1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
|
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE PatternGuards #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE UnboxedTuples #-}
{-# OPTIONS_HADDOCK not-home #-}
------------------------------------------------------------------------
-- |
-- Module : Data.HashMap.Strict
-- Copyright : 2010-2012 Johan Tibell
-- License : BSD-style
-- Maintainer : johan.tibell@gmail.com
-- Portability : portable
--
-- = WARNING
--
-- This module is considered __internal__.
--
-- The Package Versioning Policy __does not apply__.
--
-- The contents of this module may change __in any way whatsoever__
-- and __without any warning__ between minor versions of this package.
--
-- Authors importing this module are expected to track development
-- closely.
--
-- = Description
--
-- A map from /hashable/ keys to values. A map cannot contain
-- duplicate keys; each key can map to at most one value. A 'HashMap'
-- makes no guarantees as to the order of its elements.
--
-- The implementation is based on /hash array mapped tries/. A
-- 'HashMap' is often faster than other tree-based set types,
-- especially when key comparison is expensive, as in the case of
-- strings.
--
-- Many operations have a average-case complexity of \(O(\log n)\). The
-- implementation uses a large base (i.e. 32) so in practice these
-- operations are constant time.
module Data.HashMap.Internal.Strict
(
-- * Strictness properties
-- $strictness
HashMap
-- * Construction
, HM.empty
, singleton
-- * Basic interface
, HM.null
, HM.size
, HM.member
, HM.lookup
, (HM.!?)
, HM.findWithDefault
, HM.lookupDefault
, (HM.!)
, insert
, insertWith
, HM.delete
, adjust
, update
, alter
, alterF
, HM.isSubmapOf
, HM.isSubmapOfBy
-- * Combine
-- ** Union
, HM.union
, unionWith
, unionWithKey
, HM.unions
-- ** Compose
, HM.compose
-- * Transformations
, map
, mapWithKey
, traverseWithKey
, HM.mapKeys
-- * Difference and intersection
, HM.difference
, differenceWith
, HM.intersection
, intersectionWith
, intersectionWithKey
-- * Folds
, HM.foldMapWithKey
, HM.foldr'
, HM.foldl'
, HM.foldrWithKey'
, HM.foldlWithKey'
, HM.foldr
, HM.foldl
, HM.foldrWithKey
, HM.foldlWithKey
-- * Filter
, HM.filter
, HM.filterWithKey
, mapMaybe
, mapMaybeWithKey
-- * Conversions
, HM.keys
, HM.elems
-- ** Lists
, HM.toList
, fromList
, fromListWith
, fromListWithKey
) where
import Control.Applicative (Const (..))
import Control.Monad.ST (runST)
import Data.Bits ((.&.), (.|.))
import Data.Coerce (coerce)
import Data.Functor.Identity (Identity (..))
-- See Note [Imports from Data.HashMap.Internal]
import Data.Hashable (Hashable)
import Data.HashMap.Internal (Hash, HashMap (..), Leaf (..), LookupRes (..),
fullBitmap, hash, index, mask, nextShift, ptrEq,
sparseIndex)
import Prelude hiding (lookup, map)
-- See Note [Imports from Data.HashMap.Internal]
import qualified Data.HashMap.Internal as HM
import qualified Data.HashMap.Internal.Array as A
import qualified Data.List as List
import qualified GHC.Exts as Exts
{-
Note [Imports from Data.HashMap.Internal]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It is very important for code in this module not to make mistakes about
the strictness properties of any utilities. Mistakes can easily lead to space
leaks, see e.g. #383.
Therefore nearly all functions imported from Data.HashMap.Internal should be
imported qualified. Only functions that do not manipulate HashMaps or their
values are exempted.
-}
-- $strictness
--
-- This module satisfies the following strictness properties:
--
-- 1. Key arguments are evaluated to WHNF;
--
-- 2. Keys and values are evaluated to WHNF before they are stored in
-- the map.
