1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE MultiWayIf #-}
-- |
-- Module : Data.Text.Metrics
-- Copyright : © 2016–present Mark Karpov
-- License : BSD 3 clause
--
-- Maintainer : Mark Karpov <markkarpov92@gmail.com>
-- Stability : experimental
-- Portability : portable
--
-- The module provides efficient implementations of various strings metric
-- algorithms. It works with strict 'Text' values.
--
-- __Note__: before version /0.3.0/ the package used C implementations of
-- the algorithms under the hood. Beginning from version /0.3.0/, the
-- implementations are written in Haskell while staying almost as fast, see:
--
-- <https://markkarpov.com/post/migrating-text-metrics.html>
module Data.Text.Metrics
( -- * Levenshtein variants
levenshtein,
levenshteinNorm,
damerauLevenshtein,
damerauLevenshteinNorm,
-- * Treating inputs like sets
overlap,
jaccard,
-- * Other
hamming,
jaro,
jaroWinkler,
)
where
import Control.Monad
import Control.Monad.ST
import Data.Map.Strict (Map)
import qualified Data.Map.Strict as M
import Data.Ratio
import Data.Text
import qualified Data.Text as T
import qualified Data.Text.Internal as T
import qualified Data.Text.Unsafe as TU
import qualified Data.Vector.Unboxed.Mutable as VUM
import GHC.Exts (inline)
----------------------------------------------------------------------------
-- Levenshtein variants
-- | Return the Levenshtein distance between two 'Text' values. The
-- Levenshtein distance between two strings is the minimal number of
-- operations necessary to transform one string into another. For the
-- Levenshtein distance allowed operations are: deletion, insertion, and
-- substitution.
--
-- See also: <https://en.wikipedia.org/wiki/Levenshtein_distance>.
--
-- __Heads up__, before version /0.3.0/ this function returned
-- 'Data.Numeric.Natural'.
levenshtein :: Text -> Text -> Int
levenshtein a b = fst (levenshtein_ a b)
-- | Return the normalized Levenshtein distance between two 'Text' values.
-- Result is a non-negative rational number (represented as @'Ratio'
-- 'Data.Numeric.Natural'@), where 0 signifies no similarity between the
-- strings, while 1 means exact match.
--
-- See also: <https://en.wikipedia.org/wiki/Levenshtein_distance>.
--
-- __Heads up__, before version /0.3.0/ this function returned @'Ratio'
-- 'Data.Numeric.Natural'@.
levenshteinNorm :: Text -> Text -> Ratio Int
levenshteinNorm = norm levenshtein_
-- | An internal helper, returns the Levenshtein distance as the first
-- element of the tuple and max length of the two inputs as the second
-- element of the tuple.
levenshtein_ :: Text -> Text -> (Int, Int)
levenshtein_ a b
| T.null a = (lenb, lenm)
| T.null b = (lena, lenm)
| otherwise = runST $ do
let v_len = lenb + 1
v <- VUM.unsafeNew (v_len * 2)
let gov !i =
when (i < v_len) $ do
VUM.unsafeWrite v i i
gov (i + 1)
goi !i !na !v0 !v1 = do
let !(TU.Iter ai da) = TU.iter a na
goj !j !nb =
when (j < lenb) $ do
let !(TU.Iter bj db) = TU.iter b nb
cost = if ai == bj then 0 else 1
x <- (+ 1) <$> VUM.unsafeRead v (v1 + j)
y <- (+ 1) <$> VUM.unsafeRead v (v0 + j + 1)
z <- (+ cost) <$> VUM.unsafeRead v (v0 + j)
VUM.unsafeWrite v (v1 + j + 1) (min x (min y z))
goj (j + 1) (nb + db)
when (i < lena) $ do
VUM.unsafeWrite v v1 (i + 1)
goj 0 0
goi (i + 1) (na + da) v1 v0
gov 0
goi 0 0 0 v_len
ld <- VUM.unsafeRead v (lenb + if even lena then 0 else v_len)
return (ld, lenm)
where
lena = T.length a
lenb = T.length b
lenm = max lena lenb
{-# INLINE levenshtein_ #-}
-- | Return the Damerau-Levenshtein distance between two 'Text' values. The
-- function works like 'levenshtein', but the collection of allowed
-- operations also includes transposition of two /adjacent/ characters.
--
-- See also: <https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance>.
