File: Array.hs

package info (click to toggle)
haskell-unordered-containers 0.2.20.1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 372 kB
  • sloc: haskell: 4,463; makefile: 6
file content (609 lines) | stat: -rw-r--r-- 18,337 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
{-# LANGUAGE BangPatterns          #-}
{-# LANGUAGE CPP                   #-}
{-# LANGUAGE MagicHash             #-}
{-# LANGUAGE Rank2Types            #-}
{-# LANGUAGE ScopedTypeVariables   #-}
{-# LANGUAGE TemplateHaskellQuotes #-}
{-# LANGUAGE UnboxedTuples         #-}
{-# OPTIONS_GHC -fno-full-laziness -funbox-strict-fields #-}
{-# OPTIONS_HADDOCK not-home #-}

-- | = WARNING
--
-- This module is considered __internal__.
--
-- The Package Versioning Policy __does not apply__.
--
-- The contents of this module may change __in any way whatsoever__
-- and __without any warning__ between minor versions of this package.
--
-- Authors importing this module are expected to track development
-- closely.
--
-- = Description
--
-- Zero based arrays.
--
-- Note that no bounds checking are performed.
module Data.HashMap.Internal.Array
    ( Array(..)
    , MArray(..)

      -- * Creation
    , new
    , new_
    , singleton
    , singletonM
    , snoc
    , pair

      -- * Basic interface
    , length
    , lengthM
    , read
    , write
    , index
    , indexM
    , index#
    , update
    , updateWith'
    , unsafeUpdateM
    , insert
    , insertM
    , delete
    , sameArray1

    , unsafeFreeze
    , unsafeThaw
    , unsafeSameArray
    , run
    , copy
    , copyM
    , cloneM

      -- * Folds
    , foldl
    , foldl'
    , foldr
    , foldr'
    , foldMap
    , all

    , thaw
    , map
    , map'
    , traverse
    , traverse'
    , toList
    , fromList
    , fromList'
    , shrink
    ) where

import Control.Applicative (liftA2)
import Control.DeepSeq     (NFData (..), NFData1 (..))
import Control.Monad       ((>=>))
import Control.Monad.ST    (runST, stToIO)
import GHC.Exts            (Int (..), SmallArray#, SmallMutableArray#,
                            cloneSmallMutableArray#, copySmallArray#,
                            copySmallMutableArray#, indexSmallArray#,
                            newSmallArray#, readSmallArray#,
                            reallyUnsafePtrEquality#, sizeofSmallArray#,
                            sizeofSmallMutableArray#, tagToEnum#,
                            thawSmallArray#, unsafeCoerce#,
                            unsafeFreezeSmallArray#, unsafeThawSmallArray#,
                            writeSmallArray#)
import GHC.ST              (ST (..))
import Prelude             hiding (Foldable(..), all, filter,
                            map, read, traverse)

import qualified GHC.Exts                   as Exts
import qualified Language.Haskell.TH.Syntax as TH
#if defined(ASSERTS)
import qualified Prelude
#endif


#if defined(ASSERTS)
-- This fugly hack is brought by GHC's apparent reluctance to deal
-- with MagicHash and UnboxedTuples when inferring types. Eek!
# define CHECK_BOUNDS(_func_,_len_,_k_) \
if (_k_) < 0 || (_k_) >= (_len_) then error ("Data.HashMap.Internal.Array." ++ (_func_) ++ ": bounds error, offset " ++ show (_k_) ++ ", length " ++ show (_len_)) else
# define CHECK_OP(_func_,_op_,_lhs_,_rhs_) \
if not ((_lhs_) _op_ (_rhs_)) then error ("Data.HashMap.Internal.Array." ++ (_func_) ++ ": Check failed: _lhs_ _op_ _rhs_ (" ++ show (_lhs_) ++ " vs. " ++ show (_rhs_) ++ ")") else
# define CHECK_GT(_func_,_lhs_,_rhs_) CHECK_OP(_func_,>,_lhs_,_rhs_)
# define CHECK_LE(_func_,_lhs_,_rhs_) CHECK_OP(_func_,<=,_lhs_,_rhs_)
# define CHECK_EQ(_func_,_lhs_,_rhs_) CHECK_OP(_func_,==,_lhs_,_rhs_)
#else
# define CHECK_BOUNDS(_func_,_len_,_k_)
# define CHECK_OP(_func_,_op_,_lhs_,_rhs_)
# define CHECK_GT(_func_,_lhs_,_rhs_)
# define CHECK_LE(_func_,_lhs_,_rhs_)
# define CHECK_EQ(_func_,_lhs_,_rhs_)
#endif

