1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveLift #-}
{-# LANGUAGE RoleAnnotations #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE TypeFamilies #-}
{-# OPTIONS_HADDOCK not-home #-}
------------------------------------------------------------------------
-- |
-- Module : Data.HashSet.Internal
-- Copyright : 2011 Bryan O'Sullivan
-- License : BSD-style
-- Maintainer : johan.tibell@gmail.com
-- Portability : portable
--
-- = WARNING
--
-- This module is considered __internal__.
--
-- The Package Versioning Policy __does not apply__.
--
-- The contents of this module may change __in any way whatsoever__
-- and __without any warning__ between minor versions of this package.
--
-- Authors importing this module are expected to track development
-- closely.
--
-- = Description
--
-- A set of /hashable/ values. A set cannot contain duplicate items.
-- A 'HashSet' makes no guarantees as to the order of its elements.
--
-- The implementation is based on /hash array mapped tries/. A
-- 'HashSet' is often faster than other tree-based set types,
-- especially when value comparison is expensive, as in the case of
-- strings.
--
-- Many operations have a average-case complexity of \(O(\log n)\). The
-- implementation uses a large base (i.e. 32) so in practice these
-- operations are constant time.
module Data.HashSet.Internal
(
HashSet(..)
-- * Construction
, empty
, singleton
-- * Basic interface
, null
, size
, member
, insert
, delete
, isSubsetOf
-- * Transformations
, map
-- * Combine
, union
, unions
-- * Difference and intersection
, difference
, intersection
-- * Folds
, foldr
, foldr'
, foldl
, foldl'
-- * Filter
, filter
-- * Conversions
-- ** Lists
, toList
, fromList
-- * HashMaps
, toMap
, fromMap
-- Exported from Data.HashMap.{Strict, Lazy}
, keysSet
) where
import Control.DeepSeq (NFData (..), NFData1 (..), liftRnf2)
import Data.Data (Constr, Data (..), DataType)
import Data.Functor.Classes
import Data.Hashable (Hashable (hashWithSalt))
import Data.Hashable.Lifted (Hashable1 (..), Hashable2 (..))
import Data.HashMap.Internal (HashMap, equalKeys, equalKeys1, foldMapWithKey,
foldlWithKey, foldrWithKey)
import Data.Semigroup (Semigroup (..), stimesIdempotentMonoid)
import Prelude hiding (Foldable(..), filter, map)
import Text.Read
import qualified Data.Data as Data
import qualified Data.Foldable as Foldable
import qualified Data.HashMap.Internal as H
import qualified Data.List as List
import qualified GHC.Exts as Exts
import qualified Language.Haskell.TH.Syntax as TH
-- | A set of values. A set cannot contain duplicate values.
newtype HashSet a = HashSet {
asMap :: HashMap a ()
}
type role HashSet nominal
-- | @since 0.2.17.0
deriving instance TH.Lift a => TH.Lift (HashSet a)
instance (NFData a) => NFData (HashSet a) where
rnf = rnf . asMap
{-# INLINE rnf #-}
-- | @since 0.2.14.0
instance NFData1 HashSet where
liftRnf rnf1 = liftRnf2 rnf1 rnf . asMap
-- | Note that, in the presence of hash collisions, equal @HashSet@s may
-- behave differently, i.e. extensionality may be violated:
--
-- >>> data D = A | B deriving (Eq, Show)
-- >>> instance Hashable D where hashWithSalt salt _d = salt
--
-- >>> x = fromList [A, B]
-- >>> y = fromList [B, A]
--
-- >>> x == y
-- True
-- >>> toList x
-- [A,B]
-- >>> toList y
-- [B,A]
--
-- In general, the lack of extensionality can be observed with any function
-- that depends on the key ordering, such as folds and traversals.
instance (Eq a) => Eq (HashSet a) where
HashSet a == HashSet b = equalKeys a b
{-# INLINE (==) #-}
instance Eq1 HashSet where
liftEq eq (HashSet a) (HashSet b) = equalKeys1 eq a b
instance (Ord a) => Ord (HashSet a) where
compare (HashSet a) (HashSet b) = compare a b
{-# INLINE compare #-}
instance Ord1 HashSet where
liftCompare c (HashSet a) (HashSet b) = liftCompare2 c compare a b
instance Foldable.Foldable HashSet where
foldMap f = foldMapWithKey (\a _ -> f a) . asMap
foldr = foldr
{-# INLINE foldr #-}
foldl = foldl
{-# INLINE foldl #-}
foldl' = foldl'
{-# INLINE foldl' #-}
foldr' = foldr'
{-# INLINE foldr' #-}
toList = toList
{-# INLINE toList #-}
null = null
{-# INLINE null #-}
length = size
{-# INLINE length #-}
-- | '<>' = 'union'
--
-- \(O(n+m)\)
--
-- To obtain good performance, the smaller set must be presented as
-- the first argument.
