1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
|
{-# LANGUAGE BangPatterns #-}
-- |
-- Module : Data.ByteString.Lazy.Search.DFA
-- Copyright : Daniel Fischer
-- Licence : BSD3
-- Maintainer : Daniel Fischer <daniel.is.fischer@googlemail.com>
-- Stability : Provisional
-- Portability : non-portable (BangPatterns)
--
-- Fast search of lazy 'L.ByteString' values. Breaking,
-- splitting and replacing using a deterministic finite automaton.
module Data.ByteString.Lazy.Search.DFA ( -- * Overview
-- $overview
-- ** Complexity and performance
-- $complexity
-- ** Partial application
-- $partial
-- * Finding substrings
indices
, nonOverlappingIndices
-- * Breaking on substrings
, breakOn
, breakAfter
, breakFindAfter
-- * Replacing
, replace
-- * Splitting
, split
, splitKeepEnd
, splitKeepFront
) where
import Data.ByteString.Search.Internal.Utils (automaton, keep, ldrop, lsplit)
import Data.ByteString.Search.Substitution
import qualified Data.ByteString as S
import qualified Data.ByteString.Lazy as L
import qualified Data.ByteString.Lazy.Internal as LI
import Data.ByteString.Unsafe (unsafeIndex)
import Data.Array.Base (unsafeAt)
--import Data.Array.Unboxed (UArray)
import Data.Bits
import Data.Int (Int64)
-- $overview
--
-- This module provides functions related to searching a substring within
-- a string. The searching algorithm uses a deterministic finite automaton
-- based on the Knuth-Morris-Pratt algorithm.
-- The automaton is implemented as an array of @(patternLength + 1) * σ@
-- state transitions, where σ is the alphabet size (256), so it is only
-- suitable for short enough patterns, therefore the patterns in this module
-- are required to be strict 'S.ByteString's.
--
-- When searching a pattern in a UTF-8-encoded 'L.ByteString', be aware that
-- these functions work on bytes, not characters, so the indices are
-- byte-offsets, not character offsets.
-- $complexity
--
-- The time and space complexity of the preprocessing phase is
-- /O/(@patternLength * σ@).
-- The searching phase is /O/(@targetLength@), each target character is
-- inspected only once.
--
-- In general the functions in this module have about the same performance as
-- the corresponding functions using the Knuth-Morris-Pratt algorithm but
-- are considerably slower than the Boyer-Moore functions. For very short
-- patterns or, in the case of 'indices', patterns with a short period
-- which occur often, however, times are close to or even below the
-- Boyer-Moore times.
-- $partial
--
-- All functions can usefully be partially applied. Given only a pattern,
-- the automaton is constructed only once, allowing efficient re-use.
------------------------------------------------------------------------------
-- Exported Functions --
------------------------------------------------------------------------------
-- | @'indices'@ finds the starting indices of all possibly overlapping
-- occurrences of the pattern in the target string.
-- If the pattern is empty, the result is @[0 .. 'length' target]@.
{-# INLINE indices #-}
indices :: S.ByteString -- ^ Strict pattern to find
-> L.ByteString -- ^ Lazy string to search
-> [Int64] -- ^ Offsets of matches
indices !pat = lazySearcher True pat . L.toChunks
-- | @'nonOverlappingIndices'@ finds the starting indices of all
-- non-overlapping occurrences of the pattern in the target string.
-- It is more efficient than removing indices from the list produced
-- by 'indices'.
{-# INLINE nonOverlappingIndices #-}
nonOverlappingIndices :: S.ByteString -- ^ Strict pattern to find
-> L.ByteString -- ^ Lazy string to search
-> [Int64] -- ^ Offsets of matches
nonOverlappingIndices !pat = lazySearcher False pat . L.toChunks
-- | @'breakOn' pattern target@ splits @target@ at the first occurrence
-- of @pattern@. If the pattern does not occur in the target, the
-- second component of the result is empty, otherwise it starts with
-- @pattern@. If the pattern is empty, the first component is empty.
-- For a non-empty pattern, the first component is generated lazily,
-- thus the first parts of it can be available before the pattern has
-- been found or determined to be absent.
