1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE OverloadedLists #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TemplateHaskell #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
#ifndef MIN_VERSION_GLASGOW_HASKELL
#define MIN_VERSION_GLASGOW_HASKELL(x,y,z,w) ((x*100 + y) >= __GLASGOW_HASKELL__)
#endif
module Main(main) where
import Data.Binary
import Data.Char
import Data.Maybe
import Data.Monoid
import qualified Data.String as D.S
import qualified Data.ByteString as BS
import qualified Data.Text as T
import qualified Data.Text.Encoding as T
import qualified Data.Text.Short as IUT
import qualified Data.Text.Short.Partial as IUT
import Test.Tasty
import Test.Tasty.HUnit
import Test.Tasty.QuickCheck as QC
import Text.Show.Functions ()
fromByteStringRef = either (const Nothing) (Just . IUT.fromText) . T.decodeUtf8'
main :: IO ()
main = defaultMain (adjustOption (QuickCheckTests 50000 `max`) $ tests)
tests :: TestTree
tests = testGroup "Tests" [unitTests,qcProps]
-- ShortText w/ in-bounds index
data STI = STI IUT.ShortText Int
deriving (Eq,Show)
newtype ST = ST IUT.ShortText
deriving (Eq,Show)
instance Arbitrary STI where
arbitrary = do
t <- arbitrary
i <- choose (0, T.length t - 1)
return $! STI (IUT.fromText t) i
instance Arbitrary ST where
arbitrary = fmap (ST . IUT.fromText) arbitrary
shrink (ST st) = map (ST . IUT.fromText) (shrink (IUT.toText st))
qcProps :: TestTree
qcProps = testGroup "Properties"
[ QC.testProperty "length/fromText" $ \t -> IUT.length (IUT.fromText t) == T.length t
, QC.testProperty "length/fromString" $ \s -> IUT.length (IUT.fromString s) == length s
, QC.testProperty "length/append" $ \(ST t1) (ST t2) -> IUT.length t1 + IUT.length t2 == IUT.length (IUT.append t1 t2)
, QC.testProperty "compare" $ \t1 t2 -> IUT.fromText t1 `compare` IUT.fromText t2 == t1 `compare` t2
, QC.testProperty "(==)" $ \t1 t2 -> (IUT.fromText t1 == IUT.fromText t2) == (t1 == t2)
, QC.testProperty "(!?)" $ \t ->
let t' = IUT.fromText t
in and ([ mapMaybe (t' IUT.!?) ([0 .. T.length t -1 ] :: [Int]) == T.unpack t
, mapMaybe (t' IUT.!?) [-5 .. -1] == []
, mapMaybe (t' IUT.!?) [T.length t .. T.length t + 5] == []
] :: [Bool])
, QC.testProperty "indexEndMaybe" $ \t ->
let t' = IUT.fromText t
in and ([ mapMaybe (IUT.indexEndMaybe t') [0 .. T.length t -1 ] == T.unpack (T.reverse t)
, mapMaybe (IUT.indexEndMaybe t') [-5 .. -1] == []
, mapMaybe (IUT.indexEndMaybe t') [T.length t .. T.length t + 5] == []
] :: [Bool])
, QC.testProperty "toText.fromText" $ \t -> (IUT.toText . IUT.fromText) t == t
, QC.testProperty "fromByteString" $ \b -> IUT.fromByteString b == fromByteStringRef b
, QC.testProperty "fromByteString.toByteString" $ \t -> let ts = IUT.fromText t in (IUT.fromByteString . IUT.toByteString) ts == Just ts
, QC.testProperty "toString.fromString" $ \s -> (IUT.toString . IUT.fromString) s == s
, QC.testProperty "isAscii" $ \s -> IUT.isAscii (IUT.fromString s) == all isAscii s
, QC.testProperty "isAscii2" $ \t -> IUT.isAscii (IUT.fromText t) == T.all isAscii t
, QC.testProperty "splitAt" $ \t ->
let t' = IUT.fromText t
mapBoth f (x,y) = (f x, f y)
