File: Int.hs

package info (click to toggle)
haskell-type-level-numbers 0.1.1.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 136 kB
  • sloc: haskell: 663; makefile: 5
file content (308 lines) | stat: -rw-r--r-- 11,962 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
{-# OPTIONS_GHC  -fno-warn-orphans #-}

{-# LANGUAGE DeriveDataTypeable    #-}
{-# LANGUAGE GADTs                 #-}
{-# LANGUAGE RankNTypes            #-}
{-# LANGUAGE EmptyDataDecls        #-}
{-# LANGUAGE FlexibleInstances     #-}
{-# LANGUAGE FlexibleContexts      #-}
{-# LANGUAGE UndecidableInstances  #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE TypeFamilies          #-}
{-# LANGUAGE TemplateHaskell       #-}
{-# LANGUAGE ScopedTypeVariables   #-}
-- |
-- Module      : TypeLevel.Number.Int
-- Copyright   : Alexey Khudyakov
-- License     : BSD3-style (see LICENSE)
--
-- Maintainer  : Alexey Khudyakov <alexey.skladnoy@gmail.com>
-- Stability   : unstable
-- Portability : unportable (GHC only)
--
-- Type level signed integer numbers are implemented using balanced
-- ternary encoding much in the same way as natural numbers.
--
-- Currently following operations are supported: Next, Prev, Add, Sub,
-- Mul.
module TypeLevel.Number.Int ( -- * Integer numbers
                          ZZ
                        , Dn
                        , D0
                        , D1
                        , IntT(..)
                          -- ** Lifting
                        , SomeInt
                        , withInt
                          -- * Template haskell utilities
                        , intT
                        , module TypeLevel.Number.Classes
                        ) where

import Data.Typeable (Typeable)
import Language.Haskell.TH

import TypeLevel.Number.Classes
import TypeLevel.Number.Int.Types
import TypeLevel.Util


splitToTrits :: Integer -> [Int]
splitToTrits 0 = []
splitToTrits x | n == 0 =  0 : splitToTrits  rest
               | n == 1 =  1 : splitToTrits  rest
               | n == 2 = -1 : splitToTrits (rest + 1)
               where
                 (rest,n) = divMod x 3
splitToTrits _ = error "Internal error"

-- | Generate type for integer number.
intT :: Integer -> TypeQ
intT = foldr appT (conT ''ZZ) . map con . splitToTrits
  where
    con (-1) = conT ''Dn
    con   0  = conT ''D0
    con   1  = conT ''D1
    con   x  = error $ "Strange trit: " ++ show x

----------------------------------------------------------------
--

-- | Type class for type level integers. Only numbers without leading
-- zeroes are members of the class.
class IntT n where
  -- | Convert natural number to integral value. It's not checked
  -- whether value could be represented.
  toInt :: Integral i => n -> i

instance IntT     ZZ  where toInt _ =  0
instance IntT (D1 ZZ) where toInt _ =  1
instance IntT (Dn ZZ) where toInt _ = -1

instance IntT (Dn n) => IntT (Dn (Dn n)) where toInt n = -1 + 3 * toInt' n
instance IntT (Dn n) => IntT (D0 (Dn n)) where toInt n =  0 + 3 * toInt' n
instance IntT (Dn n) => IntT (D1 (Dn n)) where toInt n =  1 + 3 * toInt' n
instance IntT (D0 n) => IntT (Dn (D0 n)) where toInt n = -1 + 3 * toInt' n
instance IntT (D0 n) => IntT (D0 (D0 n)) where toInt n =  0 + 3 * toInt' n
instance IntT (D0 n) => IntT (D1 (D0 n)) where toInt n =  1 + 3 * toInt' n
instance IntT (D1 n) => IntT (Dn (D1 n)) where toInt n = -1 + 3 * toInt' n
instance IntT (D1 n) => IntT (D0 (D1 n)) where toInt n =  0 + 3 * toInt' n
instance IntT (D1 n) => IntT (D1 (D1 n)) where toInt n =  1 + 3 * toInt' n

toInt' :: (IntT n, Integral i) => t n -> i
toInt' = toInt . cdr


instance                Show    ZZ  where show _ = "[0:Z]"
instance IntT (Dn n) => Show (Dn n) where show n = "["++show (toInt n :: Integer)++":Z]"
instance IntT (D0 n) => Show (D0 n) where show n = "["++show (toInt n :: Integer)++":Z]"
instance IntT (D1 n) => Show (D1 n) where show n = "["++show (toInt n :: Integer)++":Z]"


