1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
|
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE TypeOperators #-}
module Tests.Vector.Property
( CommonContext
, VanillaContext
, VectorContext
, testSanity
, testPolymorphicFunctions
, testTuplyFunctions
, testOrdFunctions
, testEnumFunctions
, testMonoidFunctions
, testFunctorFunctions
, testMonadFunctions
, testApplicativeFunctions
, testAlternativeFunctions
, testSequenceFunctions
, testBoolFunctions
, testNumFunctions
, testNestedVectorFunctions
, testDataFunctions
, testUnstream
-- re-exports
, Data
, Random
) where
import Boilerplater
import Utilities as Util hiding (limitUnfolds)
import Control.Monad
import Control.Monad.ST
import qualified Data.Traversable as T (Traversable(..))
import Data.Orphans ()
import Data.Maybe
import Data.Foldable (foldrM)
import qualified Data.Vector.Generic as V
import qualified Data.Vector.Generic.Mutable as MV
import qualified Data.Vector.Fusion.Bundle as S
import Test.QuickCheck
import Test.Tasty
import Test.Tasty.QuickCheck hiding (testProperties)
import Text.Show.Functions ()
import Data.List
import qualified Control.Applicative as Applicative
import System.Random (Random)
import Data.Functor.Identity
import Control.Monad.Trans.Writer
import Control.Monad.Zip
import Data.Data
import qualified Data.List.NonEmpty as DLE
import Data.Semigroup (Semigroup(..))
type CommonContext a v = (VanillaContext a, VectorContext a v)
type VanillaContext a = ( Eq a , Show a, Arbitrary a, CoArbitrary a
, TestData a, Model a ~ a, EqTest a ~ Property)
type VectorContext a v = ( Eq (v a), Show (v a), Arbitrary (v a), CoArbitrary (v a)
, TestData (v a), Model (v a) ~ [a], EqTest (v a) ~ Property, V.Vector v a)
-- TODO: implement Vector equivalents of list functions for some of the commented out properties
-- TODO: add tests for the other extra functions
-- IVector exports still needing tests:
-- copy,
-- new,
-- unsafeSlice, unsafeIndex,
testSanity :: forall a v. (CommonContext a v) => v a -> [TestTree]
{-# INLINE testSanity #-}
testSanity _ = [
testProperty "fromList.toList == id" prop_fromList_toList,
testProperty "toList.fromList == id" prop_toList_fromList,
testProperty "unstream.stream == id" prop_unstream_stream,
testProperty "stream.unstream == id" prop_stream_unstream
]
where
prop_fromList_toList (v :: v a) = (V.fromList . V.toList) v == v
prop_toList_fromList (l :: [a]) = ((V.toList :: v a -> [a]) . V.fromList) l == l
prop_unstream_stream (v :: v a) = (V.unstream . V.stream) v == v
prop_stream_unstream (s :: S.Bundle v a) = ((V.stream :: v a -> S.Bundle v a) . V.unstream) s == s
testPolymorphicFunctions :: forall a v. (CommonContext a v, VectorContext Int v) => v a -> [TestTree]
-- FIXME: inlining of unboxed properties blows up the memory during compilation. See #272
--{-# INLINE testPolymorphicFunctions #-}
testPolymorphicFunctions _ = $(testProperties [
'prop_eq,
-- Length information
'prop_length, 'prop_null,
-- Indexing
'prop_index, 'prop_safeIndex, 'prop_head, 'prop_last,
'prop_unsafeIndex, 'prop_unsafeHead, 'prop_unsafeLast,
-- Monadic indexing (FIXME)
{- 'prop_indexM, 'prop_headM, 'prop_lastM,
'prop_unsafeIndexM, 'prop_unsafeHeadM, 'prop_unsafeLastM, -}
-- Subvectors (FIXME)
'prop_slice, 'prop_init, 'prop_tail, 'prop_take, 'prop_drop,
'prop_splitAt,
{- 'prop_unsafeSlice, 'prop_unsafeInit, 'prop_unsafeTail,
'prop_unsafeTake, 'prop_unsafeDrop, -}
-- Initialisation (FIXME)
'prop_empty, 'prop_singleton, 'prop_replicate,
'prop_generate, 'prop_iterateN, 'prop_iterateNM,
'prop_generateM, 'prop_replicateM,
-- Monadic initialisation (FIXME)
'prop_create, 'prop_createT,
-- Unfolding
'prop_unfoldr, 'prop_unfoldrN, 'prop_unfoldrExactN,
'prop_unfoldrM, 'prop_unfoldrNM, 'prop_unfoldrExactNM,
'prop_constructN, 'prop_constructrN,
-- Concatenation (FIXME)
'prop_cons, 'prop_snoc, 'prop_append,
'prop_concat,
-- Restricting memory usage
'prop_force,
-- Bulk updates (FIXME)
'prop_upd,
{- 'prop_update_,
'prop_unsafeUpd, 'prop_unsafeUpdate, 'prop_unsafeUpdate_, -}
-- Accumulations (FIXME)
'prop_accum,
{- 'prop_accumulate, 'prop_accumulate_,