--
-- ==== __Examples__
--
-- >>> fromList [1,2] <> fromList [2,3]
-- fromList [1,2,3]
instance (Hashable a, Eq a) => Semigroup (HashSet a) where
(<>) = union
{-# INLINE (<>) #-}
stimes = stimesIdempotentMonoid
{-# INLINE stimes #-}
-- | 'mempty' = 'empty'
--
-- 'mappend' = 'union'
--
-- \(O(n+m)\)
--
-- To obtain good performance, the smaller set must be presented as
-- the first argument.
--
-- ==== __Examples__
--
-- >>> mappend (fromList [1,2]) (fromList [2,3])
-- fromList [1,2,3]
instance (Hashable a, Eq a) => Monoid (HashSet a) where
mempty = empty
{-# INLINE mempty #-}
mappend = (<>)
{-# INLINE mappend #-}
instance (Eq a, Hashable a, Read a) => Read (HashSet a) where
readPrec = parens $ prec 10 $ do
Ident "fromList" <- lexP
fromList <$> readPrec
readListPrec = readListPrecDefault
instance Show1 HashSet where
liftShowsPrec sp sl d m =
showsUnaryWith (liftShowsPrec sp sl) "fromList" d (toList m)
instance (Show a) => Show (HashSet a) where
showsPrec d m = showParen (d > 10) $
showString "fromList " . shows (toList m)
instance (Data a, Eq a, Hashable a) => Data (HashSet a) where
gfoldl f z m = z fromList `f` toList m
toConstr _ = fromListConstr
gunfold k z c = case Data.constrIndex c of
1 -> k (z fromList)
_ -> error "gunfold"
dataTypeOf _ = hashSetDataType
dataCast1 f = Data.gcast1 f
instance Hashable1 HashSet where
liftHashWithSalt h s = liftHashWithSalt2 h hashWithSalt s . asMap
instance (Hashable a) => Hashable (HashSet a) where
hashWithSalt salt = hashWithSalt salt . asMap
fromListConstr :: Constr
fromListConstr = Data.mkConstr hashSetDataType "fromList" [] Data.Prefix
hashSetDataType :: DataType
hashSetDataType = Data.mkDataType "Data.HashSet.Internal.HashSet" [fromListConstr]
-- | \(O(1)\) Construct an empty set.
--
-- >>> HashSet.empty
-- fromList []
empty :: HashSet a
empty = HashSet H.empty
-- | \(O(1)\) Construct a set with a single element.
--
-- >>> HashSet.singleton 1
-- fromList [1]
singleton :: Hashable a => a -> HashSet a
singleton a = HashSet (H.singleton a ())
{-# INLINABLE singleton #-}
-- | \(O(1)\) Convert to set to the equivalent 'HashMap' with @()@ values.
--
-- >>> HashSet.toMap (HashSet.singleton 1)
-- fromList [(1,())]
toMap :: HashSet a -> HashMap a ()
toMap = asMap
-- | \(O(1)\) Convert from the equivalent 'HashMap' with @()@ values.
--
-- >>> HashSet.fromMap (HashMap.singleton 1 ())
-- fromList [1]
fromMap :: HashMap a () -> HashSet a
fromMap = HashSet
-- | \(O(n)\) Produce a 'HashSet' of all the keys in the given 'HashMap'.
--
-- >>> HashSet.keysSet (HashMap.fromList [(1, "a"), (2, "b")]
-- fromList [1,2]
--
-- @since 0.2.10.0
keysSet :: HashMap k a -> HashSet k
keysSet m = fromMap (() <$ m)
-- | \(O(n \log m)\) Inclusion of sets.
--
-- ==== __Examples__
--
-- >>> fromList [1,3] `isSubsetOf` fromList [1,2,3]
-- True
--
-- >>> fromList [1,2] `isSubsetOf` fromList [1,3]
-- False
--
-- @since 0.2.12
isSubsetOf :: (Eq a, Hashable a) => HashSet a -> HashSet a -> Bool
isSubsetOf s1 s2 = H.isSubmapOfBy (\_ _ -> True) (asMap s1) (asMap s2)
-- | \(O(n+m)\) Construct a set containing all elements from both sets.
--
-- To obtain good performance, the smaller set must be presented as
-- the first argument.
--
-- >>> union (fromList [1,2]) (fromList [2,3])
-- fromList [1,2,3]
union :: Eq a => HashSet a -> HashSet a -> HashSet a
union s1 s2 = HashSet $ H.union (asMap s1) (asMap s2)
{-# INLINE union #-}
-- TODO: Figure out the time complexity of 'unions'.
-- | Construct a set containing all elements from a list of sets.
unions :: Eq a => [HashSet a] -> HashSet a
unions = List.foldl' union empty
{-# INLINE unions #-}
-- | \(O(1)\) Return 'True' if this set is empty, 'False' otherwise.
--
-- >>> HashSet.null HashSet.empty
-- True
-- >>> HashSet.null (HashSet.singleton 1)
-- False
null :: HashSet a -> Bool
null = H.null . asMap
{-# INLINE null #-}
-- | \(O(n)\) Return the number of elements in this set.
--
-- >>> HashSet.size HashSet.empty
-- 0
-- >>> HashSet.size (HashSet.fromList [1,2,3])
-- 3
size :: HashSet a -> Int
size = H.size . asMap
{-# INLINE size #-}
-- | \(O(\log n)\) Return 'True' if the given value is present in this
-- set, 'False' otherwise.