-- | Some natural number
data SomeInt where
  SomeInt :: IntT n => n -> SomeInt
  deriving Typeable

instance Show SomeInt where
  showsPrec d (SomeInt n) = showParen (d > 10) $
    showString "withInt SomeInt " . shows (toInt n :: Integer)



-- | Apply function which could work with any 'Nat' value only know at runtime.
withInt :: forall i a. (Integral i) => (forall n. IntT n => n -> a) -> i -> a
withInt f i0
  | i0 == 0   = f (undefined :: ZZ)
  | otherwise = cont (fromIntegral i0) f f f
  where
    cont :: Integer -> (forall n m. (IntT n, n ~ Dn m) => n -> a)
                    -> (forall n m. (IntT n, n ~ D0 m) => n -> a)
                    -> (forall n m. (IntT n, n ~ D1 m) => n -> a) -> a
    cont (-1) kN _  _  = kN (undefined :: Dn ZZ)
    cont   1  _  _  k1 = k1 (undefined :: D1 ZZ)
    cont   i  kN k0 k1 = cont i' kN' k0' k1'
      where
        (i',bit) = case divMod i 3 of
                     (x,2) -> (x+1,-1)
                     x     -> x
        kN' :: forall n m. (IntT n, n ~ Dn m) => n -> a
        kN' _ | bit == -1 = kN (undefined :: Dn n)
              | bit ==  0 = k0 (undefined :: D0 n)
              | otherwise = k1 (undefined :: D1 n)
        k0' :: forall n m. (IntT n, n ~ D0 m) => n -> a
        k0' _ | bit == -1 = kN (undefined :: Dn n)
              | bit ==  0 = k0 (undefined :: D0 n)
              | otherwise = k1 (undefined :: D1 n)

        k1' :: forall n m. (IntT n, n ~ D1 m) => n -> a
        k1' _ | bit == -1 = kN (undefined :: Dn n)
              | bit ==  0 = k0 (undefined :: D0 n)
              | otherwise = k1 (undefined :: D1 n)

----------------------------------------------------------------
-- Number normalization

type family   AddBit n :: *
type instance AddBit    ZZ = ZZ
type instance AddBit (Dn a) = D0 (Dn a)
type instance AddBit (D0 a) = D0 (D0 a)
type instance AddBit (D1 a) = D0 (D1 a)


type instance Normalized     ZZ = ZZ
type instance Normalized (Dn n) = Dn     (Normalized n)
type instance Normalized (D0 n) = AddBit (Normalized n)
type instance Normalized (D1 n) = D1     (Normalized n)

----------------------------------------------------------------
-- Next Number
type instance Next     ZZ = D1 ZZ
type instance Next (Dn n) = Normalized (D0 n)
type instance Next (D0 n) = D1 n
type instance Next (D1 n) = Normalized (Dn (Next n))

----------------------------------------------------------------
-- Previous number
type instance Prev     ZZ = Dn ZZ
type instance Prev (Dn n) = Normalized (D1 (Prev n))
type instance Prev (D0 n) = Dn n
type instance Prev (D1 n) = Normalized (D0 n)

----------------------------------------------------------------
-- Negate number
type instance Negate    ZZ  = ZZ
type instance Negate (Dn n) = D1 (Negate n)
type instance Negate (D0 n) = D0 (Negate n)
type instance Negate (D1 n) = Dn (Negate n)


