File: Search.hs

package info (click to toggle)
haskell-stringsearch 0.3.6.6-13
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 284 kB
  • sloc: haskell: 1,915; makefile: 2
file content (254 lines) | stat: -rw-r--r-- 10,918 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
-- |
-- Module         : Data.ByteString.Search
-- Copyright      : Daniel Fischer (2007-2011)
--                  Chris Kuklewicz
-- Licence        : BSD3
-- Maintainer     : Daniel Fischer <daniel.is.fischer@googlemail.com>
-- Stability      : Provisional
-- Portability    : non-portable (BangPatterns)
--
-- Fast overlapping Boyer-Moore search of strict
-- 'S.ByteString' values. Breaking, splitting and replacing
-- using the Boyer-Moore algorithm.
--
-- Descriptions of the algorithm can be found at
-- <http://www-igm.univ-mlv.fr/~lecroq/string/node14.html#SECTION00140>
-- and
-- <http://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm>
--
-- Original authors: Daniel Fischer (daniel.is.fischer at googlemail.com) and
-- Chris Kuklewicz (haskell at list.mightyreason.com).
module Data.ByteString.Search ( -- * Overview
                                -- $overview

                                -- ** Performance
                                -- $performance

                                -- ** Complexity
                                -- $complexity

                                -- ** Partial application
                                -- $partial

                                -- * Finding substrings
                                indices
                              , nonOverlappingIndices
                                -- * Breaking on substrings
                              , breakOn
                              , breakAfter
                                -- * Replacing
                              , replace
                                -- * Splitting
                              , split
                              , splitKeepEnd
                              , splitKeepFront
                              ) where

import qualified Data.ByteString.Search.Internal.BoyerMoore as BM
import Data.ByteString.Search.Substitution
import qualified Data.ByteString as S
import qualified Data.ByteString.Lazy as L

-- $overview
--
-- This module provides functions related to searching a substring within
-- a string, using the Boyer-Moore algorithm with minor modifications
-- to improve the overall performance and avoid the worst case
-- performance degradation of the original Boyer-Moore algorithm for
-- periodic patterns.
--
-- When searching a pattern in a UTF-8-encoded 'S.ByteString', be aware that
-- these functions work on bytes, not characters, so the indices are
-- byte-offsets, not character offsets.


-- $performance
--
-- In general, the Boyer-Moore algorithm is the most efficient method to
-- search for a pattern inside a string. The advantage over other algorithms
-- (e.g. Na&#239;ve, Knuth-Morris-Pratt, Horspool, Sunday) can be made
-- arbitrarily large for specially selected patterns and targets, but
-- usually, it's a factor of 2&#8211;3 versus Knuth-Morris-Pratt and of
-- 6&#8211;10 versus the na&#239;ve algorithm. The Horspool and Sunday
-- algorithms, which are simplified variants of the Boyer-Moore algorithm,
-- typically have performance between Boyer-Moore and Knuth-Morris-Pratt,
-- mostly closer to Boyer-Moore. The advantage of the Boyer-moore variants
-- over other algorithms generally becomes larger for longer patterns. For
-- very short patterns (or patterns with a very short period), other
-- algorithms, e.g. "Data.ByteString.Search.DFA" can be faster (my
-- tests suggest that \"very short\" means two, maybe three bytes).
--
-- In general, searching in a strict 'S.ByteString' is slightly faster
-- than searching in a lazy 'L.ByteString', but for long targets, the
-- smaller memory footprint of lazy 'L.ByteString's can make searching
-- those (sometimes much) faster. On the other hand, there are cases
-- where searching in a strict target is much faster, even for long targets.

-- $complexity
--
-- Preprocessing the pattern is /O/(@patternLength@ + &#963;) in time and
-- space (&#963; is the alphabet size, 256 here) for all functions.
-- The time complexity of the searching phase for 'indices'
-- is /O/(@targetLength@ \/ @patternLength@) in the best case.
-- For non-periodic patterns, the worst case complexity is
-- /O/(@targetLength@), but for periodic patterns, the worst case complexity
-- is /O/(@targetLength@ * @patternLength@) for the original Boyer-Moore
-- algorithm.
--
-- The searching functions in this module contain a modification which
-- drastically improves the performance for periodic patterns.
-- I believe that for strict target strings, the worst case is now
-- /O/(@targetLength@) also for periodic patterns.
-- I may be wrong, though.
--
-- The other functions don't have to deal with possible overlapping
-- patterns, hence the worst case complexity for the processing phase
-- is /O/(@targetLength@) (respectively /O/(@firstIndex + patternLength@)
-- for the breaking functions if the pattern occurs).

-- $partial
--
-- All functions can usefully be partially applied. Given only a pattern,
-- the pattern is preprocessed only once, allowing efficient re-use.

