1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
{-# LANGUAGE OverloadedStrings #-}
module Sound.Tidal.CoreTest where
import Data.List (sort)
import Data.Ratio
import qualified Data.Map as Map
import Sound.Tidal.Context
import Test.Microspec
import TestUtils
import Prelude hiding ((*>), (<*))
run :: Microspec ()
run =
describe "Sound.Tidal.Core" $ do
describe "Elemental patterns" $ do
let sampleOf :: Pattern Double -> Rational -> Double
sampleOf pat t = (value . head) $ query pat (State (Arc t t) Map.empty)
describe "are in range [0, 1]" $ do
let inNormalRange pat t = (y >= 0) && (y <= 1)
where y = sampleOf pat t
it "sine" $ inNormalRange sine
it "cosine" $ inNormalRange cosine
it "saw" $ inNormalRange saw
it "isaw" $ inNormalRange isaw
it "tri" $ inNormalRange tri
it "square" $ inNormalRange square
describe "have correctly-scaled bipolar variants" $ do
let areCorrectlyScaled pat pat2 t = (y * 2 - 1) ~== y2
where y = sampleOf pat t
y2 = sampleOf pat2 t
it "sine" $ areCorrectlyScaled sine sine2
it "cosine" $ areCorrectlyScaled cosine cosine2
it "saw" $ areCorrectlyScaled saw saw2
it "isaw" $ areCorrectlyScaled isaw isaw2
it "tri" $ areCorrectlyScaled tri tri2
it "square" $ areCorrectlyScaled square square2
describe "append" $
it "can switch between the cycles from two pures" $ do
queryArc (append (pure "a") (pure "b")) (Arc 0 5)
`shouldBe` fmap
toEvent
[ (((0, 1), (0, 1)), "a" :: String),
(((1, 2), (1, 2)), "b"),
(((2, 3), (2, 3)), "a"),
(((3, 4), (3, 4)), "b"),
(((4, 5), (4, 5)), "a")
]
describe "cat" $ do
it "can switch between the cycles from three pures" $ do
queryArc (cat [pure "a", pure "b", pure "c"]) (Arc 0 5)
`shouldBe` fmap
toEvent
[ (((0, 1), (0, 1)), "a" :: String),
(((1, 2), (1, 2)), "b"),
(((2, 3), (2, 3)), "c"),
(((3, 4), (3, 4)), "a"),
(((4, 5), (4, 5)), "b")
]
it "can extract nested revs" $
let a = "1 2 3" :: Pattern Int
b = "4 5 6" :: Pattern Int
c = "7 8 9" :: Pattern Int
in comparePD
(Arc 0 10)
(rev $ cat [a, b, c])
(cat [rev a, rev b, rev c])
describe "fastCat" $ do
it "can switch between the cycles from three pures inside one cycle" $ do
it "1" $
queryArc (fastCat [pure "a", pure "b", pure "c"]) (Arc 0 1)
`shouldBe` fmap
toEvent
[ (((0, 1 / 3), (0, 1 / 3)), "a" :: String),
(((1 / 3, 2 / 3), (1 / 3, 2 / 3)), "b"),
(((2 / 3, 1), (2 / 3, 1)), "c")
]
it "5/3" $
queryArc (fastCat [pure "a", pure "b", pure "c"]) (Arc 0 (5 / 3))
`shouldBe` fmap
toEvent
[ (((0, 1 / 3), (0, 1 / 3)), "a" :: String),
(((1 / 3, 2 / 3), (1 / 3, 2 / 3)), "b"),
(((2 / 3, 1), (2 / 3, 1)), "c"),
(((1, 4 / 3), (1, 4 / 3)), "a"),
(((4 / 3, 5 / 3), (4 / 3, 5 / 3)), "b")
]
it "works with zero-length queries" $ do
it "0" $
queryArc (fastCat [pure "a", pure "b"]) (Arc 0 0)
`shouldBe` fmap toEvent [(((0, 0.5), (0, 0)), "a" :: String)]
it "1/3" $
queryArc (fastCat [pure "a", pure "b"]) (Arc (1 % 3) (1 % 3))
`shouldBe` fmap toEvent [(((0, 0.5), (1 % 3, 1 % 3)), "a" :: String)]
describe "rev" $ do