'prop_unsafeAccum, 'prop_unsafeAccumulate, 'prop_unsafeAccumulate_, -}
-- Permutations
'prop_reverse, 'prop_backpermute,
{- 'prop_unsafeBackpermute, -}
-- Mapping
'prop_map, 'prop_imap, 'prop_concatMap,
-- Monadic mapping
'prop_mapM, 'prop_mapM_, 'prop_forM, 'prop_forM_,
'prop_imapM, 'prop_imapM_,
-- Zipping
'prop_zipWith, 'prop_zipWith3,
'prop_izipWith, 'prop_izipWith3,
'prop_izipWithM, 'prop_izipWithM_,
-- Monadic zipping
'prop_zipWithM, 'prop_zipWithM_,
-- Filtering
'prop_filter, 'prop_ifilter, 'prop_filterM,
'prop_uniq,
'prop_mapMaybe, 'prop_imapMaybe,
'prop_takeWhile, 'prop_dropWhile,
-- Paritioning
'prop_partition, {- 'prop_unstablePartition, -}
'prop_partitionWith,
'prop_span, 'prop_break,
'prop_groupBy,
-- Searching
'prop_elem, 'prop_notElem,
'prop_find, 'prop_findIndex, 'prop_findIndexR, 'prop_findIndices,
'prop_elemIndex, 'prop_elemIndices,
-- Folding
'prop_foldl, 'prop_foldl1, 'prop_foldl', 'prop_foldl1',
'prop_foldr, 'prop_foldr1, 'prop_foldr', 'prop_foldr1',
'prop_ifoldl, 'prop_ifoldl', 'prop_ifoldr, 'prop_ifoldr',
'prop_ifoldM, 'prop_ifoldM', 'prop_ifoldM_, 'prop_ifoldM'_,
-- Specialised folds
'prop_all, 'prop_any,
-- Scans
'prop_prescanl, 'prop_prescanl',
'prop_postscanl, 'prop_postscanl',
'prop_scanl, 'prop_scanl', 'prop_scanl1, 'prop_scanl1',
'prop_iscanl, 'prop_iscanl',
'prop_prescanr, 'prop_prescanr',
'prop_postscanr, 'prop_postscanr',
'prop_scanr, 'prop_scanr', 'prop_scanr1, 'prop_scanr1',
'prop_iscanr, 'prop_iscanr',
-- Mutable API
'prop_mut_read, 'prop_mut_write, 'prop_mut_modify,
'prop_mut_generate, 'prop_mut_generateM,
'prop_mut_mapM_, 'prop_mut_imapM_, 'prop_mut_forM_, 'prop_mut_iforM_,
'prop_mut_foldr, 'prop_mut_foldr', 'prop_mut_foldl, 'prop_mut_foldl',
'prop_mut_ifoldr, 'prop_mut_ifoldr', 'prop_mut_ifoldl, 'prop_mut_ifoldl',
'prop_mut_foldM, 'prop_mut_foldM', 'prop_mut_foldrM, 'prop_mut_foldrM',
'prop_mut_ifoldM, 'prop_mut_ifoldM', 'prop_mut_ifoldrM, 'prop_mut_ifoldrM'
])
where
-- Prelude
prop_eq :: P (v a -> v a -> Bool) = (==) `eq` (==)
prop_length :: P (v a -> Int) = V.length `eq` length
prop_null :: P (v a -> Bool) = V.null `eq` null
prop_empty :: P (v a) = V.empty `eq` []
prop_singleton :: P (a -> v a) = V.singleton `eq` Util.singleton
prop_replicate :: P (Int -> a -> v a)
= (\n _ -> n < 1000) ===> V.replicate `eq` replicate
prop_replicateM :: P (Int -> Writer [a] a -> Writer [a] (v a))
= (\n _ -> n < 1000) ===> V.replicateM `eq` replicateM
prop_cons :: P (a -> v a -> v a) = V.cons `eq` (:)
prop_snoc :: P (v a -> a -> v a) = V.snoc `eq` snoc
prop_append :: P (v a -> v a -> v a) = (V.++) `eq` (++)
prop_concat :: P ([v a] -> v a) = V.concat `eq` concat
prop_force :: P (v a -> v a) = V.force `eq` id
prop_generate :: P (Int -> (Int -> a) -> v a)
= (\n _ -> n < 1000) ===> V.generate `eq` Util.generate
prop_generateM :: P (Int -> (Int -> Writer [a] a) -> Writer [a] (v a))
= (\n _ -> n < 1000) ===> V.generateM `eq` Util.generateM
prop_iterateN :: P (Int -> (a -> a) -> a -> v a)
= (\n _ _ -> n < 1000) ===> V.iterateN `eq` (\n f -> take n . iterate f)
prop_iterateNM :: P (Int -> (a -> Writer [Int] a) -> a -> Writer [Int] (v a))
= (\n _ _ -> n < 1000) ===> V.iterateNM `eq` Util.iterateNM
prop_create :: P (v a -> v a)
prop_create = (\v -> V.create (V.thaw v)) `eq` id
prop_createT :: P ((a, v a) -> (a, v a))
prop_createT = (\v -> V.createT (T.mapM V.thaw v)) `eq` id
prop_head :: P (v a -> a) = not . V.null ===> V.head `eq` head
prop_last :: P (v a -> a) = not . V.null ===> V.last `eq` last
prop_index = \xs ->
not (V.null xs) ==>
forAll (choose (0, V.length xs-1)) $ \i ->
unP prop xs i
where
prop :: P (v a -> Int -> a) = (V.!) `eq` (!!)
prop_safeIndex :: P (v a -> Int -> Maybe a) = (V.!?) `eq` fn
where
fn xs i = case drop i xs of
x:_ | i >= 0 -> Just x
_ -> Nothing
prop_unsafeHead :: P (v a -> a) = not . V.null ===> V.unsafeHead `eq` head
prop_unsafeLast :: P (v a -> a) = not . V.null ===> V.unsafeLast `eq` last
prop_unsafeIndex = \xs ->
not (V.null xs) ==>
forAll (choose (0, V.length xs-1)) $ \i ->
unP prop xs i
where
prop :: P (v a -> Int -> a) = V.unsafeIndex `eq` (!!)
