File: Property.hs

package info (click to toggle)
haskell-vector 0.13.1.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 996 kB
  • sloc: haskell: 11,004; ansic: 6; makefile: 3
file content (833 lines) | stat: -rw-r--r-- 36,571 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE TypeOperators #-}
module Tests.Vector.Property
  ( CommonContext
  , VanillaContext
  , VectorContext
  , testSanity
  , testPolymorphicFunctions
  , testTuplyFunctions
  , testOrdFunctions
  , testEnumFunctions
  , testMonoidFunctions
  , testFunctorFunctions
  , testMonadFunctions
  , testApplicativeFunctions
  , testAlternativeFunctions
  , testSequenceFunctions
  , testBoolFunctions
  , testNumFunctions
  , testNestedVectorFunctions
  , testDataFunctions
  , testUnstream
  -- re-exports
  , Data
  , Random
  ) where

import Boilerplater
import Utilities as Util hiding (limitUnfolds)

import Control.Monad
import Control.Monad.ST
import qualified Data.Traversable as T (Traversable(..))
import Data.Orphans ()
import Data.Maybe
import Data.Foldable (foldrM)
import qualified Data.Vector.Generic as V
import qualified Data.Vector.Generic.Mutable as MV
import qualified Data.Vector.Fusion.Bundle as S

import Test.QuickCheck

import Test.Tasty
import Test.Tasty.QuickCheck hiding (testProperties)

import Text.Show.Functions ()
import Data.List


import qualified Control.Applicative as Applicative
import System.Random       (Random)

import Data.Functor.Identity
import Control.Monad.Trans.Writer

import Control.Monad.Zip

import Data.Data

import qualified Data.List.NonEmpty as DLE
import Data.Semigroup (Semigroup(..))

type CommonContext  a v = (VanillaContext a, VectorContext a v)
type VanillaContext a   = ( Eq a , Show a, Arbitrary a, CoArbitrary a
                          , TestData a, Model a ~ a, EqTest a ~ Property)
type VectorContext  a v = ( Eq (v a), Show (v a), Arbitrary (v a), CoArbitrary (v a)
                          , TestData (v a), Model (v a) ~ [a],  EqTest (v a) ~ Property, V.Vector v a)

-- TODO: implement Vector equivalents of list functions for some of the commented out properties

-- TODO: add tests for the other extra functions
-- IVector exports still needing tests:
--  copy,
--  new,
--  unsafeSlice, unsafeIndex,

testSanity :: forall a v. (CommonContext a v) => v a -> [TestTree]
{-# INLINE testSanity #-}
testSanity _ = [
        testProperty "fromList.toList == id" prop_fromList_toList,
        testProperty "toList.fromList == id" prop_toList_fromList,
        testProperty "unstream.stream == id" prop_unstream_stream,
        testProperty "stream.unstream == id" prop_stream_unstream
    ]
  where
    prop_fromList_toList (v :: v a)        = (V.fromList . V.toList)                        v == v
    prop_toList_fromList (l :: [a])        = ((V.toList :: v a -> [a]) . V.fromList)        l == l
    prop_unstream_stream (v :: v a)        = (V.unstream . V.stream)                        v == v
    prop_stream_unstream (s :: S.Bundle v a) = ((V.stream :: v a -> S.Bundle v a) . V.unstream) s == s

testPolymorphicFunctions :: forall a v. (CommonContext a v, VectorContext Int v) => v a -> [TestTree]
-- FIXME: inlining of unboxed properties blows up the memory during compilation. See #272
--{-# INLINE testPolymorphicFunctions #-}
testPolymorphicFunctions _ = $(testProperties [
        'prop_eq,

        -- Length information
        'prop_length, 'prop_null,

        -- Indexing
        'prop_index, 'prop_safeIndex, 'prop_head, 'prop_last,
        'prop_unsafeIndex, 'prop_unsafeHead, 'prop_unsafeLast,

        -- Monadic indexing (FIXME)
        {- 'prop_indexM, 'prop_headM, 'prop_lastM,
        'prop_unsafeIndexM, 'prop_unsafeHeadM, 'prop_unsafeLastM, -}

        -- Subvectors (FIXME)
        'prop_slice, 'prop_init, 'prop_tail, 'prop_take, 'prop_drop,
        'prop_splitAt,
        {- 'prop_unsafeSlice, 'prop_unsafeInit, 'prop_unsafeTail,
        'prop_unsafeTake, 'prop_unsafeDrop, -}

