1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
|
{-# LANGUAGE BangPatterns, CPP, MagicHash, Rank2Types, UnboxedTuples #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
#if __GLASGOW_HASKELL__ >= 702
{-# LANGUAGE Trustworthy #-}
#endif
#if __GLASGOW_HASKELL__ >= 708
{-# LANGUAGE TypeFamilies #-}
#endif
-- |
-- Module : Data.Text
-- Copyright : (c) 2009, 2010, 2011, 2012 Bryan O'Sullivan,
-- (c) 2009 Duncan Coutts,
-- (c) 2008, 2009 Tom Harper
--
-- License : BSD-style
-- Maintainer : bos@serpentine.com
-- Stability : experimental
-- Portability : GHC
--
-- A time and space-efficient implementation of Unicode text.
-- Suitable for performance critical use, both in terms of large data
-- quantities and high speed.
--
-- /Note/: Read below the synopsis for important notes on the use of
-- this module.
--
-- This module is intended to be imported @qualified@, to avoid name
-- clashes with "Prelude" functions, e.g.
--
-- > import qualified Data.Text as T
--
-- To use an extended and very rich family of functions for working
-- with Unicode text (including normalization, regular expressions,
-- non-standard encodings, text breaking, and locales), see
-- <http://hackage.haskell.org/package/text-icu the text-icu package >.
module Data.Text
(
-- * Strict vs lazy types
-- $strict
-- * Acceptable data
-- $replacement
-- * Fusion
-- $fusion
-- * Types
Text
-- * Creation and elimination
, pack
, unpack
, singleton
, empty
-- * Basic interface
, cons
, snoc
, append
, uncons
, head
, last
, tail
, init
, null
, length
, compareLength
-- * Transformations
, map
, intercalate
, intersperse
, transpose
, reverse
, replace
-- ** Case conversion
-- $case
, toCaseFold
, toLower
, toUpper
, toTitle
-- ** Justification
, justifyLeft
, justifyRight
, center
-- * Folds
, foldl
, foldl'
, foldl1
, foldl1'
, foldr
, foldr1
-- ** Special folds
, concat
, concatMap
, any
, all
, maximum
, minimum
-- * Construction
-- ** Scans
, scanl
, scanl1
, scanr
, scanr1
-- ** Accumulating maps
, mapAccumL
, mapAccumR
-- ** Generation and unfolding
, replicate
, unfoldr
, unfoldrN
-- * Substrings
-- ** Breaking strings
, take
, takeEnd
, drop
, dropEnd
, takeWhile
, dropWhile
, dropWhileEnd
, dropAround
, strip
, stripStart
, stripEnd
, splitAt
, breakOn
, breakOnEnd
, break
, span
, group
, groupBy
, inits
, tails
-- ** Breaking into many substrings
-- $split
, splitOn
, split
, chunksOf
-- ** Breaking into lines and words
, lines
--, lines'
, words
, unlines
, unwords
-- * Predicates
, isPrefixOf
, isSuffixOf
, isInfixOf
-- ** View patterns
, stripPrefix
, stripSuffix
, commonPrefixes
-- * Searching
, filter
, breakOnAll
, find
, partition
-- , findSubstring
-- * Indexing
-- $index
, index
, findIndex
, count
-- * Zipping
, zip
, zipWith
-- -* Ordered text
-- , sort
-- * Low level operations
, copy
) where
import Prelude (Char, Bool(..), Int, Maybe(..), String,
Eq(..), Ord(..), Ordering(..), (++),
Read(..), Show(..),
(&&), (||), (+), (-), (.), ($), ($!), (>>),
not, return, otherwise, quot)
#if defined(HAVE_DEEPSEQ)
import Control.DeepSeq (NFData(rnf))
#endif
#if defined(ASSERTS)
import Control.Exception (assert)
#endif
import Data.Char (isSpace)
import Data.Data (Data(gfoldl, toConstr, gunfold, dataTypeOf), constrIndex,
Constr, mkConstr, DataType, mkDataType, Fixity(Prefix))
import Control.Monad (foldM)
import Control.Monad.ST (ST)
import qualified Data.Text.Array as A
import qualified Data.List as L
import Data.Monoid (Monoid(..))
import Data.String (IsString(..))
import qualified Data.Text.Internal.Fusion as S
import qualified Data.Text.Internal.Fusion.Common as S
import Data.Text.Internal.Fusion (stream, reverseStream, unstream)
import Data.Text.Internal.Private (span_)
import Data.Text.Internal (Text(..), empty, empty_, firstf, mul, safe, text)
import qualified Prelude as P
import Data.Text.Unsafe (Iter(..), iter, iter_, lengthWord16, reverseIter,
reverseIter_, unsafeHead, unsafeTail)
import Data.Text.Internal.Unsafe.Char (unsafeChr, unsafeWrite)
import qualified Data.Text.Internal.Functions as F
import qualified Data.Text.Internal.Encoding.Utf16 as U16
import Data.Text.Internal.Search (indices)
#if defined(__HADDOCK__)
import Data.ByteString (ByteString)
import qualified Data.Text.Lazy as L
import Data.Int (Int64)
#endif
#if __GLASGOW_HASKELL__ >= 702
import qualified GHC.CString as GHC
#else
import qualified GHC.Base as GHC
#endif
#if __GLASGOW_HASKELL__ >= 708
import qualified GHC.Exts as Exts
#endif
import GHC.Prim (Addr#)
-- $strict
--
-- This package provides both strict and lazy 'Text' types. The
-- strict type is provided by the "Data.Text" module, while the lazy
-- type is provided by the "Data.Text.Lazy" module. Internally, the
-- lazy @Text@ type consists of a list of strict chunks.
--
-- The strict 'Text' type requires that an entire string fit into
-- memory at once. The lazy 'Data.Text.Lazy.Text' type is capable of
-- streaming strings that are larger than memory using a small memory
-- footprint. In many cases, the overhead of chunked streaming makes
-- the lazy 'Data.Text.Lazy.Text' type slower than its strict
-- counterpart, but this is not always the case. Sometimes, the time
-- complexity of a function in one module may be different from the
-- other, due to their differing internal structures.
--
-- Each module provides an almost identical API, with the main
-- difference being that the strict module uses 'Int' values for
-- lengths and counts, while the lazy module uses 'Data.Int.Int64'
-- lengths.
-- $replacement
--
-- A 'Text' value is a sequence of Unicode scalar values, as defined
-- in
-- <http://www.unicode.org/versions/Unicode5.2.0/ch03.pdf#page=35 §3.9, definition D76 of the Unicode 5.2 standard >.
-- As such, a 'Text' cannot contain values in the range U+D800 to
-- U+DFFF inclusive. Haskell implementations admit all Unicode code
-- points
-- (<http://www.unicode.org/versions/Unicode5.2.0/ch03.pdf#page=13 §3.4, definition D10 >)
-- as 'Char' values, including code points from this invalid range.
-- This means that there are some 'Char' values that are not valid
-- Unicode scalar values, and the functions in this module must handle
-- those cases.
--
-- Within this module, many functions construct a 'Text' from one or
-- more 'Char' values. Those functions will substitute 'Char' values
-- that are not valid Unicode scalar values with the replacement
-- character \"�\" (U+FFFD). Functions that perform this
-- inspection and replacement are documented with the phrase
-- \"Performs replacement on invalid scalar values\".
--
-- (One reason for this policy of replacement is that internally, a
-- 'Text' value is represented as packed UTF-16 data. Values in the
-- range U+D800 through U+DFFF are used by UTF-16 to denote surrogate
-- code points, and so cannot be represented. The functions replace
-- invalid scalar values, instead of dropping them, as a security
-- measure. For details, see
-- <http://unicode.org/reports/tr36/#Deletion_of_Noncharacters Unicode Technical Report 36, §3.5 >.)
-- $fusion
--
-- Most of the functions in this module are subject to /fusion/,
-- meaning that a pipeline of such functions will usually allocate at
-- most one 'Text' value.