--
-- __Heads up__, before version /0.3.0/ this function returned
-- 'Data.Numeric.Natural'.
damerauLevenshtein :: Text -> Text -> Int
damerauLevenshtein a b = fst (damerauLevenshtein_ a b)
-- | Return the normalized Damerau-Levenshtein distance between two 'Text'
-- values. 0 signifies no similarity between the strings, while 1 means
-- exact match.
--
-- See also: <https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance>.
--
-- __Heads up__, before version /0.3.0/ this function returned @'Ratio'
-- 'Data.Numeric.Natural'@.
damerauLevenshteinNorm :: Text -> Text -> Ratio Int
damerauLevenshteinNorm = norm damerauLevenshtein_
-- | An internal helper, returns the Damerau-Levenshtein distance as the
-- first element of the tuple and max length of the two inputs as the second
-- element of the tuple.
damerauLevenshtein_ :: Text -> Text -> (Int, Int)
damerauLevenshtein_ a b
| T.null a = (lenb, lenm)
| T.null b = (lena, lenm)
| otherwise = runST $ do
let v_len = lenb + 1
v <- VUM.unsafeNew (v_len * 3)
let gov !i =
when (i < v_len) $ do
VUM.unsafeWrite v i i
gov (i + 1)
goi !i !na !ai_1 !v0 !v1 !v2 = do
let !(TU.Iter ai da) = TU.iter a na
goj !j !nb !bj_1 =
when (j < lenb) $ do
let !(TU.Iter bj db) = TU.iter b nb
cost = if ai == bj then 0 else 1
x <- (+ 1) <$> VUM.unsafeRead v (v1 + j)
y <- (+ 1) <$> VUM.unsafeRead v (v0 + j + 1)
z <- (+ cost) <$> VUM.unsafeRead v (v0 + j)
let g = min x (min y z)
val <- (+ cost) <$> VUM.unsafeRead v (v2 + j - 1)
VUM.unsafeWrite v (v1 + j + 1) $
if i > 0 && j > 0 && ai == bj_1 && ai_1 == bj && val < g
then val
else g
goj (j + 1) (nb + db) bj
when (i < lena) $ do
VUM.unsafeWrite v v1 (i + 1)
goj 0 0 'a'
goi (i + 1) (na + da) ai v1 v2 v0
gov 0
goi 0 0 'a' 0 v_len (v_len * 2)
ld <- VUM.unsafeRead v (lenb + (lena `mod` 3) * v_len)
return (ld, lenm)
where
lena = T.length a
lenb = T.length b
lenm = max lena lenb
{-# INLINE damerauLevenshtein_ #-}
----------------------------------------------------------------------------
-- Treating inputs like sets
-- | Return the overlap coefficient for two 'Text' values. Returned value is
-- in the range from 0 (no similarity) to 1 (exact match). Return 1 if both
-- 'Text' values are empty.
--
-- See also: <https://en.wikipedia.org/wiki/Overlap_coefficient>.
--
-- @since 0.3.0
overlap :: Text -> Text -> Ratio Int
overlap a b =
if d == 0
then 1 % 1
else intersectionSize (mkTextMap a) (mkTextMap b) % d
where
d = min (T.length a) (T.length b)
-- | Return the Jaccard similarity coefficient for two 'Text' values.
-- Returned value is in the range from 0 (no similarity) to 1 (exact match).
-- Return 1 if both
--
-- See also: <https://en.wikipedia.org/wiki/Jaccard_index>
--
-- @since 0.3.0
jaccard :: Text -> Text -> Ratio Int
jaccard a b =
if d == 0
then 1 % 1
else intersectionSize ma mb % d
where
ma = mkTextMap a
mb = mkTextMap b
d = unionSize ma mb
-- | Make a map from 'Char' to 'Int' representing how many times the 'Char'
-- appears in the input 'Text'.
mkTextMap :: Text -> Map Char Int
mkTextMap = T.foldl' f M.empty
where
f m ch = M.insertWith (+) ch 1 m
{-# INLINE mkTextMap #-}
-- | Return intersection size between two 'Text'-maps.
intersectionSize :: Map Char Int -> Map Char Int -> Int
intersectionSize a b = M.foldl' (+) 0 (M.intersectionWith min a b)
{-# INLINE intersectionSize #-}
-- | Return union size between two 'Text'-maps.
unionSize :: Map Char Int -> Map Char Int -> Int
unionSize a b = M.foldl' (+) 0 (M.unionWith max a b)
{-# INLINE unionSize #-}
----------------------------------------------------------------------------
-- Other
-- | /O(n)/ Return the Hamming distance between two 'Text' values. Hamming
-- distance is defined as the number of positions at which the corresponding
-- symbols are different. The input 'Text' values should be of equal length
-- or 'Nothing' will be returned.