        -- Initialisation (FIXME)
        'prop_empty, 'prop_singleton, 'prop_replicate,
        'prop_generate, 'prop_iterateN, 'prop_iterateNM,
        'prop_generateM, 'prop_replicateM,

        -- Monadic initialisation (FIXME)
        'prop_create, 'prop_createT,

        -- Unfolding
        'prop_unfoldr, 'prop_unfoldrN, 'prop_unfoldrExactN,
        'prop_unfoldrM, 'prop_unfoldrNM, 'prop_unfoldrExactNM,
        'prop_constructN, 'prop_constructrN,

        -- Concatenation (FIXME)
        'prop_cons, 'prop_snoc, 'prop_append,
        'prop_concat,

        -- Restricting memory usage
        'prop_force,


        -- Bulk updates (FIXME)
        'prop_upd,
        {- 'prop_update_,
        'prop_unsafeUpd, 'prop_unsafeUpdate, 'prop_unsafeUpdate_, -}

        -- Accumulations (FIXME)
        'prop_accum,
        {- 'prop_accumulate, 'prop_accumulate_,
        'prop_unsafeAccum, 'prop_unsafeAccumulate, 'prop_unsafeAccumulate_, -}

        -- Permutations
        'prop_reverse, 'prop_backpermute,
        {- 'prop_unsafeBackpermute, -}

        -- Mapping
        'prop_map, 'prop_imap, 'prop_concatMap,

        -- Monadic mapping
        'prop_mapM, 'prop_mapM_, 'prop_forM, 'prop_forM_,
        'prop_imapM, 'prop_imapM_,

        -- Zipping
        'prop_zipWith, 'prop_zipWith3,
        'prop_izipWith, 'prop_izipWith3,
        'prop_izipWithM, 'prop_izipWithM_,

        -- Monadic zipping
        'prop_zipWithM, 'prop_zipWithM_,

        -- Filtering
        'prop_filter, 'prop_ifilter, 'prop_filterM,
        'prop_uniq,
        'prop_mapMaybe, 'prop_imapMaybe,
        'prop_takeWhile, 'prop_dropWhile,

        -- Paritioning
        'prop_partition, {- 'prop_unstablePartition, -}
        'prop_partitionWith,
        'prop_span, 'prop_break,
        'prop_groupBy,

        -- Searching
        'prop_elem, 'prop_notElem,
        'prop_find, 'prop_findIndex, 'prop_findIndexR, 'prop_findIndices,
        'prop_elemIndex, 'prop_elemIndices,

        -- Folding
        'prop_foldl, 'prop_foldl1, 'prop_foldl', 'prop_foldl1',
        'prop_foldr, 'prop_foldr1, 'prop_foldr', 'prop_foldr1',
        'prop_ifoldl, 'prop_ifoldl', 'prop_ifoldr, 'prop_ifoldr',
        'prop_ifoldM, 'prop_ifoldM', 'prop_ifoldM_, 'prop_ifoldM'_,

        -- Specialised folds
        'prop_all, 'prop_any,

        -- Scans
        'prop_prescanl, 'prop_prescanl',
        'prop_postscanl, 'prop_postscanl',
        'prop_scanl, 'prop_scanl', 'prop_scanl1, 'prop_scanl1',
        'prop_iscanl, 'prop_iscanl',

        'prop_prescanr, 'prop_prescanr',
        'prop_postscanr, 'prop_postscanr',
        'prop_scanr, 'prop_scanr', 'prop_scanr1, 'prop_scanr1',
        'prop_iscanr, 'prop_iscanr',

        -- Mutable API
        'prop_mut_read, 'prop_mut_write, 'prop_mut_modify,

        'prop_mut_generate, 'prop_mut_generateM,
        'prop_mut_mapM_, 'prop_mut_imapM_, 'prop_mut_forM_, 'prop_mut_iforM_,
        'prop_mut_foldr, 'prop_mut_foldr', 'prop_mut_foldl, 'prop_mut_foldl',
        'prop_mut_ifoldr, 'prop_mut_ifoldr', 'prop_mut_ifoldl, 'prop_mut_ifoldl',
        'prop_mut_foldM, 'prop_mut_foldM', 'prop_mut_foldrM, 'prop_mut_foldrM',
        'prop_mut_ifoldM, 'prop_mut_ifoldM', 'prop_mut_ifoldrM, 'prop_mut_ifoldrM'
    ])
  where
    -- Prelude
    prop_eq :: P (v a -> v a -> Bool) = (==) `eq` (==)