------------------------------------------------------------------------
-- * Construction
-- | \(O(1)\) Construct a map with a single element.
singleton :: (Hashable k) => k -> v -> HashMap k v
singleton k !v = HM.singleton k v
------------------------------------------------------------------------
-- * Basic interface
-- | \(O(\log n)\) Associate the specified value with the specified
-- key in this map. If this map previously contained a mapping for
-- the key, the old value is replaced.
insert :: (Eq k, Hashable k) => k -> v -> HashMap k v -> HashMap k v
insert k !v = HM.insert k v
{-# INLINABLE insert #-}
-- | \(O(\log n)\) Associate the value with the key in this map. If
-- this map previously contained a mapping for the key, the old value
-- is replaced by the result of applying the given function to the new
-- and old value. Example:
--
-- > insertWith f k v map
-- > where f new old = new + old
insertWith :: (Eq k, Hashable k) => (v -> v -> v) -> k -> v -> HashMap k v
-> HashMap k v
insertWith f k0 v0 m0 = go h0 k0 v0 0 m0
where
h0 = hash k0
go !h !k x !_ Empty = leaf h k x
go h k x s t@(Leaf hy l@(L ky y))
| hy == h = if ky == k
then leaf h k (f x y)
else x `seq` HM.collision h l (L k x)
| otherwise = x `seq` runST (HM.two s h k x hy t)
go h k x s (BitmapIndexed b ary)
| b .&. m == 0 =
let ary' = A.insert ary i $! leaf h k x
in HM.bitmapIndexedOrFull (b .|. m) ary'
| otherwise =
let st = A.index ary i
st' = go h k x (nextShift s) st
ary' = A.update ary i $! st'
in BitmapIndexed b ary'
where m = mask h s
i = sparseIndex b m
go h k x s (Full ary) =
let st = A.index ary i
st' = go h k x (nextShift s) st
ary' = HM.update32 ary i $! st'
in Full ary'
where i = index h s
go h k x s t@(Collision hy v)
| h == hy = Collision h (updateOrSnocWith f k x v)
| otherwise = go h k x s $ BitmapIndexed (mask hy s) (A.singleton t)
{-# INLINABLE insertWith #-}
-- | In-place update version of insertWith
unsafeInsertWith :: (Eq k, Hashable k) => (v -> v -> v) -> k -> v -> HashMap k v
-> HashMap k v
unsafeInsertWith f k0 v0 m0 = unsafeInsertWithKey (const f) k0 v0 m0
{-# INLINABLE unsafeInsertWith #-}
unsafeInsertWithKey :: (Eq k, Hashable k) => (k -> v -> v -> v) -> k -> v -> HashMap k v
-> HashMap k v
unsafeInsertWithKey f k0 v0 m0 = runST (go h0 k0 v0 0 m0)
where
h0 = hash k0
go !h !k x !_ Empty = return $! leaf h k x
go h k x s t@(Leaf hy l@(L ky y))
| hy == h = if ky == k
then return $! leaf h k (f k x y)
else do
let l' = x `seq` L k x
return $! HM.collision h l l'
| otherwise = x `seq` HM.two s h k x hy t
go h k x s t@(BitmapIndexed b ary)
| b .&. m == 0 = do
ary' <- A.insertM ary i $! leaf h k x
return $! HM.bitmapIndexedOrFull (b .|. m) ary'
| otherwise = do
st <- A.indexM ary i
st' <- go h k x (nextShift s) st
A.unsafeUpdateM ary i st'
return t
where m = mask h s
i = sparseIndex b m
go h k x s t@(Full ary) = do
st <- A.indexM ary i
st' <- go h k x (nextShift s) st
A.unsafeUpdateM ary i st'
return t
where i = index h s
go h k x s t@(Collision hy v)
| h == hy = return $! Collision h (updateOrSnocWithKey f k x v)
| otherwise = go h k x s $ BitmapIndexed (mask hy s) (A.singleton t)
{-# INLINABLE unsafeInsertWithKey #-}
-- | \(O(\log n)\) Adjust the value tied to a given key in this map only
-- if it is present. Otherwise, leave the map alone.