data Array a = Array {
      unArray :: !(SmallArray# a)
    }

instance Show a => Show (Array a) where
    show = show . toList

-- Determines whether two arrays have the same memory address.
-- This is more reliable than testing pointer equality on the
-- Array wrappers, but it's still slightly bogus.
unsafeSameArray :: Array a -> Array b -> Bool
unsafeSameArray (Array xs) (Array ys) =
  tagToEnum# (unsafeCoerce# reallyUnsafePtrEquality# xs ys)

sameArray1 :: (a -> b -> Bool) -> Array a -> Array b -> Bool
sameArray1 eq !xs0 !ys0
  | lenxs /= lenys = False
  | otherwise = go 0 xs0 ys0
  where
    go !k !xs !ys
      | k == lenxs = True
      | (# x #) <- index# xs k
      , (# y #) <- index# ys k
      = eq x y && go (k + 1) xs ys

    !lenxs = length xs0
    !lenys = length ys0

length :: Array a -> Int
length ary = I# (sizeofSmallArray# (unArray ary))
{-# INLINE length #-}

data MArray s a = MArray {
      unMArray :: !(SmallMutableArray# s a)
    }

lengthM :: MArray s a -> Int
lengthM mary = I# (sizeofSmallMutableArray# (unMArray mary))
{-# INLINE lengthM #-}

------------------------------------------------------------------------

instance NFData a => NFData (Array a) where
    rnf = rnfArray

rnfArray :: NFData a => Array a -> ()
rnfArray ary0 = go ary0 n0 0
  where
    n0 = length ary0
    go !ary !n !i
        | i >= n = ()
        | (# x #) <- index# ary i
        = rnf x `seq` go ary n (i+1)
-- We use index# just in case GHC can't see that the
-- relevant rnf is strict, or in case it actually isn't.
{-# INLINE rnfArray #-}

-- | @since 0.2.14.0
instance NFData1 Array where
    liftRnf = liftRnfArray

liftRnfArray :: (a -> ()) -> Array a -> ()
liftRnfArray rnf0 ary0 = go ary0 n0 0
  where
    n0 = length ary0
    go !ary !n !i
        | i >= n = ()
        | (# x #) <- index# ary i
        = rnf0 x `seq` go ary n (i+1)
{-# INLINE liftRnfArray #-}

-- | Create a new mutable array of specified size, in the specified
-- state thread, with each element containing the specified initial
-- value.
new :: Int -> a -> ST s (MArray s a)
new _n@(I# n#) b =
    CHECK_GT("new",_n,(0 :: Int))
    ST $ \s ->
        case newSmallArray# n# b s of
            (# s', ary #) -> (# s', MArray ary #)
{-# INLINE new #-}

new_ :: Int -> ST s (MArray s a)
new_ n = new n undefinedElem

-- | When 'Exts.shrinkSmallMutableArray#' is available, the returned array is the same as the array given, as it is shrunk in place.
-- Otherwise a copy is made.
shrink :: MArray s a -> Int -> ST s (MArray s a)
#if __GLASGOW_HASKELL__ >= 810
shrink mary _n@(I# n#) =
  CHECK_GT("shrink", _n, (0 :: Int))
  CHECK_LE("shrink", _n, (lengthM mary))
  ST $ \s -> case Exts.shrinkSmallMutableArray# (unMArray mary) n# s of
    s' -> (# s', mary #)
#else
shrink mary n = cloneM mary 0 n
#endif 
{-# INLINE shrink #-}

singleton :: a -> Array a
singleton x = runST (singletonM x)
{-# INLINE singleton #-}

singletonM :: a -> ST s (Array a)
singletonM x = new 1 x >>= unsafeFreeze
{-# INLINE singletonM #-}

snoc :: Array a -> a -> Array a
snoc ary x = run $ do
  mary <- new (n + 1) x
  copy ary 0 mary 0 n
  pure mary
  where
    n = length ary
{-# INLINE snoc #-}

pair :: a -> a -> Array a
pair x y = run $ do
    ary <- new 2 x
    write ary 1 y
    return ary
{-# INLINE pair #-}

read :: MArray s a -> Int -> ST s a
read ary _i@(I# i#) = ST $ \ s ->
    CHECK_BOUNDS("read", lengthM ary, _i)
        readSmallArray# (unMArray ary) i# s
{-# INLINE read #-}