prop_slice = \xs ->
forAll (choose (0, V.length xs)) $ \i ->
forAll (choose (0, V.length xs - i)) $ \n ->
unP prop i n xs
where
prop :: P (Int -> Int -> v a -> v a) = V.slice `eq` slice
prop_tail :: P (v a -> v a) = not . V.null ===> V.tail `eq` tail
prop_init :: P (v a -> v a) = not . V.null ===> V.init `eq` init
prop_take :: P (Int -> v a -> v a) = V.take `eq` take
prop_drop :: P (Int -> v a -> v a) = V.drop `eq` drop
prop_splitAt :: P (Int -> v a -> (v a, v a)) = V.splitAt `eq` splitAt
prop_accum = \f xs ->
forAll (index_value_pairs (V.length xs)) $ \ps ->
unP prop f xs ps
where
prop :: P ((a -> a -> a) -> v a -> [(Int,a)] -> v a)
= V.accum `eq` accum
prop_upd = \xs ->
forAll (index_value_pairs (V.length xs)) $ \ps ->
unP prop xs ps
where
prop :: P (v a -> [(Int,a)] -> v a) = (V.//) `eq` (//)
prop_backpermute = \xs ->
forAll (indices (V.length xs)) $ \is ->
unP prop xs (V.fromList is)
where
prop :: P (v a -> v Int -> v a) = V.backpermute `eq` backpermute
prop_reverse :: P (v a -> v a) = V.reverse `eq` reverse
prop_map :: P ((a -> a) -> v a -> v a) = V.map `eq` map
prop_mapM :: P ((a -> Identity a) -> v a -> Identity (v a))
= V.mapM `eq` mapM
prop_mapM_ :: P ((a -> Writer [a] ()) -> v a -> Writer [a] ())
= V.mapM_ `eq` mapM_
prop_forM :: P (v a -> (a -> Identity a) -> Identity (v a))
= V.forM `eq` forM
prop_forM_ :: P (v a -> (a -> Writer [a] ()) -> Writer [a] ())
= V.forM_ `eq` forM_
prop_zipWith :: P ((a -> a -> a) -> v a -> v a -> v a) = V.zipWith `eq` zipWith
prop_zipWith3 :: P ((a -> a -> a -> a) -> v a -> v a -> v a -> v a)
= V.zipWith3 `eq` zipWith3
prop_imap :: P ((Int -> a -> a) -> v a -> v a) = V.imap `eq` imap
prop_imapM :: P ((Int -> a -> Identity a) -> v a -> Identity (v a))
= V.imapM `eq` imapM
prop_imapM_ :: P ((Int -> a -> Writer [a] ()) -> v a -> Writer [a] ())
= V.imapM_ `eq` imapM_
prop_izipWith :: P ((Int -> a -> a -> a) -> v a -> v a -> v a) = V.izipWith `eq` izipWith
prop_zipWithM :: P ((a -> a -> Identity a) -> v a -> v a -> Identity (v a))
= V.zipWithM `eq` zipWithM
prop_zipWithM_ :: P ((a -> a -> Writer [a] ()) -> v a -> v a -> Writer [a] ())
= V.zipWithM_ `eq` zipWithM_
prop_izipWithM :: P ((Int -> a -> a -> Identity a) -> v a -> v a -> Identity (v a))
= V.izipWithM `eq` izipWithM
prop_izipWithM_ :: P ((Int -> a -> a -> Writer [a] ()) -> v a -> v a -> Writer [a] ())
= V.izipWithM_ `eq` izipWithM_
prop_izipWith3 :: P ((Int -> a -> a -> a -> a) -> v a -> v a -> v a -> v a)
= V.izipWith3 `eq` izipWith3
prop_filter :: P ((a -> Bool) -> v a -> v a) = V.filter `eq` filter
prop_ifilter :: P ((Int -> a -> Bool) -> v a -> v a) = V.ifilter `eq` ifilter
prop_filterM :: P ((a -> Writer [a] Bool) -> v a -> Writer [a] (v a)) = V.filterM `eq` filterM
prop_mapMaybe :: P ((a -> Maybe a) -> v a -> v a) = V.mapMaybe `eq` mapMaybe
prop_imapMaybe :: P ((Int -> a -> Maybe a) -> v a -> v a) = V.imapMaybe `eq` imapMaybe
prop_takeWhile :: P ((a -> Bool) -> v a -> v a) = V.takeWhile `eq` takeWhile
prop_dropWhile :: P ((a -> Bool) -> v a -> v a) = V.dropWhile `eq` dropWhile
prop_partition :: P ((a -> Bool) -> v a -> (v a, v a))
= V.partition `eq` partition
prop_partitionWith :: P ((a -> Either a a) -> v a -> (v a, v a))
= V.partitionWith `eq` partitionWith
prop_span :: P ((a -> Bool) -> v a -> (v a, v a)) = V.span `eq` span
prop_break :: P ((a -> Bool) -> v a -> (v a, v a)) = V.break `eq` break
prop_groupBy :: P ((a -> a -> Bool) -> v a -> [v a]) = V.groupBy `eq` groupBy
prop_elem :: P (a -> v a -> Bool) = V.elem `eq` elem
prop_notElem :: P (a -> v a -> Bool) = V.notElem `eq` notElem
prop_find :: P ((a -> Bool) -> v a -> Maybe a) = V.find `eq` find
prop_findIndex :: P ((a -> Bool) -> v a -> Maybe Int)
= V.findIndex `eq` findIndex
prop_findIndexR :: P ((a -> Bool) -> v a -> Maybe Int)
= V.findIndexR `eq` \p l -> case filter (p . snd) . reverse $ zip [0..] l of
(i,_):_ -> Just i
[] -> Nothing
prop_findIndices :: P ((a -> Bool) -> v a -> v Int)
= V.findIndices `eq` findIndices