in and [ mapBoth IUT.toText (IUT.splitAt i t') == T.splitAt i t | i <- [-5 .. 5+T.length t ] ]
, QC.testProperty "intercalate/split" $ \t c ->
let t' = IUT.fromText t
in IUT.intercalate (IUT.singleton c) (IUT.split (== c) t') == t'
, QC.testProperty "intersperse" $ \t c -> IUT.intersperse c (IUT.fromText t) == IUT.fromText (T.intersperse c t)
, QC.testProperty "intercalate" $ \t1 t2 -> IUT.intercalate (IUT.fromText t1) (map IUT.fromText t2) == IUT.fromText (T.intercalate t1 t2)
, QC.testProperty "reverse.singleton" $ \c -> IUT.reverse (IUT.singleton c) == IUT.singleton c
, QC.testProperty "reverse" $ \t -> IUT.reverse (IUT.fromText t) == IUT.fromText (T.reverse t)
, QC.testProperty "filter" $ \p t -> IUT.filter p (IUT.fromText t) == IUT.fromText (T.filter p t)
, QC.testProperty "replicate" $ \n t -> IUT.replicate n (IUT.fromText t) == IUT.fromText (T.replicate n t)
, QC.testProperty "dropAround" $ \p t -> IUT.dropAround p (IUT.fromText t) == IUT.fromText (T.dropAround p t)
, QC.testProperty "foldl" $ \f z t -> IUT.foldl f (z :: Char) (IUT.fromText t) == T.foldl f (z :: Char) t
, QC.testProperty "foldl #2" $ \t -> IUT.foldl (\n _ -> (n+1)) 0 (IUT.fromText t) == T.length t
, QC.testProperty "foldl #3" $ \t -> IUT.foldl (\s c -> c : s) [] (IUT.fromText t) == T.unpack (T.reverse t)
, QC.testProperty "foldl'" $ \f z t -> IUT.foldl' f (z :: Char) (IUT.fromText t) == T.foldl' f (z :: Char) t
, QC.testProperty "foldl' #2" $ \t -> IUT.foldl' (\n _ -> (n+1)) 0 (IUT.fromText t) == T.length t
, QC.testProperty "foldl' #3" $ \t -> IUT.foldl' (\s c -> c : s) [] (IUT.fromText t) == T.unpack (T.reverse t)
, QC.testProperty "foldr" $ \f z t -> IUT.foldr f (z :: Char) (IUT.fromText t) == T.foldr f (z :: Char) t
, QC.testProperty "foldr #2" $ \t -> IUT.foldr (\_ n -> (n+1)) 0 (IUT.fromText t) == T.length t
, QC.testProperty "foldr #3" $ \t -> IUT.foldr (:) [] (IUT.fromText t) == T.unpack t
, QC.testProperty "foldr1" $ \f t -> (not (T.null t)) ==> IUT.foldr1 f (IUT.fromText t) == T.foldr1 f t
, QC.testProperty "foldl1" $ \f t -> (not (T.null t)) ==> IUT.foldl1 f (IUT.fromText t) == T.foldl1 f t
, QC.testProperty "foldl1'" $ \f t -> (not (T.null t)) ==> IUT.foldl1' f (IUT.fromText t) == T.foldl1' f t
, QC.testProperty "splitAtEnd" $ \t ->
let t' = IUT.fromText t
n' = IUT.length t'
in and [ (IUT.splitAt (n'-i) t') == IUT.splitAtEnd i t' | i <- [-5 .. 5+n' ] ]
, QC.testProperty "find" $ \t -> IUT.find Data.Char.isAscii (IUT.fromText t) == T.find Data.Char.isAscii t
, QC.testProperty "findIndex" $ \t -> IUT.findIndex Data.Char.isAscii (IUT.fromText t) == T.findIndex Data.Char.isAscii t
, QC.testProperty "isSuffixOf" $ \t1 t2 -> IUT.fromText t1 `IUT.isSuffixOf` IUT.fromText t2 == t1 `T.isSuffixOf` t2
, QC.testProperty "isPrefixOf" $ \t1 t2 -> IUT.fromText t1 `IUT.isPrefixOf` IUT.fromText t2 == t1 `T.isPrefixOf` t2
, QC.testProperty "stripPrefix" $ \t1 t2 -> IUT.stripPrefix (IUT.fromText t1) (IUT.fromText t2) ==
fmap IUT.fromText (T.stripPrefix t1 t2)
, QC.testProperty "stripSuffix" $ \t1 t2 -> IUT.stripSuffix (IUT.fromText t1) (IUT.fromText t2) ==
fmap IUT.fromText (T.stripSuffix t1 t2)
, QC.testProperty "stripPrefix 2" $ \(STI t i) ->
let (pfx,sfx) = IUT.splitAt i t