--
-- See also: <https://en.wikipedia.org/wiki/Hamming_distance>.
--
-- __Heads up__, before version /0.3.0/ this function returned @'Maybe'
-- 'Data.Numeric.Natural'@.
hamming :: Text -> Text -> Maybe Int
hamming a@(T.Text _ _ len) b =
if T.length a == T.length b
then Just (go 0 0 0)
else Nothing
where
go !na !nb !r =
let !(TU.Iter cha da) = TU.iter a na
!(TU.Iter chb db) = TU.iter b nb
in if
| na == len -> r
| cha /= chb -> go (na + da) (nb + db) (r + 1)
| otherwise -> go (na + da) (nb + db) r
-- | Return the Jaro distance between two 'Text' values. Returned value is
-- in the range from 0 (no similarity) to 1 (exact match).
--
-- While the algorithm is pretty clear for artificial examples (like those
-- from the linked Wikipedia article), for /arbitrary/ strings, it may be
-- hard to decide which of two strings should be considered as one having
-- “reference” order of characters (order of matching characters in an
-- essential part of the definition of the algorithm). This makes us
-- consider the first string the “reference” string (with correct order of
-- characters). Thus generally,
--
-- > jaro a b ≠ jaro b a
--
-- This asymmetry can be found in all implementations of the algorithm on
-- the internet, AFAIK.
--
-- See also: <https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance>
--
-- @since 0.2.0
--
-- __Heads up__, before version /0.3.0/ this function returned @'Ratio'
-- 'Data.Numeric.Natural'@.
jaro :: Text -> Text -> Ratio Int
jaro a b =
if T.null a || T.null b
then 0 % 1
else runST $ do
let lena = T.length a
lenb = T.length b
d =
if lena >= 2 && lenb >= 2
then max lena lenb `quot` 2 - 1
else 0
v <- VUM.replicate lenb (0 :: Int)
r <- VUM.replicate 3 (0 :: Int) -- tj, m, t
let goi !i !na !fromb = do
let !(TU.Iter ai da) = TU.iter a na
(from, fromb') =
if i >= d
then (i - d, fromb + TU.iter_ b fromb)
else (0, 0)
to = min (i + d + 1) lenb
goj !j !nb =
when (j < to) $ do
let !(TU.Iter bj db) = TU.iter b nb
used <- (== 1) <$> VUM.unsafeRead v j
if not used && ai == bj
then do
tj <- VUM.unsafeRead r 0
if j < tj
then VUM.unsafeModify r (+ 1) 2
else VUM.unsafeWrite r 0 j
VUM.unsafeWrite v j 1
VUM.unsafeModify r (+ 1) 1
else goj (j + 1) (nb + db)
when (i < lena) $ do
goj from fromb
goi (i + 1) (na + da) fromb'
goi 0 0 0
m <- VUM.unsafeRead r 1
t <- VUM.unsafeRead r 2
return $
if m == 0
then 0 % 1
else
( (m % lena)
+ (m % lenb)
+ ((m - t) % m)
)
/ 3
-- | Return the Jaro-Winkler distance between two 'Text' values. Returned
-- value is in range from 0 (no similarity) to 1 (exact match).
--
-- See also: <https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance>
--
-- @since 0.2.0
--
-- __Heads up__, before version /0.3.0/ this function returned @'Ratio'
-- 'Data.Numeric.Natural'@.
jaroWinkler :: Text -> Text -> Ratio Int
jaroWinkler a b = dj + (1 % 10) * l * (1 - dj)
where
dj = inline (jaro a b)
l = fromIntegral (min 4 (commonPrefix a b))
-- | Return the length of the common prefix two 'Text' values have.
commonPrefix :: Text -> Text -> Int
commonPrefix a b = case T.commonPrefixes a b of
Nothing -> 0
Just (pref, _, _) -> T.length pref
{-# INLINE commonPrefix #-}
----------------------------------------------------------------------------
-- Helpers
norm :: (Text -> Text -> (Int, Int)) -> Text -> Text -> Ratio Int
norm f a b =
let (r, l) = f a b
in if r == 0
then 1 % 1
else 1 % 1 - r % l
{-# INLINE norm #-}
|