--
-- As an example, consider the following pipeline:
--
-- > import Data.Text as T
-- > import Data.Text.Encoding as E
-- > import Data.ByteString (ByteString)
-- >
-- > countChars :: ByteString -> Int
-- > countChars = T.length . T.toUpper . E.decodeUtf8
--
-- From the type signatures involved, this looks like it should
-- allocate one 'Data.ByteString.ByteString' value, and two 'Text'
-- values. However, when a module is compiled with optimisation
-- enabled under GHC, the two intermediate 'Text' values will be
-- optimised away, and the function will be compiled down to a single
-- loop over the source 'Data.ByteString.ByteString'.
--
-- Functions that can be fused by the compiler are documented with the
-- phrase \"Subject to fusion\".
instance Eq Text where
Text arrA offA lenA == Text arrB offB lenB
| lenA == lenB = A.equal arrA offA arrB offB lenA
| otherwise = False
{-# INLINE (==) #-}
instance Ord Text where
compare = compareText
instance Show Text where
showsPrec p ps r = showsPrec p (unpack ps) r
instance Read Text where
readsPrec p str = [(pack x,y) | (x,y) <- readsPrec p str]
instance Monoid Text where
mempty = empty
mappend = append
mconcat = concat
instance IsString Text where
fromString = pack
#if __GLASGOW_HASKELL__ >= 708
instance Exts.IsList Text where
type Item Text = Char
fromList = pack
toList = unpack
#endif
#if defined(HAVE_DEEPSEQ)
instance NFData Text where rnf !_ = ()
#endif
-- | This instance preserves data abstraction at the cost of inefficiency.
-- We omit reflection services for the sake of data abstraction.
--
-- This instance was created by copying the updated behavior of
-- @"Data.Set".@'Data.Set.Set' and @"Data.Map".@'Data.Map.Map'. If you
-- feel a mistake has been made, please feel free to submit
-- improvements.
--
-- The original discussion is archived here:
-- <http://groups.google.com/group/haskell-cafe/browse_thread/thread/b5bbb1b28a7e525d/0639d46852575b93 could we get a Data instance for Data.Text.Text? >
--
-- The followup discussion that changed the behavior of 'Data.Set.Set'
-- and 'Data.Map.Map' is archived here:
-- <http://markmail.org/message/trovdc6zkphyi3cr#query:+page:1+mid:a46der3iacwjcf6n+state:results Proposal: Allow gunfold for Data.Map, ... >
instance Data Text where
gfoldl f z txt = z pack `f` (unpack txt)
toConstr _ = packConstr
gunfold k z c = case constrIndex c of
1 -> k (z pack)
_ -> P.error "gunfold"
dataTypeOf _ = textDataType
packConstr :: Constr
packConstr = mkConstr textDataType "pack" [] Prefix
textDataType :: DataType
textDataType = mkDataType "Data.Text.Text" [packConstr]
-- | /O(n)/ Compare two 'Text' values lexicographically.
compareText :: Text -> Text -> Ordering
compareText ta@(Text _arrA _offA lenA) tb@(Text _arrB _offB lenB)
| lenA == 0 && lenB == 0 = EQ
| otherwise = go 0 0
where
go !i !j
| i >= lenA || j >= lenB = compare lenA lenB
| a < b = LT
| a > b = GT
| otherwise = go (i+di) (j+dj)
where Iter a di = iter ta i
Iter b dj = iter tb j
-- -----------------------------------------------------------------------------
-- * Conversion to/from 'Text'
-- | /O(n)/ Convert a 'String' into a 'Text'. Subject to
-- fusion. Performs replacement on invalid scalar values.
pack :: String -> Text
pack = unstream . S.map safe . S.streamList
{-# INLINE [1] pack #-}
-- | /O(n)/ Convert a 'Text' into a 'String'. Subject to fusion.
unpack :: Text -> String
unpack = S.unstreamList . stream
{-# INLINE [1] unpack #-}
-- | /O(n)/ Convert a literal string into a Text. Subject to fusion.
unpackCString# :: Addr# -> Text
unpackCString# addr# = unstream (S.streamCString# addr#)
{-# NOINLINE unpackCString# #-}
{-# RULES "TEXT literal" forall a.
unstream (S.map safe (S.streamList (GHC.unpackCString# a)))
= unpackCString# a #-}
{-# RULES "TEXT literal UTF8" forall a.
unstream (S.map safe (S.streamList (GHC.unpackCStringUtf8# a)))
= unpackCString# a #-}
{-# RULES "TEXT empty literal"
unstream (S.map safe (S.streamList []))
= empty_ #-}
{-# RULES "TEXT singleton literal" forall a.
unstream (S.map safe (S.streamList [a]))
= singleton_ a #-}
-- | /O(1)/ Convert a character into a Text. Subject to fusion.
-- Performs replacement on invalid scalar values.
singleton :: Char -> Text
singleton = unstream . S.singleton . safe
{-# INLINE [1] singleton #-}
{-# RULES "TEXT singleton" forall a.
unstream (S.singleton (safe a))
= singleton_ a #-}
-- This is intended to reduce inlining bloat.
singleton_ :: Char -> Text
singleton_ c = Text (A.run x) 0 len
where x :: ST s (A.MArray s)
x = do arr <- A.new len
_ <- unsafeWrite arr 0 d
return arr
len | d < '\x10000' = 1
| otherwise = 2
d = safe c
{-# NOINLINE singleton_ #-}
-- -----------------------------------------------------------------------------
-- * Basic functions
-- | /O(n)/ Adds a character to the front of a 'Text'. This function
-- is more costly than its 'List' counterpart because it requires
-- copying a new array. Subject to fusion. Performs replacement on
-- invalid scalar values.
cons :: Char -> Text -> Text
cons c t = unstream (S.cons (safe c) (stream t))
{-# INLINE cons #-}
infixr 5 `cons`
-- | /O(n)/ Adds a character to the end of a 'Text'. This copies the
-- entire array in the process, unless fused. Subject to fusion.
-- Performs replacement on invalid scalar values.
snoc :: Text -> Char -> Text
snoc t c = unstream (S.snoc (stream t) (safe c))
{-# INLINE snoc #-}
-- | /O(n)/ Appends one 'Text' to the other by copying both of them
-- into a new 'Text'. Subject to fusion.
append :: Text -> Text -> Text
append a@(Text arr1 off1 len1) b@(Text arr2 off2 len2)
| len1 == 0 = b
| len2 == 0 = a
| len > 0 = Text (A.run x) 0 len
| otherwise = overflowError "append"
where
len = len1+len2
x :: ST s (A.MArray s)
x = do
arr <- A.new len
A.copyI arr 0 arr1 off1 len1
A.copyI arr len1 arr2 off2 len
return arr
{-# NOINLINE append #-}
{-# RULES
"TEXT append -> fused" [~1] forall t1 t2.
append t1 t2 = unstream (S.append (stream t1) (stream t2))
"TEXT append -> unfused" [1] forall t1 t2.
unstream (S.append (stream t1) (stream t2)) = append t1 t2
#-}
-- | /O(1)/ Returns the first character of a 'Text', which must be
-- non-empty. Subject to fusion.
head :: Text -> Char
head t = S.head (stream t)
{-# INLINE head #-}
-- | /O(1)/ Returns the first character and rest of a 'Text', or
-- 'Nothing' if empty. Subject to fusion.
uncons :: Text -> Maybe (Char, Text)
uncons t@(Text arr off len)
| len <= 0 = Nothing
| otherwise = Just (c, text arr (off+d) (len-d))
where Iter c d = iter t 0
{-# INLINE [1] uncons #-}
-- | Lifted from Control.Arrow and specialized.
second :: (b -> c) -> (a,b) -> (a,c)
second f (a, b) = (a, f b)
-- | /O(1)/ Returns the last character of a 'Text', which must be
-- non-empty. Subject to fusion.
last :: Text -> Char
last (Text arr off len)
| len <= 0 = emptyError "last"
| n < 0xDC00 || n > 0xDFFF = unsafeChr n
| otherwise = U16.chr2 n0 n
where n = A.unsafeIndex arr (off+len-1)
n0 = A.unsafeIndex arr (off+len-2)
{-# INLINE [1] last #-}
{-# RULES
"TEXT last -> fused" [~1] forall t.
last t = S.last (stream t)
"TEXT last -> unfused" [1] forall t.
