File: threefish_block.c

package info (click to toggle)
haskell-tf-random 0.5-13
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 164 kB
  • sloc: ansic: 615; haskell: 430; makefile: 4
file content (278 lines) | stat: -rw-r--r-- 10,804 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
/***********************************************************************
**
** Implementation of the Threefish-256 block cipher. 
**
** Copyright (c) 2012, Michał Pałka
** All rights reserved
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions are met:
**     * Redistributions of source code must retain the above copyright
**       notice, this list of conditions and the following disclaimer.
**     * Redistributions in binary form must reproduce the above copyright
**       notice, this list of conditions and the following disclaimer in the
**       documentation and/or other materials provided with the distribution.
**     * The names of the authors may not be used to endorse or promote
**       products derived from this software without specific prior written
**       permission.
** 
** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
** DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
** 
**
** This code is extracted, with some simplifications, from the Skein
** team submission for the NIST SHA-3 competition. Original authorship is
** stated below.
**
**
************************************************************************
**
** Implementation of the Skein block functions.
**
** Source code author: Doug Whiting, 2008.
**
** This algorithm and source code is released to the public domain.
**
************************************************************************/

#include <string.h>
#include "threefish.h"

#ifndef SKEIN_LOOP
#define SKEIN_LOOP 001                          /* default: unroll 256 and 512, but not 1024 */
#endif

#define BLK_BITS        (WCNT*64)               /* some useful definitions for code here */
#define KW_TWK_BASE     (0)
#define KW_KEY_BASE     (3)
#define ks              (kw + KW_KEY_BASE)                
#define ts              (kw + KW_TWK_BASE)

#ifdef SKEIN_DEBUG
#define DebugSaveTweak(ctx) { ctx->h.T[0] = ts[0]; ctx->h.T[1] = ts[1]; }
#else
#define DebugSaveTweak(ctx)
#endif

void    Threefish_256_Process_Block(const u08b_t *keyPtr, const u08b_t *blkPtr, u08b_t *cryptPtr, int w32out);

/* keyPtr, blkPtr and cryptPtr are all arrays of 4 64-bit unsingned ints in host-endian
 * format, unless the w32out argument is non-zero, in which case cryptPtr is an array of
 * 8 32-bit unsigned ints in host endian format. cryptPtr is the output array. The function
 * runs the cipher on one block only and ignores the tweak (tweak values are all 0). */
void    Threefish_256_Process_Block(const u08b_t *keyPtr, const u08b_t *blkPtr, u08b_t *cryptPtr, int w32out)
    { /* do it in C */
    enum
        {
        WCNT = SKEIN_256_STATE_WORDS
        };
#undef  RCNT
#define RCNT  (SKEIN_256_ROUNDS_TOTAL/8)

#ifdef  SKEIN_LOOP                              /* configure how much to unroll the loop */
#define SKEIN_UNROLL_256 (((SKEIN_LOOP)/100)%10)
#else
#define SKEIN_UNROLL_256 (0)
#endif

#if SKEIN_UNROLL_256
#if (RCNT % SKEIN_UNROLL_256)
#error "Invalid SKEIN_UNROLL_256"               /* sanity check on unroll count */
#endif
    size_t  r;
    u64b_t  kw[WCNT+4+RCNT*2];                  /* key schedule words : chaining vars + tweak + "rotation"*/
#else
    u64b_t  kw[WCNT+4];                         /* key schedule words : chaining vars + tweak */
#endif
    u64b_t  X0,X1,X2,X3;                        /* local copy of context vars, for speed */
    u64b_t  w [WCNT];                           /* local copy of input block */
#ifdef SKEIN_DEBUG
    const u64b_t *Xptr[4];                      /* use for debugging (help compiler put Xn in registers) */
    Xptr[0] = &X0;  Xptr[1] = &X1;  Xptr[2] = &X2;  Xptr[3] = &X3;
#endif
    /*Skein_assert(blkCnt != 0);*/                  /* never call with blkCnt == 0! */
    /* This is just adding the tweak
    ts[0] = ctx->h.T[0];
    ts[1] = ctx->h.T[1];*/