--
-- @
-- 'uncurry' 'L.append' . 'breakOn' pattern = 'id'
-- @
breakOn :: S.ByteString -- ^ Strict pattern to search for
-> L.ByteString -- ^ Lazy string to search in
-> (L.ByteString, L.ByteString)
-- ^ Head and tail of string broken at substring
breakOn pat = breaker . L.toChunks
where
lbrk = lazyBreaker True pat
breaker strs = let (f, b) = lbrk strs
in (L.fromChunks f, L.fromChunks b)
-- | @'breakAfter' pattern target@ splits @target@ behind the first occurrence
-- of @pattern@. An empty second component means that either the pattern
-- does not occur in the target or the first occurrence of pattern is at
-- the very end of target. If you need to discriminate between those cases,
-- use breakFindAfter.
-- If the pattern is empty, the first component is empty.
-- For a non-empty pattern, the first component is generated lazily,
-- thus the first parts of it can be available before the pattern has
-- been found or determined to be absent.
-- @
-- 'uncurry' 'L.append' . 'breakAfter' pattern = 'id'
-- @
breakAfter :: S.ByteString -- ^ Strict pattern to search for
-> L.ByteString -- ^ Lazy string to search in
-> (L.ByteString, L.ByteString)
-- ^ Head and tail of string broken after substring
breakAfter pat = breaker . L.toChunks
where
lbrk = lazyBreaker False pat
breaker strs = let (f, b) = lbrk strs
in (L.fromChunks f, L.fromChunks b)
-- | @'breakFindAfter'@ does the same as 'breakAfter' but additionally indicates
-- whether the pattern is present in the target.
--
-- @
-- 'fst' . 'breakFindAfter' pat = 'breakAfter' pat
-- @
breakFindAfter :: S.ByteString -- ^ Strict pattern to search for
-> L.ByteString -- ^ Lazy string to search in
-> ((L.ByteString, L.ByteString), Bool)
-- ^ Head and tail of string broken after substring
-- and presence of pattern
breakFindAfter pat
| S.null pat = \str -> ((L.empty, str), True)
breakFindAfter pat = breaker . L.toChunks
where
!patLen = S.length pat
lbrk = lazyBreaker True pat
breaker strs = let (f, b) = lbrk strs
(f1, b1) = lsplit patLen b
mbpat = L.fromChunks f1
in ((foldr LI.chunk mbpat f, L.fromChunks b1), not (null b))
-- | @'replace' pat sub text@ replaces all (non-overlapping) occurrences of
-- @pat@ in @text@ with @sub@. If occurrences of @pat@ overlap, the first
-- occurrence that does not overlap with a replaced previous occurrence
-- is substituted. Occurrences of @pat@ arising from a substitution
-- will not be substituted. For example:
--
-- @
-- 'replace' \"ana\" \"olog\" \"banana\" = \"bologna\"
-- 'replace' \"ana\" \"o\" \"bananana\" = \"bono\"
-- 'replace' \"aab\" \"abaa\" \"aaabb\" = \"aabaab\"
-- @
--
-- The result is a lazy 'L.ByteString',
-- which is lazily produced, without copying.
-- Equality of pattern and substitution is not checked, but
--
-- @
-- 'replace' pat pat text == text
-- @
--
-- holds (the internal structure is generally different).
-- If the pattern is empty but not the substitution, the result
-- is equivalent to (were they 'String's) @cycle sub@.
--
-- For non-empty @pat@ and @sub@ a lazy 'L.ByteString',
--
-- @
-- 'L.concat' . 'Data.List.intersperse' sub . 'split' pat = 'replace' pat sub
-- @
--
-- and analogous relations hold for other types of @sub@.