S.last (stream t) = last t
#-}
-- | /O(1)/ Returns all characters after the head of a 'Text', which
-- must be non-empty. Subject to fusion.
tail :: Text -> Text
tail t@(Text arr off len)
| len <= 0 = emptyError "tail"
| otherwise = text arr (off+d) (len-d)
where d = iter_ t 0
{-# INLINE [1] tail #-}
{-# RULES
"TEXT tail -> fused" [~1] forall t.
tail t = unstream (S.tail (stream t))
"TEXT tail -> unfused" [1] forall t.
unstream (S.tail (stream t)) = tail t
#-}
-- | /O(1)/ Returns all but the last character of a 'Text', which must
-- be non-empty. Subject to fusion.
init :: Text -> Text
init (Text arr off len) | len <= 0 = emptyError "init"
| n >= 0xDC00 && n <= 0xDFFF = text arr off (len-2)
| otherwise = text arr off (len-1)
where
n = A.unsafeIndex arr (off+len-1)
{-# INLINE [1] init #-}
{-# RULES
"TEXT init -> fused" [~1] forall t.
init t = unstream (S.init (stream t))
"TEXT init -> unfused" [1] forall t.
unstream (S.init (stream t)) = init t
#-}
-- | /O(1)/ Tests whether a 'Text' is empty or not. Subject to
-- fusion.
null :: Text -> Bool
null (Text _arr _off len) =
#if defined(ASSERTS)
assert (len >= 0) $
#endif
len <= 0
{-# INLINE [1] null #-}
{-# RULES
"TEXT null -> fused" [~1] forall t.
null t = S.null (stream t)
"TEXT null -> unfused" [1] forall t.
S.null (stream t) = null t
#-}
-- | /O(1)/ Tests whether a 'Text' contains exactly one character.
-- Subject to fusion.
isSingleton :: Text -> Bool
isSingleton = S.isSingleton . stream
{-# INLINE isSingleton #-}
-- | /O(n)/ Returns the number of characters in a 'Text'.
-- Subject to fusion.
length :: Text -> Int
length t = S.length (stream t)
{-# INLINE length #-}
-- | /O(n)/ Compare the count of characters in a 'Text' to a number.
-- Subject to fusion.
--
-- This function gives the same answer as comparing against the result
-- of 'length', but can short circuit if the count of characters is
-- greater than the number, and hence be more efficient.
compareLength :: Text -> Int -> Ordering
compareLength t n = S.compareLengthI (stream t) n
{-# INLINE [1] compareLength #-}
{-# RULES
"TEXT compareN/length -> compareLength" [~1] forall t n.
compare (length t) n = compareLength t n
#-}
{-# RULES
"TEXT ==N/length -> compareLength/==EQ" [~1] forall t n.
(==) (length t) n = compareLength t n == EQ
#-}
{-# RULES
"TEXT /=N/length -> compareLength//=EQ" [~1] forall t n.
(/=) (length t) n = compareLength t n /= EQ
#-}
{-# RULES
"TEXT <N/length -> compareLength/==LT" [~1] forall t n.
(<) (length t) n = compareLength t n == LT
#-}
{-# RULES
"TEXT <=N/length -> compareLength//=GT" [~1] forall t n.
(<=) (length t) n = compareLength t n /= GT
#-}
{-# RULES
"TEXT >N/length -> compareLength/==GT" [~1] forall t n.
(>) (length t) n = compareLength t n == GT
#-}
{-# RULES
"TEXT >=N/length -> compareLength//=LT" [~1] forall t n.
(>=) (length t) n = compareLength t n /= LT
#-}
-- -----------------------------------------------------------------------------
-- * Transformations
-- | /O(n)/ 'map' @f@ @t@ is the 'Text' obtained by applying @f@ to
-- each element of @t@. Subject to fusion. Performs replacement on
-- invalid scalar values.
map :: (Char -> Char) -> Text -> Text
map f t = unstream (S.map (safe . f) (stream t))
{-# INLINE [1] map #-}
-- | /O(n)/ The 'intercalate' function takes a 'Text' and a list of
-- 'Text's and concatenates the list after interspersing the first
-- argument between each element of the list.
intercalate :: Text -> [Text] -> Text
intercalate t = concat . (F.intersperse t)
{-# INLINE intercalate #-}
-- | /O(n)/ The 'intersperse' function takes a character and places it
-- between the characters of a 'Text'. Subject to fusion. Performs
-- replacement on invalid scalar values.
intersperse :: Char -> Text -> Text
intersperse c t = unstream (S.intersperse (safe c) (stream t))
{-# INLINE intersperse #-}
-- | /O(n)/ Reverse the characters of a string. Subject to fusion.
reverse :: Text -> Text
reverse t = S.reverse (stream t)
{-# INLINE reverse #-}
-- | /O(m+n)/ Replace every non-overlapping occurrence of @needle@ in
-- @haystack@ with @replacement@.
--
-- This function behaves as though it was defined as follows:
--
-- @
-- replace needle replacement haystack =
-- 'intercalate' replacement ('splitOn' needle haystack)
-- @
--
-- As this suggests, each occurrence is replaced exactly once. So if
-- @needle@ occurs in @replacement@, that occurrence will /not/ itself
-- be replaced recursively:
--
-- > replace "oo" "foo" "oo" == "foo"
--
-- In cases where several instances of @needle@ overlap, only the
-- first one will be replaced:
--
-- > replace "ofo" "bar" "ofofo" == "barfo"
--
-- In (unlikely) bad cases, this function's time complexity degrades
-- towards /O(n*m)/.
replace :: Text
-- ^ @needle@ to search for. If this string is empty, an
-- error will occur.
-> Text
-- ^ @replacement@ to replace @needle@ with.
-> Text
-- ^ @haystack@ in which to search.
-> Text
replace needle@(Text _ _ neeLen)
(Text repArr repOff repLen)
haystack@(Text hayArr hayOff hayLen)
| neeLen == 0 = emptyError "replace"
| L.null ixs = haystack
| len > 0 = Text (A.run x) 0 len
| otherwise = empty
where
ixs = indices needle haystack
len = hayLen - (neeLen - repLen) `mul` L.length ixs
x :: ST s (A.MArray s)
x = do
marr <- A.new len
let loop (i:is) o d = do
let d0 = d + i - o
d1 = d0 + repLen
A.copyI marr d hayArr (hayOff+o) d0
A.copyI marr d0 repArr repOff d1
loop is (i + neeLen) d1
loop [] o d = A.copyI marr d hayArr (hayOff+o) len
loop ixs 0 0
return marr
-- ----------------------------------------------------------------------------
-- ** Case conversions (folds)
-- $case
--
-- When case converting 'Text' values, do not use combinators like
-- @map toUpper@ to case convert each character of a string
-- individually, as this gives incorrect results according to the
-- rules of some writing systems. The whole-string case conversion
-- functions from this module, such as @toUpper@, obey the correct
-- case conversion rules. As a result, these functions may map one
-- input character to two or three output characters. For examples,
-- see the documentation of each function.
--
-- /Note/: In some languages, case conversion is a locale- and
-- context-dependent operation. The case conversion functions in this
-- module are /not/ locale sensitive. Programs that require locale
-- sensitivity should use appropriate versions of the
-- <http://hackage.haskell.org/package/text-icu-0.6.3.7/docs/Data-Text-ICU.html#g:4 case mapping functions from the text-icu package >.
-- | /O(n)/ Convert a string to folded case. Subject to fusion.
--
-- This function is mainly useful for performing caseless (also known
-- as case insensitive) string comparisons.