--
-- >>> HashSet.member 1 (Hashset.fromList [1,2,3])
-- True
-- >>> HashSet.member 1 (Hashset.fromList [4,5,6])
-- False
member :: (Eq a, Hashable a) => a -> HashSet a -> Bool
member a s = case H.lookup a (asMap s) of
Just _ -> True
_ -> False
{-# INLINABLE member #-}
-- | \(O(\log n)\) Add the specified value to this set.
--
-- >>> HashSet.insert 1 HashSet.empty
-- fromList [1]
insert :: (Eq a, Hashable a) => a -> HashSet a -> HashSet a
insert a = HashSet . H.insert a () . asMap
{-# INLINABLE insert #-}
-- | \(O(\log n)\) Remove the specified value from this set if present.
--
-- >>> HashSet.delete 1 (HashSet.fromList [1,2,3])
-- fromList [2,3]
-- >>> HashSet.delete 1 (HashSet.fromList [4,5,6])
-- fromList [4,5,6]
delete :: (Eq a, Hashable a) => a -> HashSet a -> HashSet a
delete a = HashSet . H.delete a . asMap
{-# INLINABLE delete #-}
-- | \(O(n)\) Transform this set by applying a function to every value.
-- The resulting set may be smaller than the source.
--
-- >>> HashSet.map show (HashSet.fromList [1,2,3])
-- HashSet.fromList ["1","2","3"]
map :: (Hashable b, Eq b) => (a -> b) -> HashSet a -> HashSet b
map f = fromList . List.map f . toList
{-# INLINE map #-}
-- | \(O(n)\) Difference of two sets. Return elements of the first set
-- not existing in the second.
--
-- >>> HashSet.difference (HashSet.fromList [1,2,3]) (HashSet.fromList [2,3,4])
-- fromList [1]
difference :: (Eq a, Hashable a) => HashSet a -> HashSet a -> HashSet a
difference (HashSet a) (HashSet b) = HashSet (H.difference a b)
{-# INLINABLE difference #-}
-- | \(O(n)\) Intersection of two sets. Return elements present in both
-- the first set and the second.
--
-- >>> HashSet.intersection (HashSet.fromList [1,2,3]) (HashSet.fromList [2,3,4])
-- fromList [2,3]
intersection :: Eq a => HashSet a -> HashSet a -> HashSet a
intersection (HashSet a) (HashSet b) = HashSet (H.intersection a b)
{-# INLINABLE intersection #-}
-- | \(O(n)\) Reduce this set by applying a binary operator to all
-- elements, using the given starting value (typically the
-- left-identity of the operator). Each application of the operator
-- is evaluated before before using the result in the next
-- application. This function is strict in the starting value.
foldl' :: (a -> b -> a) -> a -> HashSet b -> a
foldl' f z0 = H.foldlWithKey' g z0 . asMap
where g z k _ = f z k
{-# INLINE foldl' #-}
-- | \(O(n)\) Reduce this set by applying a binary operator to all
-- elements, using the given starting value (typically the
-- right-identity of the operator). Each application of the operator
-- is evaluated before before using the result in the next
-- application. This function is strict in the starting value.
foldr' :: (b -> a -> a) -> a -> HashSet b -> a
foldr' f z0 = H.foldrWithKey' g z0 . asMap
where g k _ z = f k z
{-# INLINE foldr' #-}
-- | \(O(n)\) Reduce this set by applying a binary operator to all
-- elements, using the given starting value (typically the
-- right-identity of the operator).
foldr :: (b -> a -> a) -> a -> HashSet b -> a
foldr f z0 = foldrWithKey g z0 . asMap
where g k _ z = f k z
{-# INLINE foldr #-}
-- | \(O(n)\) Reduce this set by applying a binary operator to all
-- elements, using the given starting value (typically the
-- left-identity of the operator).
foldl :: (a -> b -> a) -> a -> HashSet b -> a
foldl f z0 = foldlWithKey g z0 . asMap
where g z k _ = f z k
{-# INLINE foldl #-}
-- | \(O(n)\) Filter this set by retaining only elements satisfying a
-- predicate.
filter :: (a -> Bool) -> HashSet a -> HashSet a
filter p = HashSet . H.filterWithKey q . asMap
where q k _ = p k
{-# INLINE filter #-}
-- | \(O(n)\) Return a list of this set's elements. The list is
-- produced lazily.
toList :: HashSet a -> [a]
toList t = Exts.build (\ c z -> foldrWithKey (const . c) z (asMap t))
{-# INLINE toList #-}
-- | \(O(n \min(W, n))\) Construct a set from a list of elements.
fromList :: (Eq a, Hashable a) => [a] -> HashSet a
fromList = HashSet . List.foldl' (\ m k -> H.insert k () m) H.empty
{-# INLINE fromList #-}
instance (Eq a, Hashable a) => Exts.IsList (HashSet a) where
type Item (HashSet a) = a
fromList = fromList
toList = toList
|