replace :: Substitution rep
=> S.ByteString -- ^ Strict pattern to replace
-> rep -- ^ Replacement string
-> L.ByteString -- ^ Lazy string to modify
-> L.ByteString -- ^ Lazy result
replace pat
| S.null pat = \sub -> prependCycle sub
| otherwise =
let !patLen = S.length pat
breaker = lazyBreaker True pat
repl subst strs
| null strs = []
| otherwise =
let (pre, mtch) = breaker strs
in pre ++ case mtch of
[] -> []
_ -> subst (repl subst (ldrop patLen mtch))
in \sub -> let {-# NOINLINE subst #-}
!subst = substitution sub
repl1 = repl subst
in L.fromChunks . repl1 . L.toChunks
-- | @'split' pattern target@ splits @target@ at each (non-overlapping)
-- occurrence of @pattern@, removing @pattern@. If @pattern@ is empty,
-- the result is an infinite list of empty 'L.ByteString's, if @target@
-- is empty but not @pattern@, the result is an empty list, otherwise
-- the following relations hold (where @patL@ is the lazy 'L.ByteString'
-- corresponding to @pat@):
--
-- @
-- 'L.concat' . 'Data.List.intersperse' patL . 'split' pat = 'id',
-- 'length' ('split' pattern target) ==
-- 'length' ('nonOverlappingIndices' pattern target) + 1,
-- @
--
-- no fragment in the result contains an occurrence of @pattern@.
split :: S.ByteString -- ^ Strict pattern to split on
-> L.ByteString -- ^ Lazy string to split
-> [L.ByteString] -- ^ Fragments of string
split pat
| S.null pat = const (repeat L.empty)
split pat = map L.fromChunks . splitter . L.toChunks
where
!patLen = S.length pat
breaker = lazyBreaker True pat
splitter strs
| null strs = []
| otherwise = splitter' strs
splitter' strs
| null strs = [[]]
| otherwise =
case breaker strs of
(pre, mtch) ->
pre : case mtch of
[] -> []
_ -> splitter' (ldrop patLen mtch)
-- | @'splitKeepEnd' pattern target@ splits @target@ after each (non-overlapping)
-- occurrence of @pattern@. If @pattern@ is empty, the result is an
-- infinite list of empty 'L.ByteString's, otherwise the following
-- relations hold:
--
-- @
-- 'L.concat' . 'splitKeepEnd' pattern = 'id,'
-- @
--
-- all fragments in the result except possibly the last end with
-- @pattern@, no fragment contains more than one occurrence of @pattern@.
splitKeepEnd :: S.ByteString -- ^ Strict pattern to split on
-> L.ByteString -- ^ Lazy string to split
-> [L.ByteString] -- ^ Fragments of string
splitKeepEnd pat
| S.null pat = const (repeat L.empty)
splitKeepEnd pat = map L.fromChunks . splitter . L.toChunks
where
breaker = lazyBreaker False pat
splitter [] = []
splitter strs =
case breaker strs of
(pre, mtch) -> pre : splitter mtch
-- | @'splitKeepFront'@ is like 'splitKeepEnd', except that @target@ is split
-- before each occurrence of @pattern@ and hence all fragments
-- with the possible exception of the first begin with @pattern@.
-- No fragment contains more than one non-overlapping occurrence
-- of @pattern@.
splitKeepFront :: S.ByteString -- ^ Strict pattern to split on
-> L.ByteString -- ^ Lazy string to split
-> [L.ByteString] -- ^ Fragments of string
splitKeepFront pat
| S.null pat = const (repeat L.empty)
splitKeepFront pat = map L.fromChunks . splitter . L.toChunks
where
!patLen = S.length pat
breaker = lazyBreaker True pat
splitter strs = case splitter' strs of
([] : rst) -> rst
other -> other
splitter' [] = []
splitter' strs =
case breaker strs of
(pre, mtch) ->
pre : case mtch of
[] -> []
_ -> case lsplit patLen mtch of
(pt, rst) ->
if null rst
then [pt]
else let (h : t) = splitter' rst
in (pt ++ h) : t
------------------------------------------------------------------------------
-- Searching Function --
------------------------------------------------------------------------------
