1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
|
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
module Reify (tests) where
{-
The following examples illustrate the reification facilities for type
structure. Most notably, we generate shallow terms using the depth of
types and constructors as means to steer the generation.
-}
import Test.Tasty.HUnit
import Data.Maybe
import Data.Generics
import Control.Monad.State
import CompanyDatatypes
------------------------------------------------------------------------------
--
-- Encoding types as values; some other way.
--
------------------------------------------------------------------------------
{-
This group provides a style of encoding types as values and using
them. This style is seen as an alternative to the pragmatic style used
in Data.Typeable.typeOf and elsewhere, i.e., simply use an "undefined"
to denote a type argument. This pragmatic style suffers from lack
of robustness: one feels tempted to pattern match on undefineds.
Maybe Data.Typeable.typeOf etc. should be rewritten accordingly.
-}
-- | Type as values to stipulate use of undefineds
type TypeVal a = a -> ()
-- | The value that denotes a type
typeVal :: TypeVal a
typeVal = const ()
-- | Test for type equivalence
sameType :: (Typeable a, Typeable b) => TypeVal a -> TypeVal b -> Bool
sameType tva tvb = typeOf (type2val tva) ==
typeOf (type2val tvb)
-- | Map a value to its type
val2type :: a -> TypeVal a
val2type _ = typeVal
-- | Stipulate this idiom!
type2val :: TypeVal a -> a
type2val _ = undefined
-- | Constrain a type
withType :: a -> TypeVal a -> a
withType x _ = x
-- | The argument type of a function
argType :: (a -> b) -> TypeVal a
argType _ = typeVal
-- | The result type of a function
resType :: (a -> b) -> TypeVal b
resType _ = typeVal
-- | The parameter type of type constructor
paraType :: t a -> TypeVal a
paraType _ = typeVal
-- Type functions,
-- i.e., functions mapping types to values
--
type TypeFun a r = TypeVal a -> r
-- Generic type functions,
-- i.e., functions mapping types to values
--
type GTypeFun r = forall a. Data a => TypeFun a r
-- | Extend a type function
extType :: (Data a, Typeable r) => GTypeFun r -> TypeFun a r -> GTypeFun r
extType f x = maybe f id (cast x)
------------------------------------------------------------------------------
--
-- Mapping operators to map over type structure
--
------------------------------------------------------------------------------
-- | Query all constructors of a given type
gmapType :: ([(Constr,r')] -> r)
-> GTypeFun (Constr -> r')
-> GTypeFun r
gmapType (o::[(Constr,r')] -> r) f (t::TypeVal a)
=
o $ zip cons query
where
-- All constructors of the given type
cons :: [Constr]
cons = if isAlgType $ dataTypeOf $ type2val t
then dataTypeConstrs $ dataTypeOf $ type2val t
else []
-- Query constructors
query :: [r']
query = map (f t) cons
-- | Query all subterm types of a given constructor
gmapConstr :: ([r] -> r')
-> GTypeFun r
-> GTypeFun (Constr -> r')
gmapConstr (o::[r] -> r') f (t::TypeVal a) c
=
o $ query
where
-- Term for the given constructor
term :: a
term = fromConstr c
-- Query subterm types
query :: [r]
query = gmapQ (f . val2type) term
-- | Compute arity of a given constructor
constrArity :: GTypeFun (Constr -> Int)
constrArity t c = glength $ withType (fromConstr c) t
-- | Query all immediate subterm types of a given type
gmapSubtermTypes :: (Data a, Typeable r)
=> (r -> r -> r) -> r -> GTypeFun r -> TypeVal a -> r
gmapSubtermTypes o (r::r) f (t::TypeVal a)
=
reduce (concat (map (gmapQ (query . val2type)) terms))
(GTypeFun' f)
where
-- All constructors of the given type
cons :: [Constr]
cons = if isAlgType $ dataTypeOf $ type2val t
then dataTypeConstrs $ dataTypeOf $ type2val t
else []
-- Terms for all constructors
terms :: [a]
terms = map fromConstr cons
-- Query a subterm type
query :: Data b => TypeVal b -> GTypeFun' r -> (r,GTypeFun' r)
query t f = (unGTypeFun' f t, GTypeFun' (disable t (unGTypeFun' f)))
-- Constant out given type
disable :: Data b => TypeVal b -> GTypeFun r -> GTypeFun r
disable (t::TypeVal b) f = f `extType` \(_::TypeVal b) -> r
-- Reduce all subterm types
reduce :: [GTypeFun' r -> (r,GTypeFun' r)] -> GTypeFun' r -> r
reduce [] _ = r
reduce (xy:z) g = fst (xy g) `o` reduce z (snd (xy g))
-- First-class polymorphic variation on GTypeFun
newtype GTypeFun' r = GTypeFun' (GTypeFun r)
unGTypeFun' (GTypeFun' f) = f
-- | Query all immediate subterm types.
-- There is an extra argument to \"constant out\" the type at hand.
-- This can be used to avoid cycles.
gmapSubtermTypesConst :: (Data a, Typeable r)
=> (r -> r -> r)
-> r
-> GTypeFun r
-> TypeVal a
-> r
gmapSubtermTypesConst o (r::r) f (t::TypeVal a)
=
gmapSubtermTypes o r f' t
where
f' :: GTypeFun r
f' = f `extType` \(_::TypeVal a) -> r
-- Count all distinct subterm types
gcountSubtermTypes :: Data a => TypeVal a -> Int
gcountSubtermTypes = gmapSubtermTypes (+) (0::Int) (const 1)
-- | A simplied variation on gmapSubtermTypes.
-- Weakness: no awareness of doubles.
-- Strength: easy to comprehend as it uses gmapType and gmapConstr.