    /* Unnatural shift because of a removed loop */

        /* this implementation only supports 2**64 input bytes (no carry out here) */
        /*ts[0] += byteCntAdd; another tweak? */                   /* update processed length */

        /* precompute the key schedule for this block */
        /* get the key in little-endian format */
        /*Skein_Get64_LSB_First(ks,keyPtr,4);   */
        ks[0] = ((u64b_t *) keyPtr)[0];
        ks[1] = ((u64b_t *) (keyPtr + 8))[0];
        ks[2] = ((u64b_t *) (keyPtr + 16))[0];
        ks[3] = ((u64b_t *) (keyPtr + 24))[0];
        /*ks[0] = ctx->X[0];     
        ks[1] = ctx->X[1];
        ks[2] = ctx->X[2];
        ks[3] = ctx->X[3];*/
        ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY;

        /*ts[2] = ts[0] ^ ts[1]*/;
        ts[0] = 0;
        ts[1] = 0;
        ts[2] = 0;

        /*Skein_Get64_LSB_First(w,blkPtr,WCNT);*/   /* get input block in little-endian format */
        w[0] = ((u64b_t *) blkPtr)[0];
        w[1] = ((u64b_t *) (blkPtr + 8))[0];
        w[2] = ((u64b_t *) (blkPtr + 16))[0];
        w[3] = ((u64b_t *) (blkPtr + 24))[0];
		DebugSaveTweak(ctx);
        Skein_Show_Block(BLK_BITS,&ctx->h,ctx->X,blkPtr,w,ks,ts);

        X0 = w[0] + ks[0];                      /* do the first full key injection */
        X1 = w[1] + ks[1] + ts[0];
        X2 = w[2] + ks[2] + ts[1];
        X3 = w[3] + ks[3];

        Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INITIAL,Xptr);    /* show starting state values */

        /*blkPtr += SKEIN_256_BLOCK_BYTES;*/

        /* run the rounds */

#define Round256(p0,p1,p2,p3,ROT,rNum)                              \
    X##p0 += X##p1; X##p1 = RotL_64(X##p1,ROT##_0); X##p1 ^= X##p0; \
    X##p2 += X##p3; X##p3 = RotL_64(X##p3,ROT##_1); X##p3 ^= X##p2; \

#if SKEIN_UNROLL_256 == 0                       
#define R256(p0,p1,p2,p3,ROT,rNum)           /* fully unrolled */   \
    Round256(p0,p1,p2,p3,ROT,rNum)                                  \
    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,rNum,Xptr);

#define I256(R)                                                     \
    X0   += ks[((R)+1) % 5];    /* inject the key schedule value */ \
    X1   += ks[((R)+2) % 5] + ts[((R)+1) % 3];                      \
    X2   += ks[((R)+3) % 5] + ts[((R)+2) % 3];                      \
    X3   += ks[((R)+4) % 5] +     (R)+1;                            \
    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
#else                                       /* looping version */
#define R256(p0,p1,p2,p3,ROT,rNum)                                  \
    Round256(p0,p1,p2,p3,ROT,rNum)                                  \
    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,4*(r-1)+rNum,Xptr);

#define I256(R)                                                     \
    X0   += ks[r+(R)+0];        /* inject the key schedule value */ \
    X1   += ks[r+(R)+1] + ts[r+(R)+0];                              \
    X2   += ks[r+(R)+2] + ts[r+(R)+1];                              \
    X3   += ks[r+(R)+3] +    r+(R)   ;                              \
    ks[r + (R)+4    ]   = ks[r+(R)-1];     /* rotate key schedule */\
    ts[r + (R)+2    ]   = ts[r+(R)-1];                              \
    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);

    for (r=1;r < 2*RCNT;r+=2*SKEIN_UNROLL_256)  /* loop thru it */
#endif  
        {    
#define R256_8_rounds(R)                  \
        R256(0,1,2,3,R_256_0,8*(R) + 1);  \
        R256(0,3,2,1,R_256_1,8*(R) + 2);  \
        R256(0,1,2,3,R_256_2,8*(R) + 3);  \
        R256(0,3,2,1,R_256_3,8*(R) + 4);  \
        I256(2*(R));                      \
        R256(0,1,2,3,R_256_4,8*(R) + 5);  \
        R256(0,3,2,1,R_256_5,8*(R) + 6);  \
        R256(0,1,2,3,R_256_6,8*(R) + 7);  \
        R256(0,3,2,1,R_256_7,8*(R) + 8);  \
        I256(2*(R)+1);