lazySearcher :: Bool -> S.ByteString -> [S.ByteString] -> [Int64]
lazySearcher _ !pat
| S.null pat =
let zgo _ [] = []
zgo !prior (!str : rest) =
let !l = S.length str
!prior' = prior + fromIntegral l
in [prior + fromIntegral i | i <- [1 .. l]] ++ zgo prior' rest
in (0:) . zgo 0
| S.length pat == 1 =
let !w = S.head pat
ixes = S.elemIndices w
go _ [] = []
go !prior (!str : rest)
= let !prior' = prior + fromIntegral (S.length str)
in map ((+ prior) . fromIntegral) (ixes str) ++ go prior' rest
in go 0
lazySearcher !overlap pat = search 0 0
where
!patLen = S.length pat
!auto = automaton pat
!p0 = unsafeIndex pat 0
!ams = if overlap then patLen else 0
search _ _ [] = []
search !prior st (!str:rest) = match st 0
where
!strLen = S.length str
{-# INLINE strAt #-}
strAt :: Int -> Int
strAt i = fromIntegral (str `unsafeIndex` i)
match 0 !idx
| idx == strLen = search (prior + fromIntegral strLen) 0 rest
| unsafeIndex str idx == p0 = match 1 (idx + 1)
| otherwise = match 0 (idx + 1)
match state idx
| idx == strLen = search (prior + fromIntegral strLen) state rest
| otherwise =
let nstate = unsafeAt auto ((state `shiftL` 8) + strAt idx)
!nxtIdx = idx + 1
in if nstate == patLen
then (prior + fromIntegral (nxtIdx - patLen)) :
match ams nxtIdx
else match nstate nxtIdx
------------------------------------------------------------------------------
-- Breaking --
------------------------------------------------------------------------------
-- Code duplication :(
-- Needed for reasonable performance.
lazyBreaker :: Bool -> S.ByteString -> [S.ByteString]
-> ([S.ByteString], [S.ByteString])
lazyBreaker before pat
| S.null pat = \strs -> ([], strs)
| S.length pat == 1 =
let !w = S.head pat
!a = if before then 0 else 1
ixes = S.elemIndices w
scan [] = ([], [])
scan (!str:rest) =
let !strLen = S.length str
in case ixes str of
[] -> let (fr, bk) = scan rest in (str : fr, bk)
(i:_) -> let !j = i + a
in if j == strLen
then ([str],rest)
else ([S.take j str], S.drop j str : rest)
in scan
lazyBreaker !before pat = bscan [] 0
where
!patLen = S.length pat
!auto = automaton pat
!p0 = unsafeIndex pat 0
bscan _ _ [] = ([], [])
bscan !past !sta (!str:rest) = match sta 0
where
!strLen = S.length str
{-# INLINE strAt #-}
strAt :: Int -> Int
strAt i = fromIntegral (str `unsafeIndex` i)
match 0 idx
| idx == strLen =
let (fr, bk) = bscan [] 0 rest
in (foldr (flip (.) . (:)) id past (str:fr), bk)
| unsafeIndex str idx == p0 = match 1 (idx + 1)
| otherwise = match 0 (idx + 1)
match state idx
| idx == strLen =
let (kp, !rl) = if before
then keep state (str:past)
else ([], str:past)
(fr, bk) = bscan kp state rest
in (foldr (flip (.) . (:)) id rl fr, bk)
| otherwise =
let !nstate = unsafeAt auto ((state `shiftL` 8) + strAt idx)
!nxtIdx = idx + 1
in if nstate == patLen
then case if before then nxtIdx - patLen else nxtIdx of
0 -> (foldr (flip (.) . (:)) id past [], str:rest)
stIx | stIx < 0 -> rgo (-stIx) (str:rest) past
| stIx == strLen ->
(foldr (flip (.) . (:)) id past [str],rest)
| otherwise ->
(foldr (flip (.) . (:)) id past
[S.take stIx str], S.drop stIx str : rest)
else match nstate nxtIdx
-- Did I already mention that I suck at finding names?
{-# INLINE rgo #-}
rgo :: Int -> [S.ByteString] -> [S.ByteString]
-> ([S.ByteString], [S.ByteString])
rgo !kp acc (!str:more)
| sl == kp = (reverse more, str:acc)
| sl < kp = rgo (kp - sl) (str:acc) more
| otherwise = case S.splitAt (sl - kp) str of
(fr, bk) ->
(foldr (flip (.) . (:)) id more [fr], bk:acc)
where
!sl = S.length str
rgo _ _ [] = error "Not enough past!"
-- If that error is ever encountered, I screwed up badly.
|