' \"ana\" \"olog\" \"banana\" = \"bologna\"
-- 'replace' \"ana\" \"o\" \"bananana\" = \"bono\"
-- 'replace' \"aab\" \"abaa\" \"aaabb\" = \"aabaab\"
-- @
--
-- The result is a lazy 'L.ByteString',
-- which is lazily produced, without copying.
-- Equality of pattern and substitution is not checked, but
--
-- @
-- 'replace' pat pat text == text
-- @
--
-- holds (the internal structure is generally different).
-- If the pattern is empty but not the substitution, the result
-- is equivalent to (were they 'String's) @cycle sub@.
--
-- For non-empty @pat@ and @sub@ a lazy 'L.ByteString',
--
-- @
-- 'L.concat' . 'Data.List.intersperse' sub . 'split' pat = 'replace' pat sub
-- @
--
-- and analogous relations hold for other types of @sub@.
{-# INLINE replace #-}
replace :: Substitution rep
=> S.ByteString -- ^ Strict pattern to replace
-> rep -- ^ Replacement string
-> L.ByteString -- ^ Lazy string to modify
-> L.ByteString -- ^ Lazy result
replace = BM.replaceAllL
-- | @'split' pattern target@ splits @target@ at each (non-overlapping)
-- occurrence of @pattern@, removing @pattern@. If @pattern@ is empty,
-- the result is an infinite list of empty 'L.ByteString's, if @target@
-- is empty but not @pattern@, the result is an empty list, otherwise
-- the following relations hold (where @patL@ is the lazy 'L.ByteString'
-- corresponding to @pat@):
--
-- @
-- 'L.concat' . 'Data.List.intersperse' patL . 'split' pat = 'id',
-- 'length' ('split' pattern target) ==
-- 'length' ('nonOverlappingIndices' pattern target) + 1,
-- @
--
-- no fragment in the result contains an occurrence of @pattern@.
{-# INLINE split #-}
split :: S.ByteString -- ^ Strict pattern to split on
-> L.ByteString -- ^ Lazy string to split
-> [L.ByteString] -- ^ Fragments of string
split = BM.splitDropL
-- | @'splitKeepEnd' pattern target@ splits @target@ after each (non-overlapping)
-- occurrence of @pattern@. If @pattern@ is empty, the result is an
-- infinite list of empty 'L.ByteString's, otherwise the following
-- relations hold:
--
-- @
-- 'L.concat' . 'splitKeepEnd' pattern = 'id',
-- @
--
-- all fragments in the result except possibly the last end with
-- @pattern@, no fragment contains more than one occurrence of @pattern@.
{-# INLINE splitKeepEnd #-}
splitKeepEnd :: S.ByteString -- ^ Strict pattern to split on
-> L.ByteString -- ^ Lazy string to split
-> [L.ByteString] -- ^ Fragments of string
splitKeepEnd = BM.splitKeepEndL
-- | @'splitKeepFront'@ is like 'splitKeepEnd', except that @target@ is split
-- before each occurrence of @pattern@ and hence all fragments
-- with the possible exception of the first begin with @pattern@.
-- No fragment contains more than one non-overlapping occurrence
-- of @pattern@.
{-# INLINE splitKeepFront #-}
splitKeepFront :: S.ByteString -- ^ Strict pattern to split on
-> L.ByteString -- ^ Lazy string to split
-> [L.ByteString] -- ^ Fragments of string
splitKeepFront = BM.splitKeepFrontL
-- | @'strictify'@ converts a lazy 'L.ByteString' to a strict 'S.ByteString'
-- to make it a suitable pattern.
strictify :: L.ByteString -> S.ByteString
strictify = S.concat . L.toChunks
|