        R256_8_rounds( 0);

#define R256_Unroll_R(NN) ((SKEIN_UNROLL_256 == 0 && SKEIN_256_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_256 > (NN)))

  #if   R256_Unroll_R( 1)
        R256_8_rounds( 1);
  #endif
  #if   R256_Unroll_R( 2)
        R256_8_rounds( 2);
  #endif
  #if   R256_Unroll_R( 3)
        R256_8_rounds( 3);
  #endif
  #if   R256_Unroll_R( 4)
        R256_8_rounds( 4);
  #endif
  #if   R256_Unroll_R( 5)
        R256_8_rounds( 5);
  #endif
  #if   R256_Unroll_R( 6)
        R256_8_rounds( 6);
  #endif
  #if   R256_Unroll_R( 7)
        R256_8_rounds( 7);
  #endif
  #if   R256_Unroll_R( 8)
        R256_8_rounds( 8);
  #endif
  #if   R256_Unroll_R( 9)
        R256_8_rounds( 9);
  #endif
  #if   R256_Unroll_R(10)
        R256_8_rounds(10);
  #endif
  #if   R256_Unroll_R(11)
        R256_8_rounds(11);
  #endif
  #if   R256_Unroll_R(12)
        R256_8_rounds(12);
  #endif
  #if   R256_Unroll_R(13)
        R256_8_rounds(13);
  #endif
  #if   R256_Unroll_R(14)
        R256_8_rounds(14);
  #endif
  #if  (SKEIN_UNROLL_256 > 14)
#error  "need more unrolling in Skein_256_Process_Block"
  #endif
        }
        /* do the final "feedforward" xor, update context chaining vars */
        /*ctx->X[0] = X0 ^ w[0];
        ctx->X[1] = X1 ^ w[1];
        ctx->X[2] = X2 ^ w[2];
        ctx->X[3] = X3 ^ w[3];*/
        if (w32out) {
            ((u32b_t *) cryptPtr)       [0] = X0 >> 32;
            ((u32b_t *) (cryptPtr + 4)) [0] = X0;
            ((u32b_t *) (cryptPtr + 8)) [0] = X1 >> 32;
            ((u32b_t *) (cryptPtr + 12))[0] = X1;
            ((u32b_t *) (cryptPtr + 16))[0] = X2 >> 32;
            ((u32b_t *) (cryptPtr + 20))[0] = X2;
            ((u32b_t *) (cryptPtr + 24))[0] = X3 >> 32;
            ((u32b_t *) (cryptPtr + 28))[0] = X3;
        } else {
            ((u64b_t *) cryptPtr)       [0] = X0;
            ((u64b_t *) (cryptPtr + 8)) [0] = X1;
            ((u64b_t *) (cryptPtr + 16))[0] = X2;
            ((u64b_t *) (cryptPtr + 24))[0] = X3;
        }
        Skein_Show_Round(BLK_BITS,&ctx->h,SKEIN_RND_FEED_FWD,ctx->X);

        /*ts[1] &= ~SKEIN_T1_FLAG_FIRST;*/
    }

#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
size_t Threefish_256_Process_Block_CodeSize(void)
    {
    return ((u08b_t *) Threefish_256_Process_Block_CodeSize) -
           ((u08b_t *) Threefish_256_Process_Block_Block);
    }
uint_t Threefish_256_Unroll_Cnt(void)
    {
    return SKEIN_UNROLL_256;
    }
#endif