--
-- A string @x@ is a caseless match for a string @y@ if and only if:
--
-- @toCaseFold x == toCaseFold y@
--
-- The result string may be longer than the input string, and may
-- differ from applying 'toLower' to the input string. For instance,
-- the Armenian small ligature \"ﬓ\" (men now, U+FB13) is case
-- folded to the sequence \"մ\" (men, U+0574) followed by
-- \"ն\" (now, U+0576), while the Greek \"µ\" (micro sign,
-- U+00B5) is case folded to \"μ\" (small letter mu, U+03BC)
-- instead of itself.
toCaseFold :: Text -> Text
toCaseFold t = unstream (S.toCaseFold (stream t))
{-# INLINE toCaseFold #-}
-- | /O(n)/ Convert a string to lower case, using simple case
-- conversion. Subject to fusion.
--
-- The result string may be longer than the input string. For
-- instance, \"İ\" (Latin capital letter I with dot above,
-- U+0130) maps to the sequence \"i\" (Latin small letter i, U+0069)
-- followed by \" ̇\" (combining dot above, U+0307).
toLower :: Text -> Text
toLower t = unstream (S.toLower (stream t))
{-# INLINE toLower #-}
-- | /O(n)/ Convert a string to upper case, using simple case
-- conversion. Subject to fusion.
--
-- The result string may be longer than the input string. For
-- instance, the German \"ß\" (eszett, U+00DF) maps to the
-- two-letter sequence \"SS\".
toUpper :: Text -> Text
toUpper t = unstream (S.toUpper (stream t))
{-# INLINE toUpper #-}
-- | /O(n)/ Convert a string to title case, using simple case
-- conversion. Subject to fusion.
--
-- The first letter of the input is converted to title case, as is
-- every subsequent letter that immediately follows a non-letter.
-- Every letter that immediately follows another letter is converted
-- to lower case.
--
-- The result string may be longer than the input string. For example,
-- the Latin small ligature fl (U+FB02) is converted to the
-- sequence Latin capital letter F (U+0046) followed by Latin small
-- letter l (U+006C).
--
-- /Note/: this function does not take language or culture specific
-- rules into account. For instance, in English, different style
-- guides disagree on whether the book name \"The Hill of the Red
-- Fox\" is correctly title cased—but this function will
-- capitalize /every/ word.
toTitle :: Text -> Text
toTitle t = unstream (S.toTitle (stream t))
{-# INLINE toTitle #-}
-- | /O(n)/ Left-justify a string to the given length, using the
-- specified fill character on the right. Subject to fusion.
-- Performs replacement on invalid scalar values.
--
-- Examples:
--
-- > justifyLeft 7 'x' "foo" == "fooxxxx"
-- > justifyLeft 3 'x' "foobar" == "foobar"
justifyLeft :: Int -> Char -> Text -> Text
justifyLeft k c t
| len >= k = t
| otherwise = t `append` replicateChar (k-len) c
where len = length t
{-# INLINE [1] justifyLeft #-}
{-# RULES
"TEXT justifyLeft -> fused" [~1] forall k c t.
justifyLeft k c t = unstream (S.justifyLeftI k c (stream t))
"TEXT justifyLeft -> unfused" [1] forall k c t.
unstream (S.justifyLeftI k c (stream t)) = justifyLeft k c t
#-}
-- | /O(n)/ Right-justify a string to the given length, using the
-- specified fill character on the left. Performs replacement on
-- invalid scalar values.
--
-- Examples:
--
-- > justifyRight 7 'x' "bar" == "xxxxbar"
-- > justifyRight 3 'x' "foobar" == "foobar"
justifyRight :: Int -> Char -> Text -> Text
justifyRight k c t
| len >= k = t
| otherwise = replicateChar (k-len) c `append` t
where len = length t
{-# INLINE justifyRight #-}
-- | /O(n)/ Center a string to the given length, using the specified
-- fill character on either side. Performs replacement on invalid
-- scalar values.
--
-- Examples:
--
-- > center 8 'x' "HS" = "xxxHSxxx"
center :: Int -> Char -> Text -> Text
center k c t
| len >= k = t
| otherwise = replicateChar l c `append` t `append` replicateChar r c
where len = length t
d = k - len
r = d `quot` 2
l = d - r
{-# INLINE center #-}
-- | /O(n)/ The 'transpose' function transposes the rows and columns
-- of its 'Text' argument. Note that this function uses 'pack',
-- 'unpack', and the list version of transpose, and is thus not very
-- efficient.
transpose :: [Text] -> [Text]
transpose ts = P.map pack (L.transpose (P.map unpack ts))
-- -----------------------------------------------------------------------------
-- * Reducing 'Text's (folds)
-- | /O(n)/ 'foldl', applied to a binary operator, a starting value
-- (typically the left-identity of the operator), and a 'Text',
-- reduces the 'Text' using the binary operator, from left to right.
-- Subject to fusion.
foldl :: (a -> Char -> a) -> a -> Text -> a
foldl f z t = S.foldl f z (stream t)
{-# INLINE foldl #-}
-- | /O(n)/ A strict version of 'foldl'. Subject to fusion.
foldl' :: (a -> Char -> a) -> a -> Text -> a
foldl' f z t = S.foldl' f z (stream t)
{-# INLINE foldl' #-}
-- | /O(n)/ A variant of 'foldl' that has no starting value argument,
-- and thus must be applied to a non-empty 'Text'. Subject to fusion.
foldl1 :: (Char -> Char -> Char) -> Text -> Char
foldl1 f t = S.foldl1 f (stream t)
{-# INLINE foldl1 #-}
-- | /O(n)/ A strict version of 'foldl1'. Subject to fusion.
foldl1' :: (Char -> Char -> Char) -> Text -> Char
foldl1' f t = S.foldl1' f (stream t)
{-# INLINE foldl1' #-}
-- | /O(n)/ 'foldr', applied to a binary operator, a starting value
-- (typically the right-identity of the operator), and a 'Text',
-- reduces the 'Text' using the binary operator, from right to left.
-- Subject to fusion.
foldr :: (Char -> a -> a) -> a -> Text -> a
foldr f z t = S.foldr f z (stream t)
{-# INLINE foldr #-}
-- | /O(n)/ A variant of 'foldr' that has no starting value argument,
-- and thus must be applied to a non-empty 'Text'. Subject to
-- fusion.
foldr1 :: (Char -> Char -> Char) -> Text -> Char
foldr1 f t = S.foldr1 f (stream t)
{-# INLINE foldr1 #-}
-- -----------------------------------------------------------------------------
-- ** Special folds
-- | /O(n)/ Concatenate a list of 'Text's.
concat :: [Text] -> Text
concat ts = case ts' of
[] -> empty
[t] -> t
_ -> Text (A.run go) 0 len
where
ts' = L.filter (not . null) ts
len = sumP "concat" $ L.map lengthWord16 ts'
go :: ST s (A.MArray s)
go = do
arr <- A.new len
let step i (Text a o l) =
let !j = i + l in A.copyI arr i a o j >> return j
foldM step 0 ts' >> return arr
-- | /O(n)/ Map a function over a 'Text' that results in a 'Text', and
-- concatenate the results.
concatMap :: (Char -> Text) -> Text -> Text
concatMap f = concat . foldr ((:) . f) []
{-# INLINE concatMap #-}
-- | /O(n)/ 'any' @p@ @t@ determines whether any character in the
-- 'Text' @t@ satisifes the predicate @p@. Subject to fusion.
any :: (Char -> Bool) -> Text -> Bool
any p t = S.any p (stream t)
{-# INLINE any #-}
-- | /O(n)/ 'all' @p@ @t@ determines whether all characters in the
-- 'Text' @t@ satisify the predicate @p@. Subject to fusion.
all :: (Char -> Bool) -> Text -> Bool
all p t = S.all p (stream t)
{-# INLINE all #-}
-- | /O(n)/ 'maximum' returns the maximum value from a 'Text', which
-- must be non-empty. Subject to fusion.
maximum :: Text -> Char
maximum t = S.maximum (stream t)
{-# INLINE maximum #-}
-- | /O(n)/ 'minimum' returns the minimum value from a 'Text', which
-- must be non-empty. Subject to fusion.
minimum :: Text -> Char
minimum t = S.minimum (stream t)
{-# INLINE minimum #-}
-- -----------------------------------------------------------------------------
-- * Building 'Text's
-- | /O(n)/ 'scanl' is similar to 'foldl', but returns a list of
-- successive reduced values from the left. Subject to fusion.