----------------------------------------------------------------
-- Addition

-- Type class which actually implement addtition of natural numbers
type family Add' n m carry :: *

data CarryN
data Carry0
data Carry1

-- Special cases with ZZ
type instance Add'     ZZ     ZZ Carry0 = ZZ
type instance Add'     ZZ (Dn n) Carry0 = (Dn n)
type instance Add'     ZZ (D0 n) Carry0 = (D0 n)
type instance Add'     ZZ (D1 n) Carry0 = (D1 n)
type instance Add' (Dn n)     ZZ Carry0 = (Dn n)
type instance Add' (D0 n)     ZZ Carry0 = (D0 n)
type instance Add' (D1 n)     ZZ Carry0 = (D1 n)
--
type instance Add'     ZZ     ZZ CarryN = Dn ZZ
type instance Add'     ZZ (Dn n) CarryN = Prev (Dn n)
type instance Add'     ZZ (D0 n) CarryN = (Dn n)
type instance Add'     ZZ (D1 n) CarryN = (D0 n)
type instance Add' (Dn n)     ZZ CarryN = Prev (Dn n)
type instance Add' (D0 n)     ZZ CarryN = (Dn n)
type instance Add' (D1 n)     ZZ CarryN = (D0 n)
--
type instance Add'     ZZ     ZZ Carry1 = D1 ZZ
type instance Add'     ZZ (Dn n) Carry1 = (D0 n)
type instance Add'     ZZ (D0 n) Carry1 = (D1 n)
type instance Add'     ZZ (D1 n) Carry1 = Next (D1 n)
type instance Add' (Dn n)     ZZ Carry1 = (D0 n)
type instance Add' (D0 n)     ZZ Carry1 = (D1 n)
type instance Add' (D1 n)     ZZ Carry1 = Next (D1 n)

-- == General recursion ==
-- No carry
type instance Add' (Dn n) (Dn m) Carry0 = D1 (Add' n m CarryN)
type instance Add' (D0 n) (Dn m) Carry0 = Dn (Add' n m Carry0)
type instance Add' (D1 n) (Dn m) Carry0 = D0 (Add' n m Carry0)
--
type instance Add' (Dn n) (D0 m) Carry0 = Dn (Add' n m Carry0)
type instance Add' (D0 n) (D0 m) Carry0 = D0 (Add' n m Carry0)
type instance Add' (D1 n) (D0 m) Carry0 = D1 (Add' n m Carry0)
--
type instance Add' (Dn n) (D1 m) Carry0 = D0 (Add' n m Carry0)
type instance Add' (D0 n) (D1 m) Carry0 = D1 (Add' n m Carry0)
type instance Add' (D1 n) (D1 m) Carry0 = Dn (Add' n m Carry1)
-- Carry '-'
type instance Add' (Dn n) (Dn m) CarryN = D0 (Add' n m CarryN)
type instance Add' (D0 n) (Dn m) CarryN = D1 (Add' n m CarryN)
type instance Add' (D1 n) (Dn m) CarryN = Dn (Add' n m Carry0)
--
type instance Add' (Dn n) (D0 m) CarryN = D1 (Add' n m CarryN)
type instance Add' (D0 n) (D0 m) CarryN = Dn (Add' n m Carry0)
type instance Add' (D1 n) (D0 m) CarryN = D0 (Add' n m Carry0)
--
type instance Add' (Dn n) (D1 m) CarryN = Dn (Add' n m Carry0)
type instance Add' (D0 n) (D1 m) CarryN = D0 (Add' n m Carry0)
type instance Add' (D1 n) (D1 m) CarryN = D1 (Add' n m Carry0)
-- Carry '+'
type instance Add' (Dn n) (Dn m) Carry1 = Dn (Add' n m Carry0)
type instance Add' (D0 n) (Dn m) Carry1 = D0 (Add' n m Carry0)
type instance Add' (D1 n) (Dn m) Carry1 = D1 (Add' n m Carry0)
--
type instance Add' (Dn n) (D0 m) Carry1 = D0 (Add' n m Carry0)
type instance Add' (D0 n) (D0 m) Carry1 = D1 (Add' n m Carry0)
type instance Add' (D1 n) (D0 m) Carry1 = Dn (Add' n m Carry1)
--
type instance Add' (Dn n) (D1 m) Carry1 = D1 (Add' n m Carry0)
type instance Add' (D0 n) (D1 m) Carry1 = Dn (Add' n m Carry1)
type instance Add' (D1 n) (D1 m) Carry1 = D0 (Add' n m Carry1)