adjust :: (Eq k, Hashable k) => (v -> v) -> k -> HashMap k v -> HashMap k v
adjust f k0 m0 = go h0 k0 0 m0
where
h0 = hash k0
go !_ !_ !_ Empty = Empty
go h k _ t@(Leaf hy (L ky y))
| hy == h && ky == k = leaf h k (f y)
| otherwise = t
go h k s t@(BitmapIndexed b ary)
| b .&. m == 0 = t
| otherwise = let st = A.index ary i
st' = go h k (nextShift s) st
ary' = A.update ary i $! st'
in BitmapIndexed b ary'
where m = mask h s
i = sparseIndex b m
go h k s (Full ary) =
let i = index h s
st = A.index ary i
st' = go h k (nextShift s) st
ary' = HM.update32 ary i $! st'
in Full ary'
go h k _ t@(Collision hy v)
| h == hy = Collision h (updateWith f k v)
| otherwise = t
{-# INLINABLE adjust #-}
-- | \(O(\log n)\) The expression @('update' f k map)@ updates the value @x@ at @k@
-- (if it is in the map). If @(f x)@ is 'Nothing', the element is deleted.
-- If it is @('Just' y)@, the key @k@ is bound to the new value @y@.
update :: (Eq k, Hashable k) => (a -> Maybe a) -> k -> HashMap k a -> HashMap k a
update f = alter (>>= f)
{-# INLINABLE update #-}
-- | \(O(\log n)\) The expression @('alter' f k map)@ alters the value @x@ at @k@, or
-- absence thereof.
--
-- 'alter' can be used to insert, delete, or update a value in a map. In short:
--
-- @
-- 'lookup' k ('alter' f k m) = f ('lookup' k m)
-- @
alter :: (Eq k, Hashable k) => (Maybe v -> Maybe v) -> k -> HashMap k v -> HashMap k v
alter f k m =
let !h = hash k
!lookupRes = HM.lookupRecordCollision h k m
in case f (HM.lookupResToMaybe lookupRes) of
Nothing -> case lookupRes of
Absent -> m
Present _ collPos -> HM.deleteKeyExists collPos h k m
Just !v' -> case lookupRes of
Absent -> HM.insertNewKey h k v' m
Present v collPos ->
if v `ptrEq` v'
then m
else HM.insertKeyExists collPos h k v' m
{-# INLINABLE alter #-}
-- | \(O(\log n)\) The expression (@'alterF' f k map@) alters the value @x@ at
-- @k@, or absence thereof.
--
-- 'alterF' can be used to insert, delete, or update a value in a map.
--
-- Note: 'alterF' is a flipped version of the 'at' combinator from
-- <https://hackage.haskell.org/package/lens/docs/Control-Lens-At.html#v:at Control.Lens.At>.
--
-- @since 0.2.10
alterF :: (Functor f, Eq k, Hashable k)
=> (Maybe v -> f (Maybe v)) -> k -> HashMap k v -> f (HashMap k v)
-- Special care is taken to only calculate the hash once. When we rewrite
-- with RULES, we also ensure that we only compare the key for equality
-- once. We force the value of the map for consistency with the rewritten
-- version; otherwise someone could tell the difference using a lazy
-- @f@ and a functor that is similar to Const but not actually Const.
alterF f = \ !k !m ->
let !h = hash k
mv = HM.lookup' h k m
in (<$> f mv) $ \case
Nothing -> maybe m (const (HM.delete' h k m)) mv
Just !v' -> HM.insert' h k v' m
-- We rewrite this function unconditionally in RULES, but we expose
-- an unfolding just in case it's used in a context where the rules
-- don't fire.
{-# INLINABLE [0] alterF #-}
-- See notes in Data.HashMap.Internal
test_bottom :: a
test_bottom = error "Data.HashMap.alterF internal error: hit test_bottom"
bogus# :: (# #) -> (# a #)
bogus# _ = error "Data.HashMap.alterF internal error: hit bogus#"
impossibleAdjust :: a
impossibleAdjust = error "Data.HashMap.alterF internal error: impossible adjust"
{-# RULES
-- See detailed notes on alterF rules in Data.HashMap.Internal.
"alterFWeird" forall f. alterF f =
alterFWeird (f Nothing) (f (Just test_bottom)) f
"alterFconstant" forall (f :: Maybe a -> Identity (Maybe a)) x.
alterFWeird x x f = \ !k !m ->
Identity (case runIdentity x of {Nothing -> HM.delete k m; Just a -> insert k a m})
"alterFinsertWith" [1] forall (f :: Maybe a -> Identity (Maybe a)) x y.
alterFWeird (coerce (Just x)) (coerce (Just y)) f =
coerce (HM.insertModifying x (\mold -> case runIdentity (f (Just mold)) of
Nothing -> bogus# (# #)
Just !new -> (# new #)))
-- This rule is written a bit differently than the one for lazy
-- maps because the adjust here is strict. We could write it the
-- same general way anyway, but this seems simpler.