-- Performs replacement on invalid scalar values.
--
-- > scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...]
--
-- Note that
--
-- > last (scanl f z xs) == foldl f z xs.
scanl :: (Char -> Char -> Char) -> Char -> Text -> Text
scanl f z t = unstream (S.scanl g z (stream t))
where g a b = safe (f a b)
{-# INLINE scanl #-}
-- | /O(n)/ 'scanl1' is a variant of 'scanl' that has no starting
-- value argument. Subject to fusion. Performs replacement on
-- invalid scalar values.
--
-- > scanl1 f [x1, x2, ...] == [x1, x1 `f` x2, ...]
scanl1 :: (Char -> Char -> Char) -> Text -> Text
scanl1 f t | null t = empty
| otherwise = scanl f (unsafeHead t) (unsafeTail t)
{-# INLINE scanl1 #-}
-- | /O(n)/ 'scanr' is the right-to-left dual of 'scanl'. Performs
-- replacement on invalid scalar values.
--
-- > scanr f v == reverse . scanl (flip f) v . reverse
scanr :: (Char -> Char -> Char) -> Char -> Text -> Text
scanr f z = S.reverse . S.reverseScanr g z . reverseStream
where g a b = safe (f a b)
{-# INLINE scanr #-}
-- | /O(n)/ 'scanr1' is a variant of 'scanr' that has no starting
-- value argument. Subject to fusion. Performs replacement on
-- invalid scalar values.
scanr1 :: (Char -> Char -> Char) -> Text -> Text
scanr1 f t | null t = empty
| otherwise = scanr f (last t) (init t)
{-# INLINE scanr1 #-}
-- | /O(n)/ Like a combination of 'map' and 'foldl''. Applies a
-- function to each element of a 'Text', passing an accumulating
-- parameter from left to right, and returns a final 'Text'. Performs
-- replacement on invalid scalar values.
mapAccumL :: (a -> Char -> (a,Char)) -> a -> Text -> (a, Text)
mapAccumL f z0 = S.mapAccumL g z0 . stream
where g a b = second safe (f a b)
{-# INLINE mapAccumL #-}
-- | The 'mapAccumR' function behaves like a combination of 'map' and
-- a strict 'foldr'; it applies a function to each element of a
-- 'Text', passing an accumulating parameter from right to left, and
-- returning a final value of this accumulator together with the new
-- 'Text'.
-- Performs replacement on invalid scalar values.
mapAccumR :: (a -> Char -> (a,Char)) -> a -> Text -> (a, Text)
mapAccumR f z0 = second reverse . S.mapAccumL g z0 . reverseStream
where g a b = second safe (f a b)
{-# INLINE mapAccumR #-}
-- -----------------------------------------------------------------------------
-- ** Generating and unfolding 'Text's
-- | /O(n*m)/ 'replicate' @n@ @t@ is a 'Text' consisting of the input
-- @t@ repeated @n@ times.
replicate :: Int -> Text -> Text
replicate n t@(Text a o l)
| n <= 0 || l <= 0 = empty
| n == 1 = t
| isSingleton t = replicateChar n (unsafeHead t)
| otherwise = Text (A.run x) 0 len
where
len = l `mul` n
x :: ST s (A.MArray s)
x = do
arr <- A.new len
let loop !d !i | i >= n = return arr
| otherwise = let m = d + l
in A.copyI arr d a o m >> loop m (i+1)
loop 0 0
{-# INLINE [1] replicate #-}
{-# RULES
"TEXT replicate/singleton -> replicateChar" [~1] forall n c.
replicate n (singleton c) = replicateChar n c
#-}
-- | /O(n)/ 'replicateChar' @n@ @c@ is a 'Text' of length @n@ with @c@ the
-- value of every element. Subject to fusion.
replicateChar :: Int -> Char -> Text
replicateChar n c = unstream (S.replicateCharI n (safe c))
{-# INLINE replicateChar #-}
-- | /O(n)/, where @n@ is the length of the result. The 'unfoldr'
-- function is analogous to the List 'L.unfoldr'. 'unfoldr' builds a
-- 'Text' from a seed value. The function takes the element and
-- returns 'Nothing' if it is done producing the 'Text', otherwise
-- 'Just' @(a,b)@. In this case, @a@ is the next 'Char' in the
-- string, and @b@ is the seed value for further production. Subject
-- to fusion. Performs replacement on invalid scalar values.
unfoldr :: (a -> Maybe (Char,a)) -> a -> Text
unfoldr f s = unstream (S.unfoldr (firstf safe . f) s)
{-# INLINE unfoldr #-}
-- | /O(n)/ Like 'unfoldr', 'unfoldrN' builds a 'Text' from a seed
-- value. However, the length of the result should be limited by the
-- first argument to 'unfoldrN'. This function is more efficient than
-- 'unfoldr' when the maximum length of the result is known and
-- correct, otherwise its performance is similar to 'unfoldr'. Subject
-- to fusion. Performs replacement on invalid scalar values.
unfoldrN :: Int -> (a -> Maybe (Char,a)) -> a -> Text
unfoldrN n f s = unstream (S.unfoldrN n (firstf safe . f) s)
{-# INLINE unfoldrN #-}
-- -----------------------------------------------------------------------------
-- * Substrings
-- | /O(n)/ 'take' @n@, applied to a 'Text', returns the prefix of the
-- 'Text' of length @n@, or the 'Text' itself if @n@ is greater than
-- the length of the Text. Subject to fusion.
take :: Int -> Text -> Text
take n t@(Text arr off len)
| n <= 0 = empty
| n >= len = t
| otherwise = text arr off (iterN n t)
{-# INLINE [1] take #-}
iterN :: Int -> Text -> Int
iterN n t@(Text _arr _off len) = loop 0 0
where loop !i !cnt
| i >= len || cnt >= n = i
| otherwise = loop (i+d) (cnt+1)
where d = iter_ t i
{-# RULES
"TEXT take -> fused" [~1] forall n t.
take n t = unstream (S.take n (stream t))
"TEXT take -> unfused" [1] forall n t.
unstream (S.take n (stream t)) = take n t
#-}
-- | /O(n)/ 'takeEnd' @n@ @t@ returns the suffix remaining after
-- taking @n@ characters from the end of @t@.
--
-- Examples:
--
-- > takeEnd 3 "foobar" == "bar"
takeEnd :: Int -> Text -> Text
takeEnd n t@(Text arr off len)
| n <= 0 = empty
| n >= len = t
| otherwise = text arr (off+i) (len-i)
where i = iterNEnd n t
iterNEnd :: Int -> Text -> Int
iterNEnd n t@(Text _arr _off len) = loop (len-1) n
where loop i !m
| i <= 0 = 0
| m <= 1 = i
| otherwise = loop (i+d) (m-1)
where d = reverseIter_ t i
-- | /O(n)/ 'drop' @n@, applied to a 'Text', returns the suffix of the
-- 'Text' after the first @n@ characters, or the empty 'Text' if @n@
-- is greater than the length of the 'Text'. Subject to fusion.
drop :: Int -> Text -> Text
drop n t@(Text arr off len)
| n <= 0 = t
| n >= len = empty
| otherwise = text arr (off+i) (len-i)
where i = iterN n t
{-# INLINE [1] drop #-}
{-# RULES
"TEXT drop -> fused" [~1] forall n t.
drop n t = unstream (S.drop n (stream t))
"TEXT drop -> unfused" [1] forall n t.
unstream (S.drop n (stream t)) = drop n t
#-}
-- | /O(n)/ 'dropEnd' @n@ @t@ returns the prefix remaining after
-- dropping @n@ characters from the end of @t@.