write :: MArray s a -> Int -> a -> ST s ()
write ary _i@(I# i#) b = ST $ \ s ->
    CHECK_BOUNDS("write", lengthM ary, _i)
        case writeSmallArray# (unMArray ary) i# b s of
            s' -> (# s' , () #)
{-# INLINE write #-}

index :: Array a -> Int -> a
index ary _i@(I# i#) =
    CHECK_BOUNDS("index", length ary, _i)
        case indexSmallArray# (unArray ary) i# of (# b #) -> b
{-# INLINE index #-}

index# :: Array a -> Int -> (# a #)
index# ary _i@(I# i#) =
    CHECK_BOUNDS("index#", length ary, _i)
        indexSmallArray# (unArray ary) i#
{-# INLINE index# #-}

indexM :: Array a -> Int -> ST s a
indexM ary _i@(I# i#) =
    CHECK_BOUNDS("indexM", length ary, _i)
        case indexSmallArray# (unArray ary) i# of (# b #) -> return b
{-# INLINE indexM #-}

unsafeFreeze :: MArray s a -> ST s (Array a)
unsafeFreeze mary
    = ST $ \s -> case unsafeFreezeSmallArray# (unMArray mary) s of
                   (# s', ary #) -> (# s', Array ary #)
{-# INLINE unsafeFreeze #-}

unsafeThaw :: Array a -> ST s (MArray s a)
unsafeThaw ary
    = ST $ \s -> case unsafeThawSmallArray# (unArray ary) s of
                   (# s', mary #) -> (# s', MArray mary #)
{-# INLINE unsafeThaw #-}

run :: (forall s . ST s (MArray s e)) -> Array e
run act = runST $ act >>= unsafeFreeze
{-# INLINE run #-}

-- | Unsafely copy the elements of an array. Array bounds are not checked.
copy :: Array e -> Int -> MArray s e -> Int -> Int -> ST s ()
copy !src !_sidx@(I# sidx#) !dst !_didx@(I# didx#) _n@(I# n#) =
    CHECK_LE("copy", _sidx + _n, length src)
    CHECK_LE("copy", _didx + _n, lengthM dst)
        ST $ \ s# ->
        case copySmallArray# (unArray src) sidx# (unMArray dst) didx# n# s# of
            s2 -> (# s2, () #)

-- | Unsafely copy the elements of an array. Array bounds are not checked.
copyM :: MArray s e -> Int -> MArray s e -> Int -> Int -> ST s ()
copyM !src !_sidx@(I# sidx#) !dst !_didx@(I# didx#) _n@(I# n#) =
    CHECK_BOUNDS("copyM: src", lengthM src, _sidx + _n - 1)
    CHECK_BOUNDS("copyM: dst", lengthM dst, _didx + _n - 1)
    ST $ \ s# ->
    case copySmallMutableArray# (unMArray src) sidx# (unMArray dst) didx# n# s# of
        s2 -> (# s2, () #)

cloneM :: MArray s a -> Int -> Int -> ST s (MArray s a)
cloneM _mary@(MArray mary#) _off@(I# off#) _len@(I# len#) =
    CHECK_BOUNDS("cloneM_off", lengthM _mary, _off)
    CHECK_BOUNDS("cloneM_end", lengthM _mary, _off + _len - 1)
    ST $ \ s ->
    case cloneSmallMutableArray# mary# off# len# s of
      (# s', mary'# #) -> (# s', MArray mary'# #)

-- | \(O(n)\) Insert an element at the given position in this array,
-- increasing its size by one.
insert :: Array e -> Int -> e -> Array e
insert ary idx b = runST (insertM ary idx b)
{-# INLINE insert #-}

-- | \(O(n)\) Insert an element at the given position in this array,
-- increasing its size by one.
insertM :: Array e -> Int -> e -> ST s (Array e)
insertM ary idx b =
    CHECK_BOUNDS("insertM", count + 1, idx)
        do mary <- new (count+1) b
           copy ary 0 mary 0 idx
           copy ary idx mary (idx+1) (count-idx)
           unsafeFreeze mary
  where !count = length ary
{-# INLINE insertM #-}

-- | \(O(n)\) Update the element at the given position in this array.
update :: Array e -> Int -> e -> Array e
update ary idx b = runST (updateM ary idx b)
{-# INLINE update #-}

-- | \(O(n)\) Update the element at the given position in this array.
updateM :: Array e -> Int -> e -> ST s (Array e)
updateM ary idx b =
    CHECK_BOUNDS("updateM", count, idx)
        do mary <- thaw ary 0 count
           write mary idx b
           unsafeFreeze mary
  where !count = length ary
{-# INLINE updateM #-}