prop_elemIndex :: P (a -> v a -> Maybe Int) = V.elemIndex `eq` elemIndex
prop_elemIndices :: P (a -> v a -> v Int) = V.elemIndices `eq` elemIndices
prop_foldl :: P ((a -> a -> a) -> a -> v a -> a) = V.foldl `eq` foldl
prop_foldl1 :: P ((a -> a -> a) -> v a -> a) = notNull2 ===>
V.foldl1 `eq` foldl1
prop_foldl' :: P ((a -> a -> a) -> a -> v a -> a) = V.foldl' `eq` foldl'
prop_foldl1' :: P ((a -> a -> a) -> v a -> a) = notNull2 ===>
V.foldl1' `eq` foldl1'
prop_foldr :: P ((a -> a -> a) -> a -> v a -> a) = V.foldr `eq` foldr
prop_foldr1 :: P ((a -> a -> a) -> v a -> a) = notNull2 ===>
V.foldr1 `eq` foldr1
prop_foldr' :: P ((a -> a -> a) -> a -> v a -> a) = V.foldr' `eq` foldr
prop_foldr1' :: P ((a -> a -> a) -> v a -> a) = notNull2 ===>
V.foldr1' `eq` foldr1
prop_ifoldl :: P ((a -> Int -> a -> a) -> a -> v a -> a)
= V.ifoldl `eq` ifoldl
prop_ifoldl' :: P ((a -> Int -> a -> a) -> a -> v a -> a)
= V.ifoldl' `eq` ifoldl
prop_ifoldr :: P ((Int -> a -> a -> a) -> a -> v a -> a)
= V.ifoldr `eq` ifoldr
prop_ifoldr' :: P ((Int -> a -> a -> a) -> a -> v a -> a)
= V.ifoldr' `eq` ifoldr
prop_ifoldM :: P ((a -> Int -> a -> Identity a) -> a -> v a -> Identity a)
= V.ifoldM `eq` ifoldM
prop_ifoldM' :: P ((a -> Int -> a -> Identity a) -> a -> v a -> Identity a)
= V.ifoldM' `eq` ifoldM
prop_ifoldM_ :: P ((() -> Int -> a -> Writer [a] ()) -> () -> v a -> Writer [a] ())
= V.ifoldM_ `eq` ifoldM_
prop_ifoldM'_ :: P ((() -> Int -> a -> Writer [a] ()) -> () -> v a -> Writer [a] ())
= V.ifoldM'_ `eq` ifoldM_
prop_all :: P ((a -> Bool) -> v a -> Bool) = V.all `eq` all
prop_any :: P ((a -> Bool) -> v a -> Bool) = V.any `eq` any
prop_prescanl :: P ((a -> a -> a) -> a -> v a -> v a)
= V.prescanl `eq` prescanl
prop_prescanl' :: P ((a -> a -> a) -> a -> v a -> v a)
= V.prescanl' `eq` prescanl
prop_postscanl :: P ((a -> a -> a) -> a -> v a -> v a)
= V.postscanl `eq` postscanl
prop_postscanl' :: P ((a -> a -> a) -> a -> v a -> v a)
= V.postscanl' `eq` postscanl
prop_scanl :: P ((a -> a -> a) -> a -> v a -> v a)
= V.scanl `eq` scanl
prop_scanl' :: P ((a -> a -> a) -> a -> v a -> v a)
= V.scanl' `eq` scanl
prop_scanl1 :: P ((a -> a -> a) -> v a -> v a)
= V.scanl1 `eq` scanl1
prop_scanl1' :: P ((a -> a -> a) -> v a -> v a)
= V.scanl1' `eq` scanl1
prop_iscanl :: P ((Int -> a -> a -> a) -> a -> v a -> v a)
= V.iscanl `eq` iscanl
prop_iscanl' :: P ((Int -> a -> a -> a) -> a -> v a -> v a)
= V.iscanl' `eq` iscanl
prop_prescanr :: P ((a -> a -> a) -> a -> v a -> v a)
= V.prescanr `eq` prescanr
prop_prescanr' :: P ((a -> a -> a) -> a -> v a -> v a)
= V.prescanr' `eq` prescanr
prop_postscanr :: P ((a -> a -> a) -> a -> v a -> v a)
= V.postscanr `eq` postscanr
prop_postscanr' :: P ((a -> a -> a) -> a -> v a -> v a)
= V.postscanr' `eq` postscanr
prop_scanr :: P ((a -> a -> a) -> a -> v a -> v a)
= V.scanr `eq` scanr
prop_scanr' :: P ((a -> a -> a) -> a -> v a -> v a)
= V.scanr' `eq` scanr
prop_iscanr :: P ((Int -> a -> a -> a) -> a -> v a -> v a)
= V.iscanr `eq` iscanr
prop_iscanr' :: P ((Int -> a -> a -> a) -> a -> v a -> v a)
= V.iscanr' `eq` iscanr
prop_scanr1 :: P ((a -> a -> a) -> v a -> v a)
= V.scanr1 `eq` scanr1
prop_scanr1' :: P ((a -> a -> a) -> v a -> v a)
= V.scanr1' `eq` scanr1
prop_concatMap = forAll arbitrary $ \xs ->
forAll (sized (\n -> resize (n `div` V.length xs) arbitrary)) $ \f -> unP prop f xs
where
prop :: P ((a -> v a) -> v a -> v a) = V.concatMap `eq` concatMap
prop_uniq :: P (v a -> v a)
= V.uniq `eq` (map head . group)
-- Data.List
--prop_mapAccumL = eq3
-- (V.mapAccumL :: (X -> W -> (X,W)) -> X -> B -> (X, B))
-- ( mapAccumL :: (X -> W -> (X,W)) -> X -> [W] -> (X, [W]))
--
--prop_mapAccumR = eq3
-- (V.mapAccumR :: (X -> W -> (X,W)) -> X -> B -> (X, B))
-- ( mapAccumR :: (X -> W -> (X,W)) -> X -> [W] -> (X, [W]))
-- Because the vectors are strict, we need to be totally sure that the unfold eventually terminates. This
-- is achieved by injecting our own bit of state into the unfold - the maximum number of unfolds allowed.