"alterFadjust" forall (f :: Maybe a -> Identity (Maybe a)) x.
alterFWeird (coerce Nothing) (coerce (Just x)) f =
coerce (adjust (\a -> case runIdentity (f (Just a)) of
Just a' -> a'
Nothing -> impossibleAdjust))
"alterFlookup" forall _ign1 _ign2 (f :: Maybe a -> Const r (Maybe a)) .
alterFWeird _ign1 _ign2 f = \ !k !m -> Const (getConst (f (HM.lookup k m)))
#-}
-- This is a very unsafe version of alterF used for RULES. When calling
-- alterFWeird x y f, the following *must* hold:
--
-- x = f Nothing
-- y = f (Just _|_)
--
-- Failure to abide by these laws will make demons come out of your nose.
alterFWeird
:: (Functor f, Eq k, Hashable k)
=> f (Maybe v)
-> f (Maybe v)
-> (Maybe v -> f (Maybe v)) -> k -> HashMap k v -> f (HashMap k v)
alterFWeird _ _ f = alterFEager f
{-# INLINE [0] alterFWeird #-}
-- | This is the default version of alterF that we use in most non-trivial
-- cases. It's called "eager" because it looks up the given key in the map
-- eagerly, whether or not the given function requires that information.
alterFEager :: (Functor f, Eq k, Hashable k)
=> (Maybe v -> f (Maybe v)) -> k -> HashMap k v -> f (HashMap k v)
alterFEager f !k !m = (<$> f mv) $ \fres ->
case fres of
------------------------------
-- Delete the key from the map.
Nothing -> case lookupRes of
-- Key did not exist in the map to begin with, no-op
Absent -> m
-- Key did exist, no collision
Present _ collPos -> HM.deleteKeyExists collPos h k m
------------------------------
-- Update value
Just !v' -> case lookupRes of
-- Key did not exist before, insert v' under a new key
Absent -> HM.insertNewKey h k v' m
-- Key existed before, no hash collision
Present v collPos ->
if v `ptrEq` v'
-- If the value is identical, no-op
then m
-- If the value changed, update the value.
else HM.insertKeyExists collPos h k v' m
where !h = hash k
!lookupRes = HM.lookupRecordCollision h k m
!mv = HM.lookupResToMaybe lookupRes
{-# INLINABLE alterFEager #-}
------------------------------------------------------------------------
-- * Combine
-- | \(O(n+m)\) The union of two maps. If a key occurs in both maps,
-- the provided function (first argument) will be used to compute the result.
unionWith :: Eq k => (v -> v -> v) -> HashMap k v -> HashMap k v
-> HashMap k v
unionWith f = unionWithKey (const f)
{-# INLINE unionWith #-}
-- | \(O(n+m)\) The union of two maps. If a key occurs in both maps,
-- the provided function (first argument) will be used to compute the result.