    prop_length :: P (v a -> Int)     = V.length `eq` length
    prop_null   :: P (v a -> Bool)    = V.null `eq` null

    prop_empty  :: P (v a)            = V.empty `eq` []
    prop_singleton :: P (a -> v a)    = V.singleton `eq` Util.singleton
    prop_replicate :: P (Int -> a -> v a)
              = (\n _ -> n < 1000) ===> V.replicate `eq` replicate
    prop_replicateM :: P (Int -> Writer [a] a -> Writer [a] (v a))
              = (\n _ -> n < 1000) ===> V.replicateM `eq` replicateM
    prop_cons      :: P (a -> v a -> v a) = V.cons `eq` (:)
    prop_snoc      :: P (v a -> a -> v a) = V.snoc `eq` snoc
    prop_append    :: P (v a -> v a -> v a) = (V.++) `eq` (++)
    prop_concat    :: P ([v a] -> v a) = V.concat `eq` concat
    prop_force     :: P (v a -> v a)        = V.force `eq` id
    prop_generate  :: P (Int -> (Int -> a) -> v a)
              = (\n _ -> n < 1000) ===> V.generate `eq` Util.generate
    prop_generateM  :: P (Int -> (Int -> Writer [a] a) -> Writer [a] (v a))
              = (\n _ -> n < 1000) ===> V.generateM `eq` Util.generateM
    prop_iterateN  :: P (Int -> (a -> a) -> a -> v a)
              = (\n _ _ -> n < 1000) ===> V.iterateN `eq` (\n f -> take n . iterate f)
    prop_iterateNM :: P (Int -> (a -> Writer [Int] a) -> a -> Writer [Int] (v a))
              = (\n _ _ -> n < 1000) ===> V.iterateNM `eq` Util.iterateNM
    prop_create :: P (v a -> v a)
    prop_create = (\v -> V.create (V.thaw v)) `eq` id
    prop_createT :: P ((a, v a) -> (a, v a))
    prop_createT = (\v -> V.createT (T.mapM V.thaw v)) `eq` id

    prop_head      :: P (v a -> a) = not . V.null ===> V.head `eq` head
    prop_last      :: P (v a -> a) = not . V.null ===> V.last `eq` last
    prop_index        = \xs ->
                        not (V.null xs) ==>
                        forAll (choose (0, V.length xs-1)) $ \i ->
                        unP prop xs i
      where
        prop :: P (v a -> Int -> a) = (V.!) `eq` (!!)
    prop_safeIndex :: P (v a -> Int -> Maybe a) = (V.!?) `eq` fn
      where
        fn xs i = case drop i xs of
                    x:_ | i >= 0 -> Just x
                    _            -> Nothing
    prop_unsafeHead  :: P (v a -> a) = not . V.null ===> V.unsafeHead `eq` head
    prop_unsafeLast  :: P (v a -> a) = not . V.null ===> V.unsafeLast `eq` last
    prop_unsafeIndex  = \xs ->
                        not (V.null xs) ==>
                        forAll (choose (0, V.length xs-1)) $ \i ->
                        unP prop xs i
      where
        prop :: P (v a -> Int -> a) = V.unsafeIndex `eq` (!!)

    prop_slice        = \xs ->
                        forAll (choose (0, V.length xs))     $ \i ->
                        forAll (choose (0, V.length xs - i)) $ \n ->
                        unP prop i n xs
      where
        prop :: P (Int -> Int -> v a -> v a) = V.slice `eq` slice

    prop_tail :: P (v a -> v a) = not . V.null ===> V.tail `eq` tail
    prop_init :: P (v a -> v a) = not . V.null ===> V.init `eq` init
    prop_take :: P (Int -> v a -> v a) = V.take `eq` take
    prop_drop :: P (Int -> v a -> v a) = V.drop `eq` drop
    prop_splitAt :: P (Int -> v a -> (v a, v a)) = V.splitAt `eq` splitAt

    prop_accum = \f xs ->
                 forAll (index_value_pairs (V.length xs)) $ \ps ->
                 unP prop f xs ps
      where
        prop :: P ((a -> a -> a) -> v a -> [(Int,a)] -> v a)
          = V.accum `eq` accum

    prop_upd        = \xs ->
                        forAll (index_value_pairs (V.length xs)) $ \ps ->
                        unP prop xs ps
      where
        prop :: P (v a -> [(Int,a)] -> v a) = (V.//) `eq` (//)