limitUnfolds f (theirs, ours)
| ours > 0
, Just (out, theirs') <- f theirs = Just (out, (theirs', ours - 1))
| otherwise = Nothing
limitUnfoldsM f (theirs, ours)
| ours > 0 = do r <- f theirs
return $ (\(a,b) -> (a,(b,ours - 1))) `fmap` r
| otherwise = return Nothing
prop_unfoldr :: P (Int -> (Int -> Maybe (a,Int)) -> Int -> v a)
= (\n f a -> V.unfoldr (limitUnfolds f) (a, n))
`eq` (\n f a -> unfoldr (limitUnfolds f) (a, n))
prop_unfoldrN :: P (Int -> (Int -> Maybe (a,Int)) -> Int -> v a)
= V.unfoldrN `eq` (\n f a -> unfoldr (limitUnfolds f) (a, n))
prop_unfoldrExactN :: P (Int -> (Int -> (a,Int)) -> Int -> v a)
= V.unfoldrExactN `eq` (\n f a -> unfoldr (limitUnfolds (Just . f)) (a, n))
prop_unfoldrM :: P (Int -> (Int -> Writer [Int] (Maybe (a,Int))) -> Int -> Writer [Int] (v a))
= (\n f a -> V.unfoldrM (limitUnfoldsM f) (a,n))
`eq` (\n f a -> Util.unfoldrM (limitUnfoldsM f) (a, n))
prop_unfoldrNM :: P (Int -> (Int -> Writer [Int] (Maybe (a,Int))) -> Int -> Writer [Int] (v a))
= V.unfoldrNM `eq` (\n f a -> Util.unfoldrM (limitUnfoldsM f) (a, n))
prop_unfoldrExactNM :: P (Int -> (Int -> Writer [Int] (a,Int)) -> Int -> Writer [Int] (v a))
= V.unfoldrExactNM `eq` (\n f a -> Util.unfoldrM (limitUnfoldsM (liftM Just . f)) (a, n))
prop_constructN = \f -> forAll (choose (0,20)) $ \n -> unP prop n f
where
prop :: P (Int -> (v a -> a) -> v a) = V.constructN `eq` constructN []
constructN xs 0 _ = xs
constructN xs n f = constructN (xs ++ [f xs]) (n-1) f
prop_constructrN = \f -> forAll (choose (0,20)) $ \n -> unP prop n f
where
prop :: P (Int -> (v a -> a) -> v a) = V.constructrN `eq` constructrN []
constructrN xs 0 _ = xs
constructrN xs n f = constructrN (f xs : xs) (n-1) f
prop_mut_foldr :: P ((a -> a -> a) -> a -> v a -> a) =
(\f z v -> runST $ MV.foldr f z =<< V.thaw v) `eq` foldr
prop_mut_foldr' :: P ((a -> a -> a) -> a -> v a -> a) =
(\f z v -> runST $ MV.foldr' f z =<< V.thaw v) `eq` foldr
prop_mut_foldl :: P ((a -> a -> a) -> a -> v a -> a) =
(\f z v -> runST $ MV.foldl f z =<< V.thaw v) `eq` foldl
prop_mut_foldl' :: P ((a -> a -> a) -> a -> v a -> a) =
(\f z v -> runST $ MV.foldl' f z =<< V.thaw v) `eq` foldl'
prop_mut_ifoldr :: P ((Int -> a -> a -> a) -> a -> v a -> a) =
(\f z v -> runST $ MV.ifoldr f z =<< V.thaw v) `eq` ifoldr
prop_mut_ifoldr' :: P ((Int -> a -> a -> a) -> a -> v a -> a) =
(\f z v -> runST $ MV.ifoldr' f z =<< V.thaw v) `eq` ifoldr
prop_mut_ifoldl :: P ((a -> Int -> a -> a) -> a -> v a -> a) =
(\f z v -> runST $ MV.ifoldl f z =<< V.thaw v) `eq` ifoldl
prop_mut_ifoldl' :: P ((a -> Int -> a -> a) -> a -> v a -> a) =
(\f z v -> runST $ MV.ifoldl' f z =<< V.thaw v) `eq` ifoldl
prop_mut_foldM :: P ((a -> a -> Identity a) -> a -> v a -> Identity a)
= (\f z v -> Identity $ runST $ MV.foldM (\b -> pure . runIdentity . f b) z =<< V.thaw v)
`eq` foldM
prop_mut_foldM' :: P ((a -> a -> Identity a) -> a -> v a -> Identity a)
= (\f z v -> Identity $ runST $ MV.foldM' (\b -> pure . runIdentity . f b) z =<< V.thaw v)
`eq` foldM
prop_mut_foldrM :: P ((a -> a -> Identity a) -> a -> v a -> Identity a)
= (\f z v -> Identity $ runST $ MV.foldrM (\a -> pure . runIdentity . f a) z =<< V.thaw v)
`eq`
foldrM
prop_mut_foldrM' :: P ((a -> a -> Identity a) -> a -> v a -> Identity a)
= (\f z v -> Identity $ runST $ MV.foldrM' (\a b -> pure $ runIdentity $ f a b) z =<< V.thaw v)
`eq`
foldrM
prop_mut_read = \xs ->
not (V.null xs) ==>
forAll (choose (0, V.length xs-1)) $ \i ->
unP prop xs i
where
prop :: P (v a -> Int -> a) = (\v i -> runST $ do mv <- V.thaw v
MV.read mv i
) `eq` (!!)