unionWithKey :: Eq k => (k -> v -> v -> v) -> HashMap k v -> HashMap k v
-> HashMap k v
unionWithKey f = go 0
where
-- empty vs. anything
go !_ t1 Empty = t1
go _ Empty t2 = t2
-- leaf vs. leaf
go s t1@(Leaf h1 l1@(L k1 v1)) t2@(Leaf h2 l2@(L k2 v2))
| h1 == h2 = if k1 == k2
then leaf h1 k1 (f k1 v1 v2)
else HM.collision h1 l1 l2
| otherwise = goDifferentHash s h1 h2 t1 t2
go s t1@(Leaf h1 (L k1 v1)) t2@(Collision h2 ls2)
| h1 == h2 = Collision h1 (updateOrSnocWithKey f k1 v1 ls2)
| otherwise = goDifferentHash s h1 h2 t1 t2
go s t1@(Collision h1 ls1) t2@(Leaf h2 (L k2 v2))
| h1 == h2 = Collision h1 (updateOrSnocWithKey (flip . f) k2 v2 ls1)
| otherwise = goDifferentHash s h1 h2 t1 t2
go s t1@(Collision h1 ls1) t2@(Collision h2 ls2)
| h1 == h2 = Collision h1 (HM.updateOrConcatWithKey (\k a b -> let !v = f k a b in (# v #)) ls1 ls2)
| otherwise = goDifferentHash s h1 h2 t1 t2
-- branch vs. branch
go s (BitmapIndexed b1 ary1) (BitmapIndexed b2 ary2) =
let b' = b1 .|. b2
ary' = HM.unionArrayBy (go (nextShift s)) b1 b2 ary1 ary2
in HM.bitmapIndexedOrFull b' ary'
go s (BitmapIndexed b1 ary1) (Full ary2) =
let ary' = HM.unionArrayBy (go (nextShift s)) b1 fullBitmap ary1 ary2
in Full ary'
go s (Full ary1) (BitmapIndexed b2 ary2) =
let ary' = HM.unionArrayBy (go (nextShift s)) fullBitmap b2 ary1 ary2
in Full ary'
go s (Full ary1) (Full ary2) =
let ary' = HM.unionArrayBy (go (nextShift s)) fullBitmap fullBitmap
ary1 ary2
in Full ary'
-- leaf vs. branch
go s (BitmapIndexed b1 ary1) t2
| b1 .&. m2 == 0 = let ary' = A.insert ary1 i t2
b' = b1 .|. m2
in HM.bitmapIndexedOrFull b' ary'
| otherwise = let ary' = A.updateWith' ary1 i $ \st1 ->
go (nextShift s) st1 t2
in BitmapIndexed b1 ary'
where
h2 = leafHashCode t2
m2 = mask h2 s
i = sparseIndex b1 m2
go s t1 (BitmapIndexed b2 ary2)
| b2 .&. m1 == 0 = let ary' = A.insert ary2 i $! t1
b' = b2 .|. m1
in HM.bitmapIndexedOrFull b' ary'
| otherwise = let ary' = A.updateWith' ary2 i $ \st2 ->
go (nextShift s) t1 st2
in BitmapIndexed b2 ary'
where
h1 = leafHashCode t1
m1 = mask h1 s
i = sparseIndex b2 m1
go s (Full ary1) t2 =
let h2 = leafHashCode t2
i = index h2 s
ary' = HM.update32With' ary1 i $ \st1 -> go (nextShift s) st1 t2
in Full ary'
go s t1 (Full ary2) =
let h1 = leafHashCode t1
i = index h1 s
ary' = HM.update32With' ary2 i $ \st2 -> go (nextShift s) t1 st2
in Full ary'
leafHashCode (Leaf h _) = h
leafHashCode (Collision h _) = h
leafHashCode _ = error "leafHashCode"
goDifferentHash s h1 h2 t1 t2
| m1 == m2 = BitmapIndexed m1 (A.singleton $! goDifferentHash (nextShift s) h1 h2 t1 t2)
| m1 < m2 = BitmapIndexed (m1 .|. m2) (A.pair t1 t2)
| otherwise = BitmapIndexed (m1 .|. m2) (A.pair t2 t1)
where
m1 = mask h1 s
m2 = mask h2 s
{-# INLINE unionWithKey #-}
------------------------------------------------------------------------
-- * Transformations
-- | \(O(n)\) Transform this map by applying a function to every value.
mapWithKey :: (k -> v1 -> v2) -> HashMap k v1 -> HashMap k v2
mapWithKey f = go
where
go Empty = Empty
go (Leaf h (L k v)) = leaf h k (f k v)
go (BitmapIndexed b ary) = BitmapIndexed b $ A.map' go ary
go (Full ary) = Full $ A.map' go ary
go (Collision h ary) =
Collision h $ A.map' (\ (L k v) -> let !v' = f k v in L k v') ary
{-# INLINE mapWithKey #-}
-- | \(O(n)\) Transform this map by applying a function to every value.
map :: (v1 -> v2) -> HashMap k v1 -> HashMap k v2
map f = mapWithKey (const f)
{-# INLINE map #-}
------------------------------------------------------------------------
-- * Filter
-- | \(O(n)\) Transform this map by applying a function to every value
-- and retaining only some of them.