    prop_backpermute  = \xs ->
                        forAll (indices (V.length xs)) $ \is ->
                        unP prop xs (V.fromList is)
      where
        prop :: P (v a -> v Int -> v a) = V.backpermute `eq` backpermute

    prop_reverse :: P (v a -> v a) = V.reverse `eq` reverse

    prop_map :: P ((a -> a) -> v a -> v a) = V.map `eq` map
    prop_mapM :: P ((a -> Identity a) -> v a -> Identity (v a))
            = V.mapM `eq` mapM
    prop_mapM_ :: P ((a -> Writer [a] ()) -> v a -> Writer [a] ())
            = V.mapM_ `eq` mapM_
    prop_forM :: P (v a -> (a -> Identity a) -> Identity (v a))
            = V.forM `eq` forM
    prop_forM_ :: P (v a -> (a -> Writer [a] ()) -> Writer [a] ())
            = V.forM_ `eq` forM_
    prop_zipWith :: P ((a -> a -> a) -> v a -> v a -> v a) = V.zipWith `eq` zipWith
    prop_zipWith3 :: P ((a -> a -> a -> a) -> v a -> v a -> v a -> v a)
             = V.zipWith3 `eq` zipWith3
    prop_imap :: P ((Int -> a -> a) -> v a -> v a) = V.imap `eq` imap
    prop_imapM :: P ((Int -> a -> Identity a) -> v a -> Identity (v a))
            = V.imapM `eq` imapM
    prop_imapM_ :: P ((Int -> a -> Writer [a] ()) -> v a -> Writer [a] ())
            = V.imapM_ `eq` imapM_
    prop_izipWith :: P ((Int -> a -> a -> a) -> v a -> v a -> v a) = V.izipWith `eq` izipWith
    prop_zipWithM :: P ((a -> a -> Identity a) -> v a -> v a -> Identity (v a))
            = V.zipWithM `eq` zipWithM
    prop_zipWithM_ :: P ((a -> a -> Writer [a] ()) -> v a -> v a -> Writer [a] ())
            = V.zipWithM_ `eq` zipWithM_
    prop_izipWithM :: P ((Int -> a -> a -> Identity a) -> v a -> v a -> Identity (v a))
            = V.izipWithM `eq` izipWithM
    prop_izipWithM_ :: P ((Int -> a -> a -> Writer [a] ()) -> v a -> v a -> Writer [a] ())
            = V.izipWithM_ `eq` izipWithM_
    prop_izipWith3 :: P ((Int -> a -> a -> a -> a) -> v a -> v a -> v a -> v a)
             = V.izipWith3 `eq` izipWith3

    prop_filter :: P ((a -> Bool) -> v a -> v a) = V.filter `eq` filter
    prop_ifilter :: P ((Int -> a -> Bool) -> v a -> v a) = V.ifilter `eq` ifilter
    prop_filterM :: P ((a -> Writer [a] Bool) -> v a -> Writer [a] (v a)) = V.filterM `eq` filterM
    prop_mapMaybe :: P ((a -> Maybe a) -> v a -> v a) = V.mapMaybe `eq` mapMaybe
    prop_imapMaybe :: P ((Int -> a -> Maybe a) -> v a -> v a) = V.imapMaybe `eq` imapMaybe
    prop_takeWhile :: P ((a -> Bool) -> v a -> v a) = V.takeWhile `eq` takeWhile
    prop_dropWhile :: P ((a -> Bool) -> v a -> v a) = V.dropWhile `eq` dropWhile
    prop_partition :: P ((a -> Bool) -> v a -> (v a, v a))
      = V.partition `eq` partition
    prop_partitionWith :: P ((a -> Either a a) -> v a -> (v a, v a))
      = V.partitionWith `eq` partitionWith
    prop_span :: P ((a -> Bool) -> v a -> (v a, v a)) = V.span `eq` span
    prop_break :: P ((a -> Bool) -> v a -> (v a, v a)) = V.break `eq` break
    prop_groupBy :: P ((a -> a -> Bool) -> v a -> [v a]) = V.groupBy `eq` groupBy