prop_mut_write = \xs ->
not (V.null xs) ==>
forAll (choose (0, V.length xs-1)) $ \i ->
unP prop xs i
where
prop :: P (v a -> Int -> a -> v a) = (\v i a -> runST $ do mv <- V.thaw v
MV.write mv i a
V.freeze mv
) `eq` writeList
prop_mut_modify = \xs f ->
not (V.null xs) ==>
forAll (choose (0, V.length xs-1)) $ \i ->
unP prop xs f i
where
prop :: P (v a -> (a -> a) -> Int -> v a)
= (\v f i -> runST $ do mv <- V.thaw v
MV.modify mv f i
V.freeze mv
) `eq` modifyList
prop_mut_generate :: P (Int -> (Int -> a) -> v a)
= (\n _ -> n < 1000) ===> (\n f -> runST $ V.freeze =<< MV.generate n f)
`eq` Util.generate
prop_mut_generateM :: P (Int -> (Int -> Writer [a] a) -> Writer [a] (v a))
= (\n _ -> n < 1000) ===> (\n f -> liftRunST $ V.freeze =<< MV.generateM n (hoistST . f))
`eq` Util.generateM
prop_mut_ifoldM :: P ((a -> Int -> a -> Identity a) -> a -> v a -> Identity a)
= (\f z v -> Identity $ runST $ MV.ifoldM (\b i -> pure . runIdentity . f b i) z =<< V.thaw v)
`eq` ifoldM
prop_mut_ifoldM' :: P ((a -> Int -> a -> Identity a) -> a -> v a -> Identity a)
= (\f z v -> Identity $ runST $ MV.ifoldM' (\b i -> pure . runIdentity . f b i) z =<< V.thaw v)
`eq` ifoldM
prop_mut_ifoldrM :: P ((Int -> a -> a -> Identity a) -> a -> v a -> Identity a)
= (\f z v -> Identity $ runST $ MV.ifoldrM (\i b -> pure . runIdentity . f i b) z =<< V.thaw v)
`eq`
ifoldrM
prop_mut_ifoldrM' :: P ((Int -> a -> a -> Identity a) -> a -> v a -> Identity a)
= (\f z v -> Identity $ runST $ MV.ifoldrM' (\i b -> pure . runIdentity . f i b) z =<< V.thaw v)
`eq`
ifoldrM
prop_mut_forM_ :: P (v a -> (a -> Writer [a] ()) -> Writer [a] ())
= (\v f -> liftRunST $ do mv <- V.thaw v
MV.forM_ mv (hoistST . f))
`eq` flip mapM_
prop_mut_iforM_ :: P (v a -> (Int -> a -> Writer [a] ()) -> Writer [a] ())
= (\v f -> liftRunST $ do mv <- V.thaw v
MV.iforM_ mv (\i x -> hoistST $ f i x))
`eq` flip imapM_
prop_mut_mapM_ :: P ((a -> Writer [a] ()) -> v a -> Writer [a] ())
= (\f v -> liftRunST $ MV.mapM_ (hoistST . f) =<< V.thaw v) `eq` mapM_
prop_mut_imapM_ :: P ((Int -> a -> Writer [a] ()) -> v a -> Writer [a] ())
= (\f v -> liftRunST $ MV.imapM_ (\i x -> hoistST $ f i x) =<< V.thaw v) `eq` imapM_
liftRunST :: (forall s. WriterT w (ST s) a) -> Writer w a
liftRunST m = WriterT $ Identity $ runST $ runWriterT m
hoistST :: Writer w a -> WriterT w (ST s) a
hoistST = WriterT . pure . runWriter
-- copied from GHC source code
partitionWith :: (a -> Either b c) -> [a] -> ([b], [c])
partitionWith _ [] = ([],[])
partitionWith f (x:xs) = case f x of
Left b -> (b:bs, cs)
Right c -> (bs, c:cs)
where (bs,cs) = partitionWith f xs
testTuplyFunctions
:: forall a v. ( CommonContext a v
, VectorContext (a, a) v
, VectorContext (a, a, a) v
, VectorContext (Int, a) v
)
=> v a -> [TestTree]
{-# INLINE testTuplyFunctions #-}
testTuplyFunctions _ = $(testProperties [ 'prop_zip, 'prop_zip3
, 'prop_unzip, 'prop_unzip3
, 'prop_indexed
, 'prop_update
])
where
prop_zip :: P (v a -> v a -> v (a, a)) = V.zip `eq` zip
prop_zip3 :: P (v a -> v a -> v a -> v (a, a, a)) = V.zip3 `eq` zip3
prop_unzip :: P (v (a, a) -> (v a, v a)) = V.unzip `eq` unzip
prop_unzip3 :: P (v (a, a, a) -> (v a, v a, v a)) = V.unzip3 `eq` unzip3
prop_indexed :: P (v a -> v (Int, a)) = V.indexed `eq` (\xs -> [0..] `zip` xs)
prop_update = \xs ->
forAll (index_value_pairs (V.length xs)) $ \ps ->
unP prop xs ps
where
prop :: P (v a -> [(Int,a)] -> v a) = (V.//) `eq` (//)
testOrdFunctions :: forall a v. (CommonContext a v, Ord a, Ord (v a)) => v a -> [TestTree]
{-# INLINE testOrdFunctions #-}
testOrdFunctions _ = $(testProperties
['prop_compare,
'prop_maximum, 'prop_minimum,
'prop_minIndex, 'prop_maxIndex,
'prop_maximumBy, 'prop_minimumBy,
'prop_maximumOn, 'prop_minimumOn,
'prop_maxIndexBy, 'prop_minIndexBy,
'prop_ListFirstMaxIndexWins, 'prop_FalseListFirstMaxIndexWins ])