-- Instances for AddN
type instance Add     ZZ     ZZ = ZZ
type instance Add     ZZ (Dn n) = Normalized (Dn n)
type instance Add     ZZ (D0 n) = Normalized (D0 n)
type instance Add     ZZ (D1 n) = Normalized (D1 n)
type instance Add (Dn n)     ZZ = Normalized (Dn n)
type instance Add (D0 n)     ZZ = Normalized (D0 n)
type instance Add (D1 n)     ZZ = Normalized (D1 n)
--
type instance Add (Dn n) (Dn m) = Normalized (Add' (Dn n) (Dn m) Carry0)
type instance Add (D0 n) (Dn m) = Normalized (Add' (D0 n) (Dn m) Carry0)
type instance Add (D1 n) (Dn m) = Normalized (Add' (D1 n) (Dn m) Carry0)
--
type instance Add (Dn n) (D0 m) = Normalized (Add' (Dn n) (D0 m) Carry0)
type instance Add (D0 n) (D0 m) = Normalized (Add' (D0 n) (D0 m) Carry0)
type instance Add (D1 n) (D0 m) = Normalized (Add' (D1 n) (D0 m) Carry0)
--
type instance Add (Dn n) (D1 m) = Normalized (Add' (Dn n) (D1 m) Carry0)
type instance Add (D0 n) (D1 m) = Normalized (Add' (D0 n) (D1 m) Carry0)
type instance Add (D1 n) (D1 m) = Normalized (Add' (D1 n) (D1 m) Carry0)


----------------------------------------------------------------
-- Subtraction.
--
-- Subtraction is much easier since is ise defined using
-- addition and negation

type instance Sub     ZZ     ZZ = ZZ
type instance Sub     ZZ (Dn n) = Negate (Dn n)
type instance Sub     ZZ (D0 n) = Negate (D0 n)
type instance Sub     ZZ (D1 n) = Negate (D1 n)
type instance Sub (Dn n)     ZZ = (Dn n)
type instance Sub (D0 n)     ZZ = (D0 n)
type instance Sub (D1 n)     ZZ = (D1 n)

type instance Sub (Dn n) (Dn m) = Add (Dn n) (Negate (Dn m))
type instance Sub (D0 n) (Dn m) = Add (D0 n) (Negate (Dn m))
type instance Sub (D1 n) (Dn m) = Add (D1 n) (Negate (Dn m))
--
type instance Sub (Dn n) (D0 m) = Add (Dn n) (Negate (D0 m))
type instance Sub (D0 n) (D0 m) = Add (D0 n) (Negate (D0 m))
type instance Sub (D1 n) (D0 m) = Add (D1 n) (Negate (D0 m))
--
type instance Sub (Dn n) (D1 m) = Add (Dn n) (Negate (D1 m))
type instance Sub (D0 n) (D1 m) = Add (D0 n) (Negate (D1 m))
type instance Sub (D1 n) (D1 m) = Add (D1 n) (Negate (D1 m))


----------------------------------------------------------------
-- Multiplication

type instance Mul n    ZZ  = ZZ
type instance Mul n (Dn m) = Normalized (Add' (Negate n) (D0 (Mul n m)) Carry0)
type instance Mul n (D0 m) = Normalized (D0 (Mul n m))
type instance Mul n (D1 m) = Normalized (Add'         n  (D0 (Mul n m)) Carry0)