    prop_elem    :: P (a -> v a -> Bool) = V.elem `eq` elem
    prop_notElem :: P (a -> v a -> Bool) = V.notElem `eq` notElem
    prop_find    :: P ((a -> Bool) -> v a -> Maybe a) = V.find `eq` find
    prop_findIndex :: P ((a -> Bool) -> v a -> Maybe Int)
      = V.findIndex `eq` findIndex
    prop_findIndexR :: P ((a -> Bool) -> v a -> Maybe Int)
      = V.findIndexR `eq` \p l -> case filter (p . snd) . reverse $ zip [0..] l of
                                     (i,_):_ -> Just i
                                     []      -> Nothing
    prop_findIndices :: P ((a -> Bool) -> v a -> v Int)
        = V.findIndices `eq` findIndices
    prop_elemIndex :: P (a -> v a -> Maybe Int) = V.elemIndex `eq` elemIndex
    prop_elemIndices :: P (a -> v a -> v Int) = V.elemIndices `eq` elemIndices

    prop_foldl :: P ((a -> a -> a) -> a -> v a -> a) = V.foldl `eq` foldl
    prop_foldl1 :: P ((a -> a -> a) -> v a -> a)     = notNull2 ===>
                        V.foldl1 `eq` foldl1
    prop_foldl' :: P ((a -> a -> a) -> a -> v a -> a) = V.foldl' `eq` foldl'
    prop_foldl1' :: P ((a -> a -> a) -> v a -> a)     = notNull2 ===>
                        V.foldl1' `eq` foldl1'
    prop_foldr :: P ((a -> a -> a) -> a -> v a -> a) = V.foldr `eq` foldr
    prop_foldr1 :: P ((a -> a -> a) -> v a -> a)     = notNull2 ===>
                        V.foldr1 `eq` foldr1
    prop_foldr' :: P ((a -> a -> a) -> a -> v a -> a) = V.foldr' `eq` foldr
    prop_foldr1' :: P ((a -> a -> a) -> v a -> a)     = notNull2 ===>
                        V.foldr1' `eq` foldr1
    prop_ifoldl :: P ((a -> Int -> a -> a) -> a -> v a -> a)
        = V.ifoldl `eq` ifoldl
    prop_ifoldl' :: P ((a -> Int -> a -> a) -> a -> v a -> a)
        = V.ifoldl' `eq` ifoldl
    prop_ifoldr :: P ((Int -> a -> a -> a) -> a -> v a -> a)
        = V.ifoldr `eq` ifoldr
    prop_ifoldr' :: P ((Int -> a -> a -> a) -> a -> v a -> a)
        = V.ifoldr' `eq` ifoldr
    prop_ifoldM :: P ((a -> Int -> a -> Identity a) -> a -> v a -> Identity a)
        = V.ifoldM `eq` ifoldM
    prop_ifoldM' :: P ((a -> Int -> a -> Identity a) -> a -> v a -> Identity a)
        = V.ifoldM' `eq` ifoldM
    prop_ifoldM_ :: P ((() -> Int -> a -> Writer [a] ()) -> () -> v a -> Writer [a] ())
        = V.ifoldM_ `eq` ifoldM_
    prop_ifoldM'_ :: P ((() -> Int -> a -> Writer [a] ()) -> () -> v a -> Writer [a] ())
        = V.ifoldM'_ `eq` ifoldM_

    prop_all :: P ((a -> Bool) -> v a -> Bool) = V.all `eq` all
    prop_any :: P ((a -> Bool) -> v a -> Bool) = V.any `eq` any

    prop_prescanl :: P ((a -> a -> a) -> a -> v a -> v a)
                = V.prescanl `eq` prescanl
    prop_prescanl' :: P ((a -> a -> a) -> a -> v a -> v a)
                = V.prescanl' `eq` prescanl
    prop_postscanl :: P ((a -> a -> a) -> a -> v a -> v a)
                = V.postscanl `eq` postscanl
    prop_postscanl' :: P ((a -> a -> a) -> a -> v a -> v a)
                = V.postscanl' `eq` postscanl
    prop_scanl :: P ((a -> a -> a) -> a -> v a -> v a)
                = V.scanl `eq` scanl
    prop_scanl' :: P ((a -> a -> a) -> a -> v a -> v a)
               = V.scanl' `eq` scanl
    prop_scanl1 :: P ((a -> a -> a) -> v a -> v a)
               = V.scanl1 `eq` scanl1
    prop_scanl1' :: P ((a -> a -> a) -> v a -> v a)
               = V.scanl1' `eq` scanl1
    prop_iscanl :: P ((Int -> a -> a -> a) -> a -> v a -> v a)
                = V.iscanl `eq` iscanl
    prop_iscanl' :: P ((Int -> a -> a -> a) -> a -> v a -> v a)
               = V.iscanl' `eq` iscanl