it "mirrors events" $ do
let forward = fastCat [fastCat [pure 7, pure 8], pure 9] :: Pattern Int
backward = fastCat [pure 9, fastCat [pure 8, pure 7]]
-- sort the events into time order to compare them
sort (queryArc (rev forward) (Arc 0 1)) `shouldBe` sort (queryArc backward (Arc 0 1))
it "returns the original if you reverse it twice" $ do
let x = fastCat [fastCat [pure 7, pure 8], pure 9] :: Pattern Int
queryArc (rev $ rev x) (Arc 0 5) `shouldBe` queryArc x (Arc 0 5)
describe "|>|" $ do
let a = "[1, 1] [2,2] 3" :: Pattern Int
b = "4 [5, 5] 6 7" :: Pattern Int
c = "7 8 9 10" :: Pattern Int
d = "7 [8, 9] 10 11" :: Pattern Int
it "creates silence when" $ do
it "first argument silent" $
comparePD
(Arc 0 1)
(silence |>| a)
silence
it "second argument silent" $
comparePD
(Arc 0 1)
(a |>| silence)
silence
it "creates the same pattern when left argument has the same structure" $
comparePD
(Arc 0 1)
(b |>| a)
(d |>| a)
it "can extract rev from first argument" $
comparePD
(Arc 0 1)
(rev a |>| b)
(rev (a |>| rev b))
it "is assiociative" $
comparePD
(Arc 0 1)
((a |>| b) |>| c)
(a |>| (b |>| c))
it "is commutative in all arguments except the rightmost" $
comparePD
(Arc 0 1)
(a |>| b |>| c)
(b |>| a |>| c)
describe "stack" $ do
let a = "1 2 3" :: Pattern Int
b = "4 5 6" :: Pattern Int
c = "7 8 9" :: Pattern Int
it "is neutral with silence" $
comparePD
(Arc 0 1)
(stack [a, silence])
a
it "can create silence" $
comparePD
(Arc 0 1)
(stack [] :: Pattern Int)
silence
it "follows commutative laws" $
comparePD
(Arc 0 1)
(stack [a, b])
(stack [b, a])
it "follows assiociative laws" $
comparePD
(Arc 0 1)
(stack [a, stack [b, c]])
(stack [stack [a, b], c])
it "can extract nested revs" $
comparePD
(Arc 0 1)
(rev $ stack [a, b, c])
(stack [rev a, rev b, rev c])
describe "fast" $ do
let x = "1 2 3" :: Pattern Time
y = "4 5 6" :: Pattern Time
it "is neutral with speedup 1" $
comparePD
(Arc 0 1)
(fast 1 x)
x
it "mutes, when there is" $ do
it "silence in first argument" $
comparePD
(Arc 0 1)
(fast silence x)
silence
it "silence in second argument" $
comparePD
(Arc 0 1)
(fast x silence :: Pattern Time)
silence
it "speedup by 0" $
comparePD
(Arc 0 1)
(fast 0 x)
silence
it "is reciprocal to slow" $
comparePD
(Arc 0 1)
(fast 2 x)
(slow (fromRational $ 1 % 2) x)
it "can be reversed by reciprocal speedup" $
comparePD
(Arc 0 1)
(fast 2 $ fast (fromRational $ 1 % 2) x)
x
it "preserves structure" $
comparePD
(Arc 0 1)
(fast x (stack [y, y]))
(fast (stack [x, x]) y)
describe "slow" $ do
let x = "1 2 3" :: Pattern Time
y = "4 5 6" :: Pattern Time
it "is neutral with slowdown 1" $
comparePD
(Arc 0 10)
(slow 1 x)
x
it "mutes, when there is" $ do
it "silence in first argument" $
comparePD
(Arc 0 10)
(slow silence x)
silence
it "silence in second argument" $
comparePD
(Arc 0 10)
(slow x silence :: Pattern Time)
silence
it "speedup by 0" $
comparePD
(Arc 0 10)
(slow 0 x)
silence
it "is reciprocal to fast" $