mapMaybeWithKey :: (k -> v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
mapMaybeWithKey f = HM.filterMapAux onLeaf onColl
where onLeaf (Leaf h (L k v)) | Just v' <- f k v = Just (leaf h k v')
onLeaf _ = Nothing
onColl (L k v) | Just !v' <- f k v = Just (L k v')
| otherwise = Nothing
{-# INLINE mapMaybeWithKey #-}
-- | \(O(n)\) Transform this map by applying a function to every value
-- and retaining only some of them.
mapMaybe :: (v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
mapMaybe f = mapMaybeWithKey (const f)
{-# INLINE mapMaybe #-}
-- | \(O(n)\) Perform an 'Applicative' action for each key-value pair
-- in a 'HashMap' and produce a 'HashMap' of all the results. Each 'HashMap'
-- will be strict in all its values.
--
-- @
-- traverseWithKey f = fmap ('map' id) . "Data.HashMap.Lazy".'Data.HashMap.Lazy.traverseWithKey' f
-- @
--
-- Note: the order in which the actions occur is unspecified. In particular,
-- when the map contains hash collisions, the order in which the actions
-- associated with the keys involved will depend in an unspecified way on
-- their insertion order.
traverseWithKey
:: Applicative f
=> (k -> v1 -> f v2)
-> HashMap k v1 -> f (HashMap k v2)
traverseWithKey f = go
where
go Empty = pure Empty
go (Leaf h (L k v)) = leaf h k <$> f k v
go (BitmapIndexed b ary) = BitmapIndexed b <$> A.traverse' go ary
go (Full ary) = Full <$> A.traverse' go ary
go (Collision h ary) =
Collision h <$> A.traverse' (\ (L k v) -> (L k $!) <$> f k v) ary
{-# INLINE traverseWithKey #-}
------------------------------------------------------------------------
-- * Difference and intersection
-- | \(O(n \log m)\) Difference with a combining function. When two equal keys are
-- encountered, the combining function is applied to the values of these keys.
-- If it returns 'Nothing', the element is discarded (proper set difference). If
-- it returns (@'Just' y@), the element is updated with a new value @y@.
differenceWith :: (Eq k, Hashable k) => (v -> w -> Maybe v) -> HashMap k v -> HashMap k w -> HashMap k v
differenceWith f a b = HM.foldlWithKey' go HM.empty a
where
go m k v = case HM.lookup k b of
Nothing -> v `seq` HM.unsafeInsert k v m
Just w -> maybe m (\ !y -> HM.unsafeInsert k y m) (f v w)
{-# INLINABLE differenceWith #-}
-- | \(O(n+m)\) Intersection of two maps. If a key occurs in both maps
-- the provided function is used to combine the values from the two
-- maps.
intersectionWith :: Eq k => (v1 -> v2 -> v3) -> HashMap k v1
-> HashMap k v2 -> HashMap k v3
intersectionWith f = Exts.inline intersectionWithKey $ const f
{-# INLINABLE intersectionWith #-}
-- | \(O(n+m)\) Intersection of two maps. If a key occurs in both maps
-- the provided function is used to combine the values from the two
-- maps.
intersectionWithKey :: Eq k => (k -> v1 -> v2 -> v3)
-> HashMap k v1 -> HashMap k v2 -> HashMap k v3
intersectionWithKey f = HM.intersectionWithKey# $ \k v1 v2 -> let !v3 = f k v1 v2 in (# v3 #)
{-# INLINABLE intersectionWithKey #-}
------------------------------------------------------------------------
-- ** Lists
-- | \(O(n \log n)\) Construct a map with the supplied mappings. If the
-- list contains duplicate mappings, the later mappings take
-- precedence.
fromList :: (Eq k, Hashable k) => [(k, v)] -> HashMap k v
fromList = List.foldl' (\ m (k, !v) -> HM.unsafeInsert k v m) HM.empty
{-# INLINABLE fromList #-}
-- | \(O(n \log n)\) Construct a map from a list of elements. Uses
-- the provided function @f@ to merge duplicate entries with
-- @(f newVal oldVal)@.
--
-- === Examples
--
-- Given a list @xs@, create a map with the number of occurrences of each
-- element in @xs@:
--
-- > let xs = ['a', 'b', 'a']
-- > in fromListWith (+) [ (x, 1) | x <- xs ]
-- >
-- > = fromList [('a', 2), ('b', 1)]
--
-- Given a list of key-value pairs @xs :: [(k, v)]@, group all values by their
-- keys and return a @HashMap k [v]@.