--
-- Examples:
--
-- > dropEnd 3 "foobar" == "foo"
dropEnd :: Int -> Text -> Text
dropEnd n t@(Text arr off len)
| n <= 0 = t
| n >= len = empty
| otherwise = text arr off (iterNEnd n t)
-- | /O(n)/ 'takeWhile', applied to a predicate @p@ and a 'Text',
-- returns the longest prefix (possibly empty) of elements that
-- satisfy @p@. Subject to fusion.
takeWhile :: (Char -> Bool) -> Text -> Text
takeWhile p t@(Text arr off len) = loop 0
where loop !i | i >= len = t
| p c = loop (i+d)
| otherwise = text arr off i
where Iter c d = iter t i
{-# INLINE [1] takeWhile #-}
{-# RULES
"TEXT takeWhile -> fused" [~1] forall p t.
takeWhile p t = unstream (S.takeWhile p (stream t))
"TEXT takeWhile -> unfused" [1] forall p t.
unstream (S.takeWhile p (stream t)) = takeWhile p t
#-}
-- | /O(n)/ 'dropWhile' @p@ @t@ returns the suffix remaining after
-- 'takeWhile' @p@ @t@. Subject to fusion.
dropWhile :: (Char -> Bool) -> Text -> Text
dropWhile p t@(Text arr off len) = loop 0 0
where loop !i !l | l >= len = empty
| p c = loop (i+d) (l+d)
| otherwise = Text arr (off+i) (len-l)
where Iter c d = iter t i
{-# INLINE [1] dropWhile #-}
{-# RULES
"TEXT dropWhile -> fused" [~1] forall p t.
dropWhile p t = unstream (S.dropWhile p (stream t))
"TEXT dropWhile -> unfused" [1] forall p t.
unstream (S.dropWhile p (stream t)) = dropWhile p t
#-}
-- | /O(n)/ 'dropWhileEnd' @p@ @t@ returns the prefix remaining after
-- dropping characters that fail the predicate @p@ from the end of
-- @t@. Subject to fusion.
-- Examples:
--
-- > dropWhileEnd (=='.') "foo..." == "foo"
dropWhileEnd :: (Char -> Bool) -> Text -> Text
dropWhileEnd p t@(Text arr off len) = loop (len-1) len
where loop !i !l | l <= 0 = empty
| p c = loop (i+d) (l+d)
| otherwise = Text arr off l
where (c,d) = reverseIter t i
{-# INLINE [1] dropWhileEnd #-}
{-# RULES
"TEXT dropWhileEnd -> fused" [~1] forall p t.
dropWhileEnd p t = S.reverse (S.dropWhile p (S.reverseStream t))
"TEXT dropWhileEnd -> unfused" [1] forall p t.
S.reverse (S.dropWhile p (S.reverseStream t)) = dropWhileEnd p t
#-}
-- | /O(n)/ 'dropAround' @p@ @t@ returns the substring remaining after
-- dropping characters that fail the predicate @p@ from both the
-- beginning and end of @t@. Subject to fusion.
dropAround :: (Char -> Bool) -> Text -> Text
dropAround p = dropWhile p . dropWhileEnd p
{-# INLINE [1] dropAround #-}
-- | /O(n)/ Remove leading white space from a string. Equivalent to:
--
-- > dropWhile isSpace
stripStart :: Text -> Text
stripStart = dropWhile isSpace
{-# INLINE [1] stripStart #-}
-- | /O(n)/ Remove trailing white space from a string. Equivalent to:
--
-- > dropWhileEnd isSpace
stripEnd :: Text -> Text
stripEnd = dropWhileEnd isSpace
{-# INLINE [1] stripEnd #-}
-- | /O(n)/ Remove leading and trailing white space from a string.
-- Equivalent to:
--
-- > dropAround isSpace
strip :: Text -> Text
strip = dropAround isSpace
{-# INLINE [1] strip #-}
-- | /O(n)/ 'splitAt' @n t@ returns a pair whose first element is a
-- prefix of @t@ of length @n@, and whose second is the remainder of
-- the string. It is equivalent to @('take' n t, 'drop' n t)@.
splitAt :: Int -> Text -> (Text, Text)
splitAt n t@(Text arr off len)
| n <= 0 = (empty, t)
| n >= len = (t, empty)
| otherwise = let k = iterN n t
in (text arr off k, text arr (off+k) (len-k))
-- | /O(n)/ 'span', applied to a predicate @p@ and text @t@, returns
-- a pair whose first element is the longest prefix (possibly empty)
-- of @t@ of elements that satisfy @p@, and whose second is the
-- remainder of the list.
span :: (Char -> Bool) -> Text -> (Text, Text)
span p t = case span_ p t of
(# hd,tl #) -> (hd,tl)
{-# INLINE span #-}
-- | /O(n)/ 'break' is like 'span', but the prefix returned is
-- over elements that fail the predicate @p@.
break :: (Char -> Bool) -> Text -> (Text, Text)
break p = span (not . p)
{-# INLINE break #-}
-- | /O(n)/ Group characters in a string according to a predicate.
groupBy :: (Char -> Char -> Bool) -> Text -> [Text]
groupBy p = loop
where
loop t@(Text arr off len)
| null t = []
| otherwise = text arr off n : loop (text arr (off+n) (len-n))
where Iter c d = iter t 0
n = d + findAIndexOrEnd (not . p c) (Text arr (off+d) (len-d))
-- | Returns the /array/ index (in units of 'Word16') at which a
-- character may be found. This is /not/ the same as the logical
-- index returned by e.g. 'findIndex'.
findAIndexOrEnd :: (Char -> Bool) -> Text -> Int
findAIndexOrEnd q t@(Text _arr _off len) = go 0
where go !i | i >= len || q c = i
| otherwise = go (i+d)
where Iter c d = iter t i
-- | /O(n)/ Group characters in a string by equality.
group :: Text -> [Text]
group = groupBy (==)
-- | /O(n)/ Return all initial segments of the given 'Text', shortest
-- first.
inits :: Text -> [Text]
inits t@(Text arr off len) = loop 0
where loop i | i >= len = [t]
| otherwise = Text arr off i : loop (i + iter_ t i)
-- | /O(n)/ Return all final segments of the given 'Text', longest
-- first.
tails :: Text -> [Text]
tails t | null t = [empty]
| otherwise = t : tails (unsafeTail t)
-- $split
--
-- Splitting functions in this library do not perform character-wise
-- copies to create substrings; they just construct new 'Text's that
-- are slices of the original.
-- | /O(m+n)/ Break a 'Text' into pieces separated by the first 'Text'
-- argument (which cannot be empty), consuming the delimiter. An empty
-- delimiter is invalid, and will cause an error to be raised.
--
-- Examples:
--
-- > splitOn "\r\n" "a\r\nb\r\nd\r\ne" == ["a","b","d","e"]
-- > splitOn "aaa" "aaaXaaaXaaaXaaa" == ["","X","X","X",""]
-- > splitOn "x" "x" == ["",""]
--
-- and
--
-- > intercalate s . splitOn s == id
-- > splitOn (singleton c) == split (==c)
--
-- (Note: the string @s@ to split on above cannot be empty.)
--
-- In (unlikely) bad cases, this function's time complexity degrades
-- towards /O(n*m)/.
splitOn :: Text
-- ^ String to split on. If this string is empty, an error
-- will occur.
-> Text
-- ^ Input text.