in IUT.stripPrefix pfx t == Just sfx
, QC.testProperty "stripSuffix 2" $ \(STI t i) ->
let (pfx,sfx) = IUT.splitAt i t
in IUT.stripSuffix sfx t == Just pfx
, QC.testProperty "cons" $ \c t -> IUT.singleton c <> IUT.fromText t == IUT.cons c (IUT.fromText t)
, QC.testProperty "snoc" $ \c t -> IUT.fromText t <> IUT.singleton c == IUT.snoc (IUT.fromText t) c
, QC.testProperty "uncons" $ \c t -> IUT.uncons (IUT.singleton c <> IUT.fromText t) == Just (c, IUT.fromText t)
, QC.testProperty "unsnoc" $ \c t -> IUT.unsnoc (IUT.fromText t <> IUT.singleton c) == Just (IUT.fromText t, c)
, QC.testProperty "break" $ \t -> let (l,r) = IUT.break Data.Char.isAscii (IUT.fromText t)
in T.break Data.Char.isAscii t == (IUT.toText l,IUT.toText r)
, QC.testProperty "span" $ \t -> let (l,r) = IUT.span Data.Char.isAscii (IUT.fromText t)
in T.span Data.Char.isAscii t == (IUT.toText l,IUT.toText r)
, QC.testProperty "breakEnd" $ \t -> let (l,r) = IUT.breakEnd Data.Char.isAscii (IUT.fromText t)
in t_breakEnd Data.Char.isAscii t == (IUT.toText l,IUT.toText r)
, QC.testProperty "spanEnd" $ \t -> let (l,r) = IUT.spanEnd Data.Char.isAscii (IUT.fromText t)
in t_spanEnd Data.Char.isAscii t == (IUT.toText l,IUT.toText r)
, QC.testProperty "splitAt/isPrefixOf" $ \t ->
let t' = IUT.fromText t
in and [ IUT.isPrefixOf (fst (IUT.splitAt i t')) t' | i <- [-5 .. 5+T.length t ] ]
, QC.testProperty "splitAt/isSuffixOf" $ \t ->
let t' = IUT.fromText t
in and [ IUT.isSuffixOf (snd (IUT.splitAt i t')) t' | i <- [-5 .. 5+T.length t ] ]
]
t_breakEnd p t = t_spanEnd (not . p) t
t_spanEnd p t = (T.dropWhileEnd p t, T.takeWhileEnd p t)
unitTests = testGroup "Unit-tests"
[ testCase "fromText mempty" $ IUT.fromText mempty @?= mempty
, testCase "fromShortByteString [0xc0,0x80]" $ IUT.fromShortByteString "\xc0\x80" @?= Nothing
, testCase "fromByteString [0xc0,0x80]" $ IUT.fromByteString "\xc0\x80" @?= Nothing
, testCase "fromByteString [0xf0,0x90,0x80,0x80]" $ IUT.fromByteString "\xf0\x90\x80\x80" @?= Just "\x10000"
, testCase "fromByteString [0xf4,0x90,0x80,0x80]" $ IUT.fromByteString "\244\144\128\128" @?= Nothing
, testCase "IsString U+D800" $ "\xFFFD" @?= (IUT.fromString "\xD800")
-- , testCase "IsString U+D800" $ (IUT.fromString "\xD800") @?= IUT.fromText ("\xD800" :: T.Text)
#if !(MIN_VERSION_bytestring(0,11,0) && MIN_VERSION_GLASGOW_HASKELL(9,0,1,0) && !MIN_VERSION_GLASGOW_HASKELL(9,0,2,0))
-- https://gitlab.haskell.org/ghc/ghc/-/issues/19976
, testCase "Binary.encode" $ encode ("Hello \8364 & \171581!\NUL" :: IUT.ShortText) @?= "\NUL\NUL\NUL\NUL\NUL\NUL\NUL\DC2Hello \226\130\172 & \240\169\184\189!\NUL"
, testCase "Binary.decode" $ decode ("\NUL\NUL\NUL\NUL\NUL\NUL\NUL\DC2Hello \226\130\172 & \240\169\184\189!\NUL") @?= ("Hello \8364 & \171581!\NUL" :: IUT.ShortText)
#endif
, testCase "singleton" $ [ c | c <- [minBound..maxBound], IUT.singleton c /= IUT.fromText (T.singleton c) ] @?= []
, testCase "splitAtEnd" $ IUT.splitAtEnd 1 "€€" @?= ("€","€")
, testCase "split#1" $ IUT.split (== 'a') "aabbaca" @?= ["", "", "bb", "c", ""]
, testCase "split#2" $ IUT.split (const False) "aabbaca" @?= ["aabbaca"]
, testCase "split#3" $ IUT.split (const True) "abc" @?= ["","","",""]