-- | \(O(n)\) Update the element at the given position in this array, by
-- applying a function to it.  Evaluates the element to WHNF before
-- inserting it into the array.
updateWith' :: Array e -> Int -> (e -> e) -> Array e
updateWith' ary idx f
  | (# x #) <- index# ary idx
  = update ary idx $! f x
{-# INLINE updateWith' #-}

-- | \(O(1)\) Update the element at the given position in this array,
-- without copying.
unsafeUpdateM :: Array e -> Int -> e -> ST s ()
unsafeUpdateM ary idx b =
    CHECK_BOUNDS("unsafeUpdateM", length ary, idx)
        do mary <- unsafeThaw ary
           write mary idx b
           _ <- unsafeFreeze mary
           return ()
{-# INLINE unsafeUpdateM #-}

foldl' :: (b -> a -> b) -> b -> Array a -> b
foldl' f = \ z0 ary0 -> go ary0 (length ary0) 0 z0
  where
    go ary n i !z
        | i >= n = z
        | otherwise
        = case index# ary i of
            (# x #) -> go ary n (i+1) (f z x)
{-# INLINE foldl' #-}

foldr' :: (a -> b -> b) -> b -> Array a -> b
foldr' f = \ z0 ary0 -> go ary0 (length ary0 - 1) z0
  where
    go !_ary (-1) z = z
    go !ary i !z
      | (# x #) <- index# ary i
      = go ary (i - 1) (f x z)
{-# INLINE foldr' #-}

foldr :: (a -> b -> b) -> b -> Array a -> b
foldr f = \ z0 ary0 -> go ary0 (length ary0) 0 z0
  where
    go ary n i z
        | i >= n = z
        | otherwise
        = case index# ary i of
            (# x #) -> f x (go ary n (i+1) z)
{-# INLINE foldr #-}

foldl :: (b -> a -> b) -> b -> Array a -> b
foldl f = \ z0 ary0 -> go ary0 (length ary0 - 1) z0
  where
    go _ary (-1) z = z
    go ary i z
      | (# x #) <- index# ary i
      = f (go ary (i - 1) z) x
{-# INLINE foldl #-}

-- We go to a bit of trouble here to avoid appending an extra mempty.
-- The below implementation is by Mateusz Kowalczyk, who indicates that
-- benchmarks show it to be faster than one that avoids lifting out
-- lst.
foldMap :: Monoid m => (a -> m) -> Array a -> m
foldMap f = \ary0 -> case length ary0 of
  0 -> mempty
  len ->
    let !lst = len - 1
        go i | (# x #) <- index# ary0 i, let fx = f x =
          if i == lst then fx else fx `mappend` go (i + 1)
    in go 0
{-# INLINE foldMap #-}

-- | Verifies that a predicate holds for all elements of an array.
all :: (a -> Bool) -> Array a -> Bool
all p = foldr (\a acc -> p a && acc) True
{-# INLINE all #-}

undefinedElem :: a
undefinedElem = error "Data.HashMap.Internal.Array: Undefined element"
{-# NOINLINE undefinedElem #-}

thaw :: Array e -> Int -> Int -> ST s (MArray s e)
thaw !ary !_o@(I# o#) _n@(I# n#) =
    CHECK_LE("thaw", _o + _n, length ary)
        ST $ \ s -> case thawSmallArray# (unArray ary) o# n# s of
            (# s2, mary# #) -> (# s2, MArray mary# #)
{-# INLINE thaw #-}

-- | \(O(n)\) Delete an element at the given position in this array,
-- decreasing its size by one.
delete :: Array e -> Int -> Array e
delete ary idx = runST (deleteM ary idx)
{-# INLINE delete #-}

-- | \(O(n)\) Delete an element at the given position in this array,
-- decreasing its size by one.
deleteM :: Array e -> Int -> ST s (Array e)
deleteM ary idx = do
    CHECK_BOUNDS("deleteM", count, idx)
        do mary <- new_ (count-1)
           copy ary 0 mary 0 idx
           copy ary (idx+1) mary idx (count-(idx+1))
           unsafeFreeze mary
  where !count = length ary
{-# INLINE deleteM #-}

map :: (a -> b) -> Array a -> Array b
map f = \ ary ->
    let !n = length ary
    in run $ do
        mary <- new_ n
        go ary mary 0 n
        return mary
  where
    go ary mary i n
        | i >= n    = return ()
        | otherwise = do
             x <- indexM ary i
             write mary i $ f x
             go ary mary (i+1) n
{-# INLINE map #-}