    prop_prescanr :: P ((a -> a -> a) -> a -> v a -> v a)
                = V.prescanr `eq` prescanr
    prop_prescanr' :: P ((a -> a -> a) -> a -> v a -> v a)
                = V.prescanr' `eq` prescanr
    prop_postscanr :: P ((a -> a -> a) -> a -> v a -> v a)
                = V.postscanr `eq` postscanr
    prop_postscanr' :: P ((a -> a -> a) -> a -> v a -> v a)
                = V.postscanr' `eq` postscanr
    prop_scanr :: P ((a -> a -> a) -> a -> v a -> v a)
                = V.scanr `eq` scanr
    prop_scanr' :: P ((a -> a -> a) -> a -> v a -> v a)
               = V.scanr' `eq` scanr
    prop_iscanr :: P ((Int -> a -> a -> a) -> a -> v a -> v a)
                = V.iscanr `eq` iscanr
    prop_iscanr' :: P ((Int -> a -> a -> a) -> a -> v a -> v a)
               = V.iscanr' `eq` iscanr
    prop_scanr1 :: P ((a -> a -> a) -> v a -> v a)
               = V.scanr1 `eq` scanr1
    prop_scanr1' :: P ((a -> a -> a) -> v a -> v a)
                = V.scanr1' `eq` scanr1

    prop_concatMap    = forAll arbitrary $ \xs ->
                        forAll (sized (\n -> resize (n `div` V.length xs) arbitrary)) $ \f -> unP prop f xs
      where
        prop :: P ((a -> v a) -> v a -> v a) = V.concatMap `eq` concatMap

    prop_uniq :: P (v a -> v a)
      = V.uniq `eq` (map head . group)

    -- Data.List
    --prop_mapAccumL  = eq3
    --    (V.mapAccumL :: (X -> W -> (X,W)) -> X -> B   -> (X, B))
    --    (  mapAccumL :: (X -> W -> (X,W)) -> X -> [W] -> (X, [W]))
    --
    --prop_mapAccumR  = eq3
    --    (V.mapAccumR :: (X -> W -> (X,W)) -> X -> B   -> (X, B))
    --    (  mapAccumR :: (X -> W -> (X,W)) -> X -> [W] -> (X, [W]))

    -- Because the vectors are strict, we need to be totally sure that the unfold eventually terminates. This
    -- is achieved by injecting our own bit of state into the unfold - the maximum number of unfolds allowed.
    limitUnfolds f (theirs, ours)
        | ours > 0
        , Just (out, theirs') <- f theirs = Just (out, (theirs', ours - 1))
        | otherwise                       = Nothing
    limitUnfoldsM f (theirs, ours)
        | ours >  0 = do r <- f theirs
                         return $ (\(a,b) -> (a,(b,ours - 1))) `fmap` r
        | otherwise = return Nothing


    prop_unfoldr :: P (Int -> (Int -> Maybe (a,Int)) -> Int -> v a)
         = (\n f a -> V.unfoldr (limitUnfolds f) (a, n))
           `eq` (\n f a -> unfoldr (limitUnfolds f) (a, n))
    prop_unfoldrN :: P (Int -> (Int -> Maybe (a,Int)) -> Int -> v a)
         = V.unfoldrN `eq` (\n f a -> unfoldr (limitUnfolds f) (a, n))
    prop_unfoldrExactN :: P (Int -> (Int -> (a,Int)) -> Int -> v a)
         = V.unfoldrExactN `eq` (\n f a -> unfoldr (limitUnfolds (Just . f)) (a, n))
    prop_unfoldrM :: P (Int -> (Int -> Writer [Int] (Maybe (a,Int))) -> Int -> Writer [Int] (v a))
         = (\n f a -> V.unfoldrM (limitUnfoldsM f) (a,n))
           `eq` (\n f a -> Util.unfoldrM (limitUnfoldsM f) (a, n))
    prop_unfoldrNM :: P (Int -> (Int -> Writer [Int] (Maybe (a,Int))) -> Int -> Writer [Int] (v a))
         = V.unfoldrNM `eq` (\n f a -> Util.unfoldrM (limitUnfoldsM f) (a, n))
    prop_unfoldrExactNM :: P (Int -> (Int -> Writer [Int] (a,Int)) -> Int -> Writer [Int] (v a))
         = V.unfoldrExactNM `eq` (\n f a -> Util.unfoldrM (limitUnfoldsM (liftM Just . f)) (a, n))