, testCase "split#4" $ IUT.split (const True) "" @?= [""]
, testCase "literal0" $ IUT.unpack testLit0 @?= []
, testCase "literal1" $ IUT.unpack testLit1 @?= ['€','\0','€','\0']
, testCase "literal2" $ IUT.unpack testLit2 @?= ['\xFFFD','\xD7FF','\xFFFD','\xE000']
, testCase "literal3" $ IUT.unpack testLit3 @?= ['\1'..'\x7f']
, testCase "literal4" $ IUT.unpack testLit4 @?= map toEnum [0,1,126,127,128,129,130,256,2046,2047,2048,2049,2050,65530,65531,65532,65533,65534,65533,65535,65536,65537,65538,1114110,1114111]
, testCase "literal5" $ IUT.unpack testLit5 @?= map toEnum [28961]
, testCase "literal6" $ IUT.unpack testLit6 @?= map toEnum [0]
, testCase "literal7" $ IUT.unpack testLit7 @?= map toEnum [66328]
, testCase "literal8" $ IUT.unpack testLit8 @?= map toEnum [127]
-- list literals
, testCase "literal9" $ [] @?= ("" :: IUT.ShortText)
, testCase "literal10" $ ['¤','€','$'] @?= ("¤€$" :: IUT.ShortText)
, testCase "literal12" $ IUT.unpack ['\xD800','\xD7FF','\xDFFF','\xE000'] @?= ['\xFFFD','\xD7FF','\xFFFD','\xE000']
-- template haskell
, testCase "TH.Lift" $ do
testLit1 @?= $([| testLit1 |])
testLit2 @?= $([| testLit2 |])
testLit3 @?= $([| testLit3 |])
testLit4 @?= $([| testLit4 |])
testLit5 @?= $([| testLit5 |])
testLit6 @?= $([| testLit6 |])
testLit7 @?= $([| testLit7 |])
testLit8 @?= $([| testLit8 |])
, testCase "TTH.Lift" $ do
testLit1 @?= $$([|| testLit1 ||])
testLit2 @?= $$([|| testLit2 ||])
testLit3 @?= $$([|| testLit3 ||])
testLit4 @?= $$([|| testLit4 ||])
testLit5 @?= $$([|| testLit5 ||])
testLit6 @?= $$([|| testLit6 ||])
testLit7 @?= $$([|| testLit7 ||])
testLit8 @?= $$([|| testLit8 ||])
]
-- isScalar :: Char -> Bool
-- isScalar c = c < '\xD800' || c >= '\xE000'
{-# NOINLINE testLit0 #-}
testLit0 :: IUT.ShortText
testLit0 = ""
{-# NOINLINE testLit1 #-}
testLit1 :: IUT.ShortText
testLit1 = "€\NUL€\NUL"
{-# NOINLINE testLit2 #-}
testLit2 :: IUT.ShortText
testLit2 = "\xD800\xD7FF\xDFFF\xE000"
{-# NOINLINE testLit3 #-}
testLit3 :: IUT.ShortText
testLit3 = "\SOH\STX\ETX\EOT\ENQ\ACK\a\b\t\n\v\f\r\SO\SI\DLE\DC1\DC2\DC3\DC4\NAK\SYN\ETB\CAN\EM\SUB\ESC\FS\GS\RS\US !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\DEL"
{-# NOINLINE testLit4 #-}
testLit4 :: IUT.ShortText
testLit4 = "\NUL\SOH~\DEL\128\129\130\256\2046\2047\2048\2049\2050\65530\65531\65532\65533\65534\65533\65535\65536\65537\65538\1114110\1114111"
{-# NOINLINE testLit5 #-}
testLit5 :: IUT.ShortText
testLit5 = "無"
{-# NOINLINE testLit6 #-}
testLit6 :: IUT.ShortText
testLit6 = "\NUL"
{-# NOINLINE testLit7 #-}
testLit7 :: IUT.ShortText
testLit7 = "𐌘"
{-# NOINLINE testLit8 #-}
testLit8 :: IUT.ShortText
testLit8 = "\x7f"
-------------------------------------------------------------------------------
-- orphans
-------------------------------------------------------------------------------
-- orphan instances to not depend on quickcheck-instances
-- which would cause cycles
instance Arbitrary BS.ByteString where
arbitrary = BS.pack `fmap` arbitrary
shrink xs = BS.pack `fmap` shrink (BS.unpack xs)
instance Arbitrary T.Text where
arbitrary = T.pack `fmap` arbitrary
shrink xs = T.pack `fmap` shrink (T.unpack xs)
|