-> [Text]
splitOn pat@(Text _ _ l) src@(Text arr off len)
| l <= 0 = emptyError "splitOn"
| isSingleton pat = split (== unsafeHead pat) src
| otherwise = go 0 (indices pat src)
where
go !s (x:xs) = text arr (s+off) (x-s) : go (x+l) xs
go s _ = [text arr (s+off) (len-s)]
{-# INLINE [1] splitOn #-}
{-# RULES
"TEXT splitOn/singleton -> split/==" [~1] forall c t.
splitOn (singleton c) t = split (==c) t
#-}
-- | /O(n)/ Splits a 'Text' into components delimited by separators,
-- where the predicate returns True for a separator element. The
-- resulting components do not contain the separators. Two adjacent
-- separators result in an empty component in the output. eg.
--
-- > split (=='a') "aabbaca" == ["","","bb","c",""]
-- > split (=='a') "" == [""]
split :: (Char -> Bool) -> Text -> [Text]
split _ t@(Text _off _arr 0) = [t]
split p t = loop t
where loop s | null s' = [l]
| otherwise = l : loop (unsafeTail s')
where (# l, s' #) = span_ (not . p) s
{-# INLINE split #-}
-- | /O(n)/ Splits a 'Text' into components of length @k@. The last
-- element may be shorter than the other chunks, depending on the
-- length of the input. Examples:
--
-- > chunksOf 3 "foobarbaz" == ["foo","bar","baz"]
-- > chunksOf 4 "haskell.org" == ["hask","ell.","org"]
chunksOf :: Int -> Text -> [Text]
chunksOf k = go
where
go t = case splitAt k t of
(a,b) | null a -> []
| otherwise -> a : go b
{-# INLINE chunksOf #-}
-- ----------------------------------------------------------------------------
-- * Searching
-------------------------------------------------------------------------------
-- ** Searching with a predicate
-- | /O(n)/ The 'find' function takes a predicate and a 'Text', and
-- returns the first element matching the predicate, or 'Nothing' if
-- there is no such element.
find :: (Char -> Bool) -> Text -> Maybe Char
find p t = S.findBy p (stream t)
{-# INLINE find #-}
-- | /O(n)/ The 'partition' function takes a predicate and a 'Text',
-- and returns the pair of 'Text's with elements which do and do not
-- satisfy the predicate, respectively; i.e.
--
-- > partition p t == (filter p t, filter (not . p) t)
partition :: (Char -> Bool) -> Text -> (Text, Text)
partition p t = (filter p t, filter (not . p) t)
{-# INLINE partition #-}
-- | /O(n)/ 'filter', applied to a predicate and a 'Text',
-- returns a 'Text' containing those characters that satisfy the
-- predicate.
filter :: (Char -> Bool) -> Text -> Text
filter p t = unstream (S.filter p (stream t))
{-# INLINE filter #-}
-- | /O(n+m)/ Find the first instance of @needle@ (which must be
-- non-'null') in @haystack@. The first element of the returned tuple
-- is the prefix of @haystack@ before @needle@ is matched. The second
-- is the remainder of @haystack@, starting with the match.
--
-- Examples:
--
-- > breakOn "::" "a::b::c" ==> ("a", "::b::c")
-- > breakOn "/" "foobar" ==> ("foobar", "")
--
-- Laws:
--
-- > append prefix match == haystack
-- > where (prefix, match) = breakOn needle haystack
--
-- If you need to break a string by a substring repeatedly (e.g. you
-- want to break on every instance of a substring), use 'breakOnAll'
-- instead, as it has lower startup overhead.
--
-- In (unlikely) bad cases, this function's time complexity degrades
-- towards /O(n*m)/.
breakOn :: Text -> Text -> (Text, Text)
breakOn pat src@(Text arr off len)
| null pat = emptyError "breakOn"
| otherwise = case indices pat src of
[] -> (src, empty)
(x:_) -> (text arr off x, text arr (off+x) (len-x))
{-# INLINE breakOn #-}
-- | /O(n+m)/ Similar to 'breakOn', but searches from the end of the
-- string.
--
-- The first element of the returned tuple is the prefix of @haystack@
-- up to and including the last match of @needle@. The second is the
-- remainder of @haystack@, following the match.
--
-- > breakOnEnd "::" "a::b::c" ==> ("a::b::", "c")
breakOnEnd :: Text -> Text -> (Text, Text)
breakOnEnd pat src = (reverse b, reverse a)
where (a,b) = breakOn (reverse pat) (reverse src)
{-# INLINE breakOnEnd #-}
-- | /O(n+m)/ Find all non-overlapping instances of @needle@ in
-- @haystack@. Each element of the returned list consists of a pair:
--
-- * The entire string prior to the /k/th match (i.e. the prefix)
--
-- * The /k/th match, followed by the remainder of the string
--
-- Examples:
--
-- > breakOnAll "::" ""
-- > ==> []
-- > breakOnAll "/" "a/b/c/"
-- > ==> [("a", "/b/c/"), ("a/b", "/c/"), ("a/b/c", "/")]
--
-- In (unlikely) bad cases, this function's time complexity degrades
-- towards /O(n*m)/.
--
-- The @needle@ parameter may not be empty.
breakOnAll :: Text -- ^ @needle@ to search for
-> Text -- ^ @haystack@ in which to search
-> [(Text, Text)]
breakOnAll pat src@(Text arr off slen)
| null pat = emptyError "breakOnAll"
| otherwise = L.map step (indices pat src)
where
step x = (chunk 0 x, chunk x (slen-x))
chunk !n !l = text arr (n+off) l
{-# INLINE breakOnAll #-}
-------------------------------------------------------------------------------
-- ** Indexing 'Text's
-- $index
--
-- If you think of a 'Text' value as an array of 'Char' values (which
-- it is not), you run the risk of writing inefficient code.
--
-- An idiom that is common in some languages is to find the numeric
-- offset of a character or substring, then use that number to split
-- or trim the searched string. With a 'Text' value, this approach
-- would require two /O(n)/ operations: one to perform the search, and
-- one to operate from wherever the search ended.
--
-- For example, suppose you have a string that you want to split on
-- the substring @\"::\"@, such as @\"foo::bar::quux\"@. Instead of
-- searching for the index of @\"::\"@ and taking the substrings
-- before and after that index, you would instead use @breakOnAll \"::\"@.
-- | /O(n)/ 'Text' index (subscript) operator, starting from 0.
index :: Text -> Int -> Char
index t n = S.index (stream t) n
{-# INLINE index #-}
-- | /O(n)/ The 'findIndex' function takes a predicate and a 'Text'
-- and returns the index of the first element in the 'Text' satisfying
-- the predicate. Subject to fusion.
findIndex :: (Char -> Bool) -> Text -> Maybe Int
findIndex p t = S.findIndex p (stream t)
{-# INLINE findIndex #-}
-- | /O(n+m)/ The 'count' function returns the number of times the
-- query string appears in the given 'Text'. An empty query string is
-- invalid, and will cause an error to be raised.
--
-- In (unlikely) bad cases, this function's time complexity degrades
-- towards /O(n*m)/.
count :: Text -> Text -> Int
count pat src
| null pat = emptyError "count"
| isSingleton pat = countChar (unsafeHead pat) src
| otherwise = L.length (indices pat src)
{-# INLINE [1] count #-}
{-# RULES
"TEXT count/singleton -> countChar" [~1] forall c t.
count (singleton c) t = countChar c t
#-}
-- | /O(n)/ The 'countChar' function returns the number of times the
-- query element appears in the given 'Text'. Subject to fusion.
countChar :: Char -> Text -> Int
countChar c t = S.countChar c (stream t)
{-# INLINE countChar #-}
-------------------------------------------------------------------------------
-- * Zipping
-- | /O(n)/ 'zip' takes two 'Text's and returns a list of
-- corresponding pairs of bytes. If one input 'Text' is short,
-- excess elements of the longer 'Text' are discarded. This is
-- equivalent to a pair of 'unpack' operations.
zip :: Text -> Text -> [(Char,Char)]
zip a b = S.unstreamList $ S.zipWith (,) (stream a) (stream b)
{-# INLINE zip #-}
-- | /O(n)/ 'zipWith' generalises 'zip' by zipping with the function
-- given as the first argument, instead of a tupling function.
