File: Reverse.hs

package info (click to toggle)
haskell-transformers 0.3.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 208 kB
  • sloc: haskell: 1,451; makefile: 3
file content (54 lines) | stat: -rw-r--r-- 1,770 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
-- |
-- Module      :  Data.Functor.Reverse
-- Copyright   :  (c) Russell O'Connor 2009
-- License     :  BSD-style (see the file LICENSE)
--
-- Maintainer  :  libraries@haskell.org
-- Stability   :  experimental
-- Portability :  portable
--
-- Making functors whose elements are notionally in the reverse order
-- from the original functor.

module Data.Functor.Reverse where

import Control.Applicative.Backwards

import Prelude hiding (foldr, foldr1, foldl, foldl1)
import Control.Applicative
import Data.Foldable
import Data.Traversable
import Data.Monoid

-- | The same functor, but with 'Foldable' and 'Traversable' instances
-- that process the elements in the reverse order.
newtype Reverse f a = Reverse { getReverse :: f a }

-- | Derived instance.
instance (Functor f) => Functor (Reverse f) where
    fmap f (Reverse a) = Reverse (fmap f a)

-- | Derived instance.
instance (Applicative f) => Applicative (Reverse f) where
    pure a = Reverse (pure a)
    Reverse f <*> Reverse a = Reverse (f <*> a)

-- | Derived instance.
instance (Alternative f) => Alternative (Reverse f) where
    empty = Reverse empty
    Reverse x <|> Reverse y = Reverse (x <|> y)

-- | Fold from right to left.
instance (Foldable f) => Foldable (Reverse f) where
    foldMap f (Reverse t) = getDual (foldMap (Dual . f) t)
    foldr f z (Reverse t) = foldl (flip f) z t
    foldl f z (Reverse t) = foldr (flip f) z t
    foldr1 f (Reverse t) = foldl1 (flip f) t
    foldl1 f (Reverse t) = foldr1 (flip f) t

-- | Traverse from right to left.
instance (Traversable f) => Traversable (Reverse f) where
    traverse f (Reverse t) =
        fmap Reverse . forwards $ traverse (Backwards . f) t
    sequenceA (Reverse t) =
        fmap Reverse . forwards $ sequenceA (fmap Backwards t)