where
prop_compare :: P (v a -> v a -> Ordering) = compare `eq` compare
prop_maximum :: P (v a -> a) = not . V.null ===> V.maximum `eq` maximum
prop_minimum :: P (v a -> a) = not . V.null ===> V.minimum `eq` minimum
prop_minIndex :: P (v a -> Int) = not . V.null ===> V.minIndex `eq` minIndex
prop_maxIndex :: P (v a -> Int) = not . V.null ===> V.maxIndex `eq` maxIndex
prop_maximumBy :: P (v a -> a) =
not . V.null ===> V.maximumBy compare `eq` maximum
prop_minimumBy :: P (v a -> a) =
not . V.null ===> V.minimumBy compare `eq` minimum
prop_maximumOn :: P (v a -> a) =
not . V.null ===> V.maximumOn id `eq` maximum
prop_minimumOn :: P (v a -> a) =
not . V.null ===> V.minimumOn id `eq` minimum
prop_maxIndexBy :: P (v a -> Int) =
not . V.null ===> V.maxIndexBy compare `eq` maxIndex
prop_ListFirstMaxIndexWins :: P (v a -> Int) =
not . V.null ===> ( maxIndex . V.toList) `eq` listMaxIndexFMW
prop_FalseListFirstMaxIndexWinsDesc :: P (v a -> Int) =
(\x -> not $ V.null x && (V.uniq x /= x ) )===> ( maxIndex . V.toList) `eq` listMaxIndexFMW
prop_FalseListFirstMaxIndexWins :: Property
prop_FalseListFirstMaxIndexWins = expectFailure prop_FalseListFirstMaxIndexWinsDesc
prop_minIndexBy :: P (v a -> Int) =
not . V.null ===> V.minIndexBy compare `eq` minIndex
listMaxIndexFMW :: Ord a => [a] -> Int
listMaxIndexFMW = ( fst . extractFMW . sconcat . DLE.fromList . fmap FMW . zip [0 :: Int ..])
newtype LastMaxWith a i = LMW {extractLMW:: (i,a)}
deriving(Eq,Show,Read)
instance (Ord a) => Semigroup (LastMaxWith a i) where
(<>) x y | snd (extractLMW x) > snd (extractLMW y) = x
| snd (extractLMW x) < snd (extractLMW y) = y
| otherwise = y
newtype FirstMaxWith a i = FMW {extractFMW:: (i,a)}
deriving(Eq,Show,Read)
instance (Ord a) => Semigroup (FirstMaxWith a i) where
(<>) x y | snd (extractFMW x) > snd (extractFMW y) = x
| snd (extractFMW x) < snd (extractFMW y) = y
| otherwise = x
testEnumFunctions :: forall a v. (CommonContext a v, Enum a, Ord a, Num a, Random a) => v a -> [TestTree]
{-# INLINE testEnumFunctions #-}
testEnumFunctions _ = $(testProperties
[ 'prop_enumFromN, 'prop_enumFromThenN,
'prop_enumFromTo, 'prop_enumFromThenTo])
where
prop_enumFromN :: P (a -> Int -> v a)
= (\_ n -> n < 1000)
===> V.enumFromN `eq` (\x n -> take n $ scanl (+) x $ repeat 1)
prop_enumFromThenN :: P (a -> a -> Int -> v a)
= (\_ _ n -> n < 1000)
===> V.enumFromStepN `eq` (\x y n -> take n $ scanl (+) x $ repeat y)
prop_enumFromTo = \m ->
forAll (choose (-2,100)) $ \n ->
unP prop m (m+n)
where
prop :: P (a -> a -> v a) = V.enumFromTo `eq` enumFromTo
prop_enumFromThenTo = \i j ->
j /= i ==>
forAll (choose (ks i j)) $ \k ->
unP prop i j k
where
prop :: P (a -> a -> a -> v a) = V.enumFromThenTo `eq` enumFromThenTo
ks i j | j < i = (i-d*100, i+d*2)
| otherwise = (i-d*2, i+d*100)
where
d = abs (j-i)
testMonoidFunctions :: forall a v. (CommonContext a v, Monoid (v a)) => v a -> [TestTree]
{-# INLINE testMonoidFunctions #-}
testMonoidFunctions _ = $(testProperties
[ 'prop_mempty, 'prop_mappend, 'prop_mconcat ])
where
prop_mempty :: P (v a) = mempty `eq` mempty
prop_mappend :: P (v a -> v a -> v a) = mappend `eq` mappend
prop_mconcat :: P ([v a] -> v a) = mconcat `eq` mconcat
testFunctorFunctions :: forall a v. (CommonContext a v, Functor v) => v a -> [TestTree]
{-# INLINE testFunctorFunctions #-}
testFunctorFunctions _ = $(testProperties
[ 'prop_fmap ])
where
prop_fmap :: P ((a -> a) -> v a -> v a) = fmap `eq` fmap
testMonadFunctions :: forall a v. (CommonContext a v, VectorContext (a, a) v, MonadZip v) => v a -> [TestTree]
{-# INLINE testMonadFunctions #-}
testMonadFunctions _ = $(testProperties [ 'prop_return, 'prop_bind
, 'prop_mzip, 'prop_munzip
])
where
prop_return :: P (a -> v a) = return `eq` return
prop_bind :: P (v a -> (a -> v a) -> v a) = (>>=) `eq` (>>=)