--
-- > let xs = ('a', 1), ('b', 2), ('a', 3)]
-- > in fromListWith (++) [ (k, [v]) | (k, v) <- xs ]
-- >
-- > = fromList [('a', [3, 1]), ('b', [2])]
--
-- Note that the lists in the resulting map contain elements in reverse order
-- from their occurrences in the original list.
--
-- More generally, duplicate entries are accumulated as follows;
-- this matters when @f@ is not commutative or not associative.
--
-- > fromListWith f [(k, a), (k, b), (k, c), (k, d)]
-- > = fromList [(k, f d (f c (f b a)))]
fromListWith :: (Eq k, Hashable k) => (v -> v -> v) -> [(k, v)] -> HashMap k v
fromListWith f = List.foldl' (\ m (k, v) -> unsafeInsertWith f k v m) HM.empty
{-# INLINE fromListWith #-}
-- | \(O(n \log n)\) Construct a map from a list of elements. Uses
-- the provided function to merge duplicate entries.
--
-- === Examples
--
-- Given a list of key-value pairs where the keys are of different flavours, e.g:
--
-- > data Key = Div | Sub
--
-- and the values need to be combined differently when there are duplicates,
-- depending on the key:
--
-- > combine Div = div
-- > combine Sub = (-)
--
-- then @fromListWithKey@ can be used as follows:
--
-- > fromListWithKey combine [(Div, 2), (Div, 6), (Sub, 2), (Sub, 3)]
-- > = fromList [(Div, 3), (Sub, 1)]
--
-- More generally, duplicate entries are accumulated as follows;
--
-- > fromListWith f [(k, a), (k, b), (k, c), (k, d)]
-- > = fromList [(k, f k d (f k c (f k b a)))]
--
-- @since 0.2.11
fromListWithKey :: (Eq k, Hashable k) => (k -> v -> v -> v) -> [(k, v)] -> HashMap k v
fromListWithKey f = List.foldl' (\ m (k, v) -> unsafeInsertWithKey f k v m) HM.empty
{-# INLINE fromListWithKey #-}
------------------------------------------------------------------------
-- Array operations
updateWith :: Eq k => (v -> v) -> k -> A.Array (Leaf k v) -> A.Array (Leaf k v)
updateWith f k0 ary0 = go k0 ary0 0 (A.length ary0)
where
go !k !ary !i !n
| i >= n = ary
| otherwise = case A.index ary i of
(L kx y) | k == kx -> let !v' = f y in A.update ary i (L k v')
| otherwise -> go k ary (i+1) n
{-# INLINABLE updateWith #-}
-- | Append the given key and value to the array. If the key is
-- already present, instead update the value of the key by applying
-- the given function to the new and old value (in that order). The
-- value is always evaluated to WHNF before being inserted into the
-- array.
updateOrSnocWith :: Eq k => (v -> v -> v) -> k -> v -> A.Array (Leaf k v)
-> A.Array (Leaf k v)
updateOrSnocWith f = updateOrSnocWithKey (const f)
{-# INLINABLE updateOrSnocWith #-}
-- | Append the given key and value to the array. If the key is
-- already present, instead update the value of the key by applying
-- the given function to the new and old value (in that order). The
-- value is always evaluated to WHNF before being inserted into the
-- array.
updateOrSnocWithKey :: Eq k => (k -> v -> v -> v) -> k -> v -> A.Array (Leaf k v)
-> A.Array (Leaf k v)
updateOrSnocWithKey f k0 v0 ary0 = go k0 v0 ary0 0 (A.length ary0)
where
go !k v !ary !i !n
-- Not found, append to the end.
| i >= n = A.snoc ary $! L k $! v
| otherwise = case A.index ary i of
(L kx y) | k == kx -> let !v' = f k v y in A.update ary i (L k v')
| otherwise -> go k v ary (i+1) n
{-# INLINABLE updateOrSnocWithKey #-}
------------------------------------------------------------------------
-- Smart constructors
--
-- These constructors make sure the value is in WHNF before it's
-- inserted into the constructor.
leaf :: Hash -> k -> v -> HashMap k v
leaf h k = \ !v -> Leaf h (L k v)
{-# INLINE leaf #-}
|