------------------------------------------------------------------------------
--                            Exported Functions                            --
------------------------------------------------------------------------------

-- | @'indices'@ finds the starting indices of all possibly overlapping
--   occurrences of the pattern in the target string.
--   If the pattern is empty, the result is @[0 .. 'length' target]@.
--
--   In general, @'not' . 'null' $ 'indices' pat target@ is a much more
--   efficient version of 'S.isInfixOf'.
{-# INLINE indices #-}
indices :: S.ByteString     -- ^ Pattern to find
        -> S.ByteString     -- ^ String to search
        -> [Int]            -- ^ Offsets of matches
indices = BM.matchSS

-- | @'nonOverlappingIndices'@ finds the starting indices of all
--   non-overlapping occurrences of the pattern in the target string.
--   It is more efficient than removing indices from the list produced
--   by 'indices'.
{-# INLINE nonOverlappingIndices #-}
nonOverlappingIndices :: S.ByteString   -- ^ Pattern to find
                      -> S.ByteString   -- ^ String to search
                      -> [Int]          -- ^ Offsets of matches
nonOverlappingIndices = BM.matchNOS

-- | @'breakOn' pattern target@ splits @target@ at the first occurrence
--   of @pattern@. If the pattern does not occur in the target, the
--   second component of the result is empty, otherwise it starts with
--   @pattern@. If the pattern is empty, the first component is empty.
--
-- @
--   'uncurry' 'S.append' . 'breakOn' pattern = 'id'
-- @
{-# INLINE breakOn #-}
breakOn :: S.ByteString  -- ^ String to search for
        -> S.ByteString  -- ^ String to search in
        -> (S.ByteString, S.ByteString)
                         -- ^ Head and tail of string broken at substring
breakOn = BM.breakSubstringS

-- | @'breakAfter' pattern target@ splits @target@ behind the first occurrence
--   of @pattern@. An empty second component means that either the pattern
--   does not occur in the target or the first occurrence of pattern is at
--   the very end of target. To discriminate between those cases, use e.g.
--   'S.isSuffixOf'.
--
-- @
--   'uncurry' 'S.append' . 'breakAfter' pattern = 'id'
-- @
{-# INLINE breakAfter #-}
breakAfter :: S.ByteString  -- ^ String to search for
           -> S.ByteString  -- ^ String to search in
           -> (S.ByteString, S.ByteString)
                            -- ^ Head and tail of string broken after substring
breakAfter = BM.breakAfterS

-- | @'replace' pat sub text@ replaces all (non-overlapping) occurrences of
--   @pat@ in @text@ with @sub@. If occurrences of @pat@ overlap, the first
--   occurrence that does not overlap with a replaced previous occurrence
--   is substituted. Occurrences of @pat@ arising from a substitution
--   will not be substituted. For example:
--
-- @
--   'replace' \"ana\" \"olog\" \"banana\" = \"bologna\"
--   'replace' \"ana\" \"o\" \"bananana\" = \"bono\"
--   'replace' \"aab\" \"abaa\" \"aaabb\" = \"aabaab\"
-- @
--
--   The result is a /lazy/ 'L.ByteString',
--   which is lazily produced, without copying.
--   Equality of pattern and substitution is not checked, but
--
-- @
--   ('S.concat' . 'L.toChunks' $ 'replace' pat pat text) == text
-- @
--
--   holds. If the pattern is empty but not the substitution, the result
--   is equivalent to (were they 'String's) @'cycle' sub@.
--
--   For non-empty @pat@ and @sub@ a strict 'S.ByteString',
--
-- @
--   'L.fromChunks' . 'Data.List.intersperse' sub . 'split' pat = 'replace' pat sub
-- @
--
--   and analogous relations hold for other types of @sub@.
{-# INLINE replace #-}
replace :: Substitution rep
        => S.ByteString     -- ^ Substring to replace
        -> rep              -- ^ Replacement string
        -> S.ByteString     -- ^ String to modify
        -> L.ByteString     -- ^ Lazy result
replace = BM.replaceAllS

-- | @'split' pattern target@ splits @target@ at each (non-overlapping)
--   occurrence of @pattern@, removing @pattern@. If @pattern@ is empty,
--   the result is an infinite list of empty 'S.ByteString's, if @target@
--   is empty but not @pattern@, the result is an empty list, otherwise
--   the following relations hold:
--
-- @
--   'S.concat' . 'Data.List.intersperse' pat . 'split' pat = 'id',
--   'length' ('split' pattern target) ==
--               'length' ('nonOverlappingIndices' pattern target) + 1,
-- @
--
--   no fragment in the result contains an occurrence of @pattern@.
{-# INLINE split #-}
split :: S.ByteString   -- ^ Pattern to split on
      -> S.ByteString   -- ^ String to split
      -> [S.ByteString] -- ^ Fragments of string
split = BM.splitDropS

-- | @'splitKeepEnd' pattern target@ splits @target@ after each (non-overlapping)
--   occurrence of @pattern@. If @pattern@ is empty, the result is an
--   infinite list of empty 'S.ByteString's, otherwise the following
--   relations hold:
--
-- @
--   'S.concat' . 'splitKeepEnd' pattern = 'id',
-- @
--
--   all fragments in the result except possibly the last end with
--   @pattern@, no fragment contains more than one occurrence of @pattern@.
{-# INLINE splitKeepEnd #-}
splitKeepEnd :: S.ByteString    -- ^ Pattern to split on
             -> S.ByteString    -- ^ String to split
             -> [S.ByteString]  -- ^ Fragments of string
splitKeepEnd = BM.splitKeepEndS

-- | @'splitKeepFront'@ is like 'splitKeepEnd', except that @target@ is split
--   before each occurrence of @pattern@ and hence all fragments
--   with the possible exception of the first begin with @pattern@.
--   No fragment contains more than one non-overlapping occurrence
--   of @pattern@.
{-# INLINE splitKeepFront #-}
splitKeepFront :: S.ByteString    -- ^ Pattern to split on
               -> S.ByteString    -- ^ String to split
               -> [S.ByteString]  -- ^ Fragments of string
splitKeepFront = BM.splitKeepFrontS