comparePD
(Arc 0 10)
(slow 2 x)
(fast (fromRational $ 1 % 2) x)
it "can be reversed by reciprocal slowdown" $
comparePD
(Arc 0 10)
(slow 2 $ slow (fromRational $ 1 % 2) x)
x
it "preserves structure" $
comparePD
(Arc 0 1)
(slow x (stack [y, y]))
(slow (stack [x, x]) y)
describe "compress" $ do
it "squashes cycles to the start of a cycle" $ do
let p = compress (0, 0.5) $ fastCat [pure 7, pure 8] :: Pattern Int
queryArc p (Arc 0 1)
`shouldBe` fmap
toEvent
[ (((0, 0.25), (0, 0.25)), 7),
(((0.25, 0.5), (0.25, 0.5)), 8)
]
it "squashes cycles to the end of a cycle" $ do
let p = compress (0.5, 1) $ fastCat [pure 7, pure 8] :: Pattern Int
queryArc p (Arc 0 1)
`shouldBe` fmap
toEvent
[ (((0.5, 0.75), (0.5, 0.75)), 7 :: Int),
(((0.75, 1), (0.75, 1)), 8)
]
it "squashes cycles to the middle of a cycle" $ do
let p = compress (0.25, 0.75) $ fastCat [pure 7, pure 8]
queryArc p (Arc 0 1)
`shouldBe` fmap
toEvent
[ (((0.25, 0.5), (0.25, 0.5)), 7 :: Int),
(((0.5, 0.75), (0.5, 0.75)), 8)
]
describe "saw" $ do
it "goes from 0 up to 1 every cycle" $ do
it "0" $
queryArc saw (Arc 0 0) `shouldBe` [Event (Context []) Nothing (Arc 0 0) 0 :: Event Double]
it "0.25" $
queryArc saw (Arc 0.25 0.25) `shouldBe` [Event (Context []) Nothing (Arc 0.25 0.25) 0.25 :: Event Double]
it "0.5" $
queryArc saw (Arc 0.5 0.5) `shouldBe` [Event (Context []) Nothing (Arc 0.5 0.5) 0.5 :: Event Double]
it "0.75" $
queryArc saw (Arc 0.75 0.75) `shouldBe` [Event (Context []) Nothing (Arc 0.75 0.75) 0.75 :: Event Double]
it "can be added to" $
map value (queryArc ((+ 1) <$> saw) (Arc 0.5 0.5)) `shouldBe` [1.5 :: Float]
it "works on the left of <*>" $
queryArc ((+) <$> saw <*> pure 3) (Arc 0 1)
`shouldBe` [Event (Context []) Nothing (Arc 0 1) 3.5 :: Event Double]
it "works on the right of <*>" $
queryArc (fast 4 (pure (+ 3)) <*> saw) (Arc 0 1)
`shouldBe` [ Event (Context []) Nothing (Arc 0 0.25) 3.5 :: Event Double,
Event (Context []) Nothing (Arc 0.25 0.5) 3.5,
Event (Context []) Nothing (Arc 0.5 0.75) 3.5,
Event (Context []) Nothing (Arc 0.75 1) 3.5
]
it "can be reversed" $ do
it "works with whole cycles" $
queryArc (rev saw) (Arc 0 1)
`shouldBe` [Event (Context []) Nothing (Arc 0 1) 0.5 :: Event Double]
it "works with half cycles" $
queryArc (rev saw) (Arc 0 0.5)
`shouldBe` [Event (Context []) Nothing (Arc 0 0.5) 0.75 :: Event Double]
it "works with inset points" $
queryArc (rev saw) (Arc 0.25 0.25)
`shouldBe` [Event (Context []) Nothing (Arc 0.25 0.25) 0.75 :: Event Double]
describe "tri" $ do
it "goes from 0 up to 1 and back every cycle" $
comparePD
(Arc 0 1)
(struct "t*8" (tri :: Pattern Double))
"0.125 0.375 0.625 0.875 0.875 0.625 0.375 0.125"
it "can be added to" $
comparePD
(Arc 0 1)
(struct "t*8" $ (tri :: Pattern Double) + 1)
"1.125 1.375 1.625 1.875 1.875 1.625 1.375 1.125"
describe "every" $
it "`every n id` doesn't change the pattern's structure" $ do
comparePD
(Arc 0 4)
(every 2 id "x/2" :: Pattern String)
"x/2"
|