prop_mzip :: P (v a -> v a -> v (a, a)) = mzip `eq` zip
prop_munzip :: P (v (a, a) -> (v a, v a)) = munzip `eq` unzip
testSequenceFunctions
:: forall a v. ( CommonContext a v
, Model (v (Writer [a] a)) ~ [Writer [a] a]
, V.Vector v (Writer [a] a)
, Arbitrary (v (Writer [a] a))
, Show (v (Writer [a] a))
, TestData (v (Writer [a] a))
)
=> v a -> [TestTree]
testSequenceFunctions _ = $(testProperties [ 'prop_sequence, 'prop_sequence_
])
where
prop_sequence :: P (v (Writer [a] a) -> Writer [a] (v a))
= V.sequence `eq` sequence
prop_sequence_ :: P (v (Writer [a] a) -> Writer [a] ())
= V.sequence_ `eq` sequence_
testApplicativeFunctions :: forall a v. (CommonContext a v, V.Vector v (a -> a), Applicative.Applicative v) => v a -> [TestTree]
{-# INLINE testApplicativeFunctions #-}
testApplicativeFunctions _ = $(testProperties
[ 'prop_applicative_pure, 'prop_applicative_appl ])
where
prop_applicative_pure :: P (a -> v a)
= Applicative.pure `eq` Applicative.pure
prop_applicative_appl :: [a -> a] -> P (v a -> v a)
= \fs -> (Applicative.<*>) (V.fromList fs) `eq` (Applicative.<*>) fs
testAlternativeFunctions :: forall a v. (CommonContext a v, Applicative.Alternative v) => v a -> [TestTree]
{-# INLINE testAlternativeFunctions #-}
testAlternativeFunctions _ = $(testProperties
[ 'prop_alternative_empty, 'prop_alternative_or ])
where
prop_alternative_empty :: P (v a) = Applicative.empty `eq` Applicative.empty
prop_alternative_or :: P (v a -> v a -> v a)
= (Applicative.<|>) `eq` (Applicative.<|>)
testBoolFunctions :: forall v. (CommonContext Bool v) => v Bool -> [TestTree]
{-# INLINE testBoolFunctions #-}
testBoolFunctions _ = $(testProperties ['prop_and, 'prop_or])
where
prop_and :: P (v Bool -> Bool) = V.and `eq` and
prop_or :: P (v Bool -> Bool) = V.or `eq` or
testNumFunctions :: forall a v. (CommonContext a v, Num a) => v a -> [TestTree]
{-# INLINE testNumFunctions #-}
testNumFunctions _ = $(testProperties ['prop_sum, 'prop_product])
where
prop_sum :: P (v a -> a) = V.sum `eq` sum
prop_product :: P (v a -> a) = V.product `eq` product
testNestedVectorFunctions :: forall a v. (CommonContext a v) => v a -> [TestTree]
{-# INLINE testNestedVectorFunctions #-}
testNestedVectorFunctions _ = $(testProperties
[ 'prop_concat
])
where
prop_concat :: P ([v a] -> v a) = V.concat `eq` concat
testDataFunctions :: forall a v. (CommonContext a v, Data a, Data (v a)) => v a -> [TestTree]
{-# INLINE testDataFunctions #-}
testDataFunctions _ = $(testProperties ['prop_glength])
where
prop_glength :: P (v a -> Int) = glength `eq` glength
where
glength :: Data b => b -> Int
glength xs = gmapQl (+) 0 toA xs
toA :: Data b => b -> Int
toA x = maybe (glength x) (const 1) (cast x :: Maybe a)
testUnstream :: forall v. (CommonContext Int v) => v Int -> [TestTree]
{-# INLINE testUnstream #-}
testUnstream _ =
[ testProperty "unstream == vunstream (exact)" $ \(n :: Int) ->
let v1,v2 :: v Int
v1 = runST $ V.freeze =<< MV.unstream (streamExact n)
v2 = runST $ V.freeze =<< MV.vunstream (streamExact n)
in v1 == v2
, testProperty "unstream == vunstream (unknown)" $ \(n :: Int) ->
let v1,v2 :: v Int
v1 = runST $ V.freeze =<< MV.unstream (streamUnknown n)
v2 = runST $ V.freeze =<< MV.vunstream (streamUnknown n)
in v1 == v2
--
, testProperty "unstreamR ~= vunstream (exact)" $ \(n :: Int) ->
let v1,v2 :: v Int
v1 = runST $ V.freeze =<< MV.unstreamR (streamExact n)
v2 = runST $ V.freeze =<< MV.vunstream (streamExact n)
in V.reverse v1 == v2
, testProperty "unstreamR ~= vunstream (unknown)" $ \(n :: Int) ->
let v1,v2 :: v Int
v1 = runST $ V.freeze =<< MV.unstreamR (streamUnknown n)
v2 = runST $ V.freeze =<< MV.vunstream (streamUnknown n)
in V.reverse v1 == v2
]
where
streamExact n = S.generate (abs n) id
streamUnknown = S.unfoldr (\i -> if i > 0 then (Just (i-1,i-1)) else Nothing) . abs
|