-- Performs replacement on invalid scalar values.
zipWith :: (Char -> Char -> Char) -> Text -> Text -> Text
zipWith f t1 t2 = unstream (S.zipWith g (stream t1) (stream t2))
where g a b = safe (f a b)
{-# INLINE zipWith #-}
-- | /O(n)/ Breaks a 'Text' up into a list of words, delimited by 'Char's
-- representing white space.
words :: Text -> [Text]
words t@(Text arr off len) = loop 0 0
where
loop !start !n
| n >= len = if start == n
then []
else [Text arr (start+off) (n-start)]
| isSpace c =
if start == n
then loop (start+1) (start+1)
else Text arr (start+off) (n-start) : loop (n+d) (n+d)
| otherwise = loop start (n+d)
where Iter c d = iter t n
{-# INLINE words #-}
-- | /O(n)/ Breaks a 'Text' up into a list of 'Text's at
-- newline 'Char's. The resulting strings do not contain newlines.
lines :: Text -> [Text]
lines ps | null ps = []
| otherwise = h : if null t
then []
else lines (unsafeTail t)
where (# h,t #) = span_ (/= '\n') ps
{-# INLINE lines #-}
{-
-- | /O(n)/ Portably breaks a 'Text' up into a list of 'Text's at line
-- boundaries.
--
-- A line boundary is considered to be either a line feed, a carriage
-- return immediately followed by a line feed, or a carriage return.
-- This accounts for both Unix and Windows line ending conventions,
-- and for the old convention used on Mac OS 9 and earlier.
lines' :: Text -> [Text]
lines' ps | null ps = []
| otherwise = h : case uncons t of
Nothing -> []
Just (c,t')
| c == '\n' -> lines t'
| c == '\r' -> case uncons t' of
Just ('\n',t'') -> lines t''
_ -> lines t'
where (h,t) = span notEOL ps
notEOL c = c /= '\n' && c /= '\r'
{-# INLINE lines' #-}
-}
-- | /O(n)/ Joins lines, after appending a terminating newline to
-- each.
unlines :: [Text] -> Text
unlines = concat . L.map (`snoc` '\n')
{-# INLINE unlines #-}
-- | /O(n)/ Joins words using single space characters.
unwords :: [Text] -> Text
unwords = intercalate (singleton ' ')
{-# INLINE unwords #-}
-- | /O(n)/ The 'isPrefixOf' function takes two 'Text's and returns
-- 'True' iff the first is a prefix of the second. Subject to fusion.
isPrefixOf :: Text -> Text -> Bool
isPrefixOf a@(Text _ _ alen) b@(Text _ _ blen) =
alen <= blen && S.isPrefixOf (stream a) (stream b)
{-# INLINE [1] isPrefixOf #-}
{-# RULES
"TEXT isPrefixOf -> fused" [~1] forall s t.
isPrefixOf s t = S.isPrefixOf (stream s) (stream t)
#-}
-- | /O(n)/ The 'isSuffixOf' function takes two 'Text's and returns
-- 'True' iff the first is a suffix of the second.
isSuffixOf :: Text -> Text -> Bool
isSuffixOf a@(Text _aarr _aoff alen) b@(Text barr boff blen) =
d >= 0 && a == b'
where d = blen - alen
b' | d == 0 = b
| otherwise = Text barr (boff+d) alen
{-# INLINE isSuffixOf #-}
-- | /O(n+m)/ The 'isInfixOf' function takes two 'Text's and returns
-- 'True' iff the first is contained, wholly and intact, anywhere
-- within the second.
--
-- In (unlikely) bad cases, this function's time complexity degrades
-- towards /O(n*m)/.
isInfixOf :: Text -> Text -> Bool
isInfixOf needle haystack
| null needle = True
| isSingleton needle = S.elem (unsafeHead needle) . S.stream $ haystack
| otherwise = not . L.null . indices needle $ haystack
{-# INLINE [1] isInfixOf #-}
{-# RULES
"TEXT isInfixOf/singleton -> S.elem/S.stream" [~1] forall n h.
isInfixOf (singleton n) h = S.elem n (S.stream h)
#-}
-------------------------------------------------------------------------------
-- * View patterns
-- | /O(n)/ Return the suffix of the second string if its prefix
-- matches the entire first string.
--
-- Examples:
--
-- > stripPrefix "foo" "foobar" == Just "bar"
-- > stripPrefix "" "baz" == Just "baz"
-- > stripPrefix "foo" "quux" == Nothing
--
-- This is particularly useful with the @ViewPatterns@ extension to
-- GHC, as follows:
--
-- > {-# LANGUAGE ViewPatterns #-}
-- > import Data.Text as T
-- >
-- > fnordLength :: Text -> Int
-- > fnordLength (stripPrefix "fnord" -> Just suf) = T.length suf
-- > fnordLength _ = -1
stripPrefix :: Text -> Text -> Maybe Text
stripPrefix p@(Text _arr _off plen) t@(Text arr off len)
| p `isPrefixOf` t = Just $! text arr (off+plen) (len-plen)
| otherwise = Nothing
-- | /O(n)/ Find the longest non-empty common prefix of two strings
-- and return it, along with the suffixes of each string at which they
-- no longer match.
--
-- If the strings do not have a common prefix or either one is empty,
-- this function returns 'Nothing'.
--
-- Examples:
--
-- > commonPrefixes "foobar" "fooquux" == Just ("foo","bar","quux")
-- > commonPrefixes "veeble" "fetzer" == Nothing
-- > commonPrefixes "" "baz" == Nothing
commonPrefixes :: Text -> Text -> Maybe (Text,Text,Text)
commonPrefixes t0@(Text arr0 off0 len0) t1@(Text arr1 off1 len1) = go 0 0
where
go !i !j | i < len0 && j < len1 && a == b = go (i+d0) (j+d1)
| i > 0 = Just (Text arr0 off0 i,
text arr0 (off0+i) (len0-i),
text arr1 (off1+j) (len1-j))
| otherwise = Nothing
where Iter a d0 = iter t0 i
Iter b d1 = iter t1 j
-- | /O(n)/ Return the prefix of the second string if its suffix
-- matches the entire first string.
--
-- Examples:
--
-- > stripSuffix "bar" "foobar" == Just "foo"
-- > stripSuffix "" "baz" == Just "baz"
-- > stripSuffix "foo" "quux" == Nothing
--
-- This is particularly useful with the @ViewPatterns@ extension to
-- GHC, as follows:
--
-- > {-# LANGUAGE ViewPatterns #-}
-- > import Data.Text as T
-- >
-- > quuxLength :: Text -> Int
-- > quuxLength (stripSuffix "quux" -> Just pre) = T.length pre
-- > quuxLength _ = -1
stripSuffix :: Text -> Text -> Maybe Text
stripSuffix p@(Text _arr _off plen) t@(Text arr off len)
| p `isSuffixOf` t = Just $! text arr off (len-plen)
| otherwise = Nothing
-- | Add a list of non-negative numbers. Errors out on overflow.
sumP :: String -> [Int] -> Int
sumP fun = go 0
where go !a (x:xs)
| ax >= 0 = go ax xs
| otherwise = overflowError fun
where ax = a + x
go a _ = a
emptyError :: String -> a
emptyError fun = P.error $ "Data.Text." ++ fun ++ ": empty input"
overflowError :: String -> a
overflowError fun = P.error $ "Data.Text." ++ fun ++ ": size overflow"
-- | /O(n)/ Make a distinct copy of the given string, sharing no
-- storage with the original string.
--
-- As an example, suppose you read a large string, of which you need
-- only a small portion. If you do not use 'copy', the entire original
-- array will be kept alive in memory by the smaller string. Making a
-- copy \"breaks the link\" to the original array, allowing it to be
-- garbage collected if there are no other live references to it.
copy :: Text -> Text
copy (Text arr off len) = Text (A.run go) 0 len
where
go :: ST s (A.MArray s)
go = do
marr <- A.new len
A.copyI marr 0 arr off len
return marr
|