-- | Strict version of 'map'.
map' :: (a -> b) -> Array a -> Array b
map' f = \ ary ->
    let !n = length ary
    in run $ do
        mary <- new_ n
        go ary mary 0 n
        return mary
  where
    go ary mary i n
        | i >= n    = return ()
        | otherwise = do
             x <- indexM ary i
             write mary i $! f x
             go ary mary (i+1) n
{-# INLINE map' #-}

fromList :: Int -> [a] -> Array a
fromList n xs0 =
    CHECK_EQ("fromList", n, Prelude.length xs0)
        run $ do
            mary <- new_ n
            go xs0 mary 0
            return mary
  where
    go []     !_   !_ = return ()
    go (x:xs) mary i  = do write mary i x
                           go xs mary (i+1)

fromList' :: Int -> [a] -> Array a
fromList' n xs0 =
    CHECK_EQ("fromList'", n, Prelude.length xs0)
        run $ do
            mary <- new_ n
            go xs0 mary 0
            return mary
  where
    go []      !_   !_ = return ()
    go (!x:xs) mary i  = do write mary i x
                            go xs mary (i+1)

-- | @since 0.2.17.0
instance TH.Lift a => TH.Lift (Array a) where
#if MIN_VERSION_template_haskell(2,16,0)
  liftTyped ar = [|| fromList' arlen arlist ||]
#else
  lift ar = [| fromList' arlen arlist |]
#endif
    where
      arlen = length ar
      arlist = toList ar

toList :: Array a -> [a]
toList = foldr (:) []

newtype STA a = STA {_runSTA :: forall s. SmallMutableArray# s a -> ST s (Array a)}

runSTA :: Int -> STA a -> Array a
runSTA !n (STA m) = runST $ new_ n >>= \ (MArray ar) -> m ar

traverse :: Applicative f => (a -> f b) -> Array a -> f (Array b)
traverse f = \ !ary ->
  let
    !len = length ary
    go !i
      | i == len = pure $ STA $ \mary -> unsafeFreeze (MArray mary)
      | (# x #) <- index# ary i
      = liftA2 (\b (STA m) -> STA $ \mary ->
                  write (MArray mary) i b >> m mary)
               (f x) (go (i + 1))
  in runSTA len <$> go 0
{-# INLINE [1] traverse #-}

-- TODO: Would it be better to just use a lazy traversal
-- and then force the elements of the result? My guess is
-- yes.
traverse' :: Applicative f => (a -> f b) -> Array a -> f (Array b)
traverse' f = \ !ary ->
  let
    !len = length ary
    go !i
      | i == len = pure $ STA $ \mary -> unsafeFreeze (MArray mary)
      | (# x #) <- index# ary i
      = liftA2 (\ !b (STA m) -> STA $ \mary ->
                    write (MArray mary) i b >> m mary)
               (f x) (go (i + 1))
  in runSTA len <$> go 0
{-# INLINE [1] traverse' #-}

-- Traversing in ST, we don't need to get fancy; we
-- can just do it directly.
traverseST :: (a -> ST s b) -> Array a -> ST s (Array b)
traverseST f = \ ary0 ->
  let
    !len = length ary0
    go k !mary
      | k == len = return mary
      | otherwise = do
          x <- indexM ary0 k
          y <- f x
          write mary k y
          go (k + 1) mary
  in new_ len >>= (go 0 >=> unsafeFreeze)
{-# INLINE traverseST #-}

traverseIO :: (a -> IO b) -> Array a -> IO (Array b)
traverseIO f = \ ary0 ->
  let
    !len = length ary0
    go k !mary
      | k == len = return mary
      | otherwise = do
          x <- stToIO $ indexM ary0 k
          y <- f x
          stToIO $ write mary k y
          go (k + 1) mary
  in stToIO (new_ len) >>= (go 0 >=> stToIO . unsafeFreeze)
{-# INLINE traverseIO #-}


-- Why don't we have similar RULES for traverse'? The efficient
-- way to traverse strictly in IO or ST is to force results as
-- they come in, which leads to different semantics. In particular,
-- we need to ensure that
--
--  traverse' (\x -> print x *> pure undefined) xs
--
-- will actually print all the values and then return undefined.
-- We could add a strict mapMWithIndex, operating in an arbitrary
-- Monad, that supported such rules, but we don't have that right now.
{-# RULES
"traverse/ST" forall f. traverse f = traverseST f
"traverse/IO" forall f. traverse f = traverseIO f
 #-}