_gmapSubtermTypes :: (Data a, Typeable r)
=> (r -> r -> r) -> r -> GTypeFun r -> TypeVal a -> r
_gmapSubtermTypes o (r::r) f
=
gmapType otype (gmapConstr oconstr f)
where
otype :: [(Constr,r)] -> r
otype = foldr (\x y -> snd x `o` y) r
oconstr :: [r] -> r
oconstr = foldr o r
------------------------------------------------------------------------------
--
-- Some reifying relations on types
--
------------------------------------------------------------------------------
-- | Reachability relation on types, i.e.,
-- test if nodes of type @a@ are reachable from nodes of type @b@.
-- The relation is defined to be reflexive.
reachableType :: (Data a, Data b) => TypeVal a -> TypeVal b -> Bool
reachableType (a::TypeVal a) (b::TypeVal b)
=
or [ sameType a b
, gmapSubtermTypesConst (\x y -> or [x,y]) False (reachableType a) b
]
-- | Depth of a datatype as the constructor with the minimum depth.
-- The outermost 'Nothing' denotes a type without constructors.
-- The innermost 'Nothing' denotes potentially infinite.
depthOfType :: GTypeFun Bool -> GTypeFun (Maybe (Constr, Maybe Int))
depthOfType p (t::TypeVal a)
=
gmapType o f t
where
o :: [(Constr, Maybe Int)] -> Maybe (Constr, Maybe Int)
o l = if null l then Nothing else Just (foldr1 min' l)
f :: GTypeFun (Constr -> Maybe Int)
f = depthOfConstr p'
-- Specific minimum operator
min' :: (Constr, Maybe Int) -> (Constr, Maybe Int) -> (Constr, Maybe Int)
min' x (_, Nothing) = x
min' (_, Nothing) x = x
min' (c, Just i) (c', Just i') | i <= i' = (c, Just i)
min' (c, Just i) (c', Just i') = (c', Just i')
-- Updated predicate for unblocked types
p' :: GTypeFun Bool
p' = p `extType` \(_::TypeVal a) -> False
-- | Depth of a constructor.
-- Depth is viewed as the maximum depth of all subterm types + 1.
-- 'Nothing' denotes potentially infinite.
depthOfConstr :: GTypeFun Bool -> GTypeFun (Constr -> Maybe Int)
depthOfConstr p (t::TypeVal a) c
=
gmapConstr o f t c
where
o :: [Maybe Int] -> Maybe Int
o = inc' . foldr max' (Just 0)
f :: GTypeFun (Maybe Int)
f t' = if p t'
then
case depthOfType p t' of
Nothing -> Just 0
Just (_, x) -> x
else Nothing
-- Specific maximum operator
max' Nothing _ = Nothing
max' _ Nothing = Nothing
max' (Just i) (Just i') | i >= i' = Just i
max' (Just i) (Just i') = Just i'
-- Specific increment operator
inc' Nothing = Nothing
inc' (Just i) = Just (i+1)
------------------------------------------------------------------------------
--
-- Build a shallow term
--
------------------------------------------------------------------------------
shallowTerm :: (forall a. Data a => Maybe a) -> (forall b. Data b => b)
shallowTerm cust
= result
where
result :: forall b. Data b => b
-- Need a type signature here to bring 'b' into scope
result = maybe gdefault id cust
where
-- The worker, also used for type disambiguation
gdefault :: b
gdefault = case con of
Just (con, Just _) -> fromConstrB (shallowTerm cust) con
_ -> error "no shallow term!"
-- The type to be constructed
typeVal :: TypeVal b
typeVal = val2type gdefault
-- The most shallow constructor if any
con :: Maybe (Constr, Maybe Int)
con = depthOfType (const True) typeVal
-- For testing shallowTerm
shallowTermBase :: GenericR Maybe
shallowTermBase = Nothing
`extR` Just (1.23::Double)
`extR` Just ("foo"::String)
-- Sample datatypes
data T1 = T1a deriving (Typeable, Data) -- just a constant
data T2 = T2 T1 deriving (Typeable, Data) -- little detour
data T3 = T3a T3 | T3b T2 deriving (Typeable, Data) -- recursive case
data T4 = T4 T3 T3 deriving (Typeable, Data) -- sum matters
-- Sample type arguments
t0 = typeVal :: TypeVal Int
t1 = typeVal :: TypeVal T1
t2 = typeVal :: TypeVal T2
t3 = typeVal :: TypeVal T3
t4 = typeVal :: TypeVal T4
tCompany = typeVal :: TypeVal Company
tPerson = typeVal :: TypeVal Person
tEmployee = typeVal :: TypeVal Employee
tDept = typeVal :: TypeVal Dept
-- Test cases
test0 = t1 `reachableType` t1 -- True
test1 = t1 `reachableType` t2 -- True
test2 = t2 `reachableType` t1 -- False
test3 = t1 `reachableType` t3
test4 = tPerson `reachableType` tCompany
test5 = gcountSubtermTypes tPerson
test6 = gcountSubtermTypes tEmployee
test7 = gcountSubtermTypes tDept
test8 = shallowTerm shallowTermBase :: Person
test9 = shallowTerm shallowTermBase :: Employee
test10 = shallowTerm shallowTermBase :: Dept
tests = ( test0
, ( test1
, ( test2
, ( test3
, ( test4
, ( test5
, ( test6
, ( test7
, ( test8
, ( test9
, ( test10
))))))))))) @=? output
output = (True,(True,(False,(True,(True,(1,(2,(3,(P "foo" "foo",
(E (P "foo" "foo") (S 1.23),
D "foo" (E (P "foo" "foo") (S 1.23)) []))))))))))
|