    prop_constructN  = \f -> forAll (choose (0,20)) $ \n -> unP prop n f
      where
        prop :: P (Int -> (v a -> a) -> v a) = V.constructN `eq` constructN []

        constructN xs 0 _ = xs
        constructN xs n f = constructN (xs ++ [f xs]) (n-1) f

    prop_constructrN  = \f -> forAll (choose (0,20)) $ \n -> unP prop n f
      where
        prop :: P (Int -> (v a -> a) -> v a) = V.constructrN `eq` constructrN []

        constructrN xs 0 _ = xs
        constructrN xs n f = constructrN (f xs : xs) (n-1) f

    prop_mut_foldr :: P ((a -> a -> a) -> a -> v a -> a) =
      (\f z v -> runST $ MV.foldr f z =<< V.thaw v) `eq` foldr
    prop_mut_foldr' :: P ((a -> a -> a) -> a -> v a -> a) =
      (\f z v -> runST $ MV.foldr' f z =<< V.thaw v) `eq` foldr
    prop_mut_foldl :: P ((a -> a -> a) -> a -> v a -> a) =
      (\f z v -> runST $ MV.foldl f z =<< V.thaw v) `eq` foldl
    prop_mut_foldl' :: P ((a -> a -> a) -> a -> v a -> a) =
      (\f z v -> runST $ MV.foldl' f z =<< V.thaw v) `eq` foldl'
    prop_mut_ifoldr :: P ((Int -> a -> a -> a) -> a -> v a -> a) =
      (\f z v -> runST $ MV.ifoldr f z =<< V.thaw v) `eq` ifoldr
    prop_mut_ifoldr' :: P ((Int -> a -> a -> a) -> a -> v a -> a) =
      (\f z v -> runST $ MV.ifoldr' f z =<< V.thaw v) `eq` ifoldr
    prop_mut_ifoldl :: P ((a -> Int -> a -> a) -> a -> v a -> a) =
      (\f z v -> runST $ MV.ifoldl f z =<< V.thaw v) `eq` ifoldl
    prop_mut_ifoldl' :: P ((a -> Int -> a -> a) -> a -> v a -> a) =
      (\f z v -> runST $ MV.ifoldl' f z =<< V.thaw v) `eq` ifoldl

    prop_mut_foldM :: P ((a -> a -> Identity a) -> a -> v a -> Identity a)
      = (\f z v -> Identity $ runST $ MV.foldM (\b -> pure . runIdentity . f b) z =<< V.thaw v)
      `eq` foldM
    prop_mut_foldM' :: P ((a -> a -> Identity a) -> a -> v a -> Identity a)
      = (\f z v -> Identity $ runST $ MV.foldM' (\b -> pure . runIdentity . f b) z =<< V.thaw v)
      `eq` foldM
    prop_mut_foldrM :: P ((a -> a -> Identity a) -> a -> v a -> Identity a)
      = (\f z v -> Identity $ runST $ MV.foldrM (\a -> pure . runIdentity . f a) z =<< V.thaw v)
      `eq`
      foldrM
    prop_mut_foldrM' :: P ((a -> a -> Identity a) -> a -> v a -> Identity a)
      = (\f z v -> Identity $ runST $ MV.foldrM' (\a b -> pure $ runIdentity $ f a b) z =<< V.thaw v)
      `eq`
      foldrM

    prop_mut_read = \xs ->
      not (V.null xs) ==>
      forAll (choose (0, V.length xs-1)) $ \i ->
      unP prop xs i
      where
        prop :: P (v a -> Int -> a) = (\v i -> runST $ do mv <- V.thaw v
                                                          MV.read mv i
                                      ) `eq` (!!)
    prop_mut_write = \xs ->
      not (V.null xs) ==>
      forAll (choose (0, V.length xs-1)) $ \i ->
      unP prop xs i
      where
        prop :: P (v a -> Int -> a -> v a) = (\v i a -> runST $ do mv <- V.thaw v
                                                                   MV.write mv i a
                                                                   V.freeze mv
                                             ) `eq` writeList
    prop_mut_modify = \xs f ->
      not (V.null xs) ==>
      forAll (choose (0, V.length xs-1)) $ \i ->
      unP prop xs f i
      where
        prop :: P (v a -> (a -> a) -> Int -> v a)
          = (\v f i -> runST $ do mv <- V.thaw v
                                  MV.modify mv f i
                                  V.freeze mv
            ) `eq` modifyList



    prop_mut_generate :: P (Int -> (Int -> a) -> v a)
      = (\n _ -> n < 1000) ===> (\n f -> runST $ V.freeze =<< MV.generate n f)
      `eq` Util.generate
    prop_mut_generateM :: P (Int -> (Int -> Writer [a] a) -> Writer [a] (v a))
      = (\n _ -> n < 1000) ===> (\n f -> liftRunST $ V.freeze =<< MV.generateM n (hoistST . f))
      `eq` Util.generateM

    prop_mut_ifoldM :: P ((a -> Int -> a -> Identity a) -> a -> v a -> Identity a)
      = (\f z v -> Identity $ runST $ MV.ifoldM (\b i -> pure . runIdentity . f b i) z =<< V.thaw v)
      `eq` ifoldM
    prop_mut_ifoldM' :: P ((a -> Int -> a -> Identity a) -> a -> v a -> Identity a)
      = (\f z v -> Identity $ runST $ MV.ifoldM' (\b i -> pure . runIdentity . f b i) z =<< V.thaw v)
      `eq` ifoldM
    prop_mut_ifoldrM :: P ((Int -> a -> a -> Identity a) -> a -> v a -> Identity a)
      = (\f z v -> Identity $ runST $ MV.ifoldrM (\i b -> pure . runIdentity . f i b) z =<< V.thaw v)
      `eq`
      ifoldrM
    prop_mut_ifoldrM' :: P ((Int -> a -> a -> Identity a) -> a -> v a -> Identity a)
      = (\f z v -> Identity $ runST $ MV.ifoldrM' (\i b -> pure . runIdentity . f i b) z =<< V.thaw v)
      `eq`
      ifoldrM

    prop_mut_forM_ :: P (v a -> (a -> Writer [a] ()) -> Writer [a] ())
      = (\v f -> liftRunST $ do mv <- V.thaw v
                                MV.forM_ mv (hoistST . f))
      `eq` flip mapM_
    prop_mut_iforM_ :: P (v a -> (Int -> a -> Writer [a] ()) -> Writer [a] ())
      = (\v f -> liftRunST $ do mv <- V.thaw v
                                MV.iforM_ mv (\i x -> hoistST $ f i x))
      `eq` flip imapM_
    prop_mut_mapM_ :: P ((a -> Writer [a] ()) -> v a -> Writer [a] ())
      = (\f v -> liftRunST $ MV.mapM_ (hoistST . f) =<< V.thaw v) `eq` mapM_
    prop_mut_imapM_ :: P ((Int -> a -> Writer [a] ()) -> v a -> Writer [a] ())
      = (\f v -> liftRunST $ MV.imapM_ (\i x -> hoistST $ f i x) =<< V.thaw v) `eq` imapM_


liftRunST :: (forall s. WriterT w (ST s) a) -> Writer w a
liftRunST m = WriterT $ Identity $ runST $ runWriterT m

hoistST :: Writer w a -> WriterT w (ST s) a
hoistST = WriterT . pure . runWriter

-- copied from GHC source code
partitionWith :: (a -> Either b c) -> [a] -> ([b], [c])
partitionWith _ [] = ([],[])
partitionWith f (x:xs) = case f x of
                         Left  b -> (b:bs, cs)
                         Right c -> (bs, c:cs)
    where (bs,cs) = partitionWith f xs

testTuplyFunctions
  :: forall a v. ( CommonContext a v
                 , VectorContext (a, a)    v
                 , VectorContext (a, a, a) v
                 , VectorContext (Int, a)  v
                 )
  => v a -> [TestTree]
{-# INLINE testTuplyFunctions #-}
testTuplyFunctions _ = $(testProperties [ 'prop_zip, 'prop_zip3
                                        , 'prop_unzip, 'prop_unzip3
                                        , 'prop_indexed
                                        , 'prop_update
                                        ])
  where
    prop_zip     :: P (v a -> v a -> v (a, a))           = V.zip `eq` zip
    prop_zip3    :: P (v a -> v a -> v a -> v (a, a, a)) = V.zip3 `eq` zip3
    prop_unzip   :: P (v (a, a) -> (v a, v a))           = V.unzip `eq` unzip
    prop_unzip3  :: P (v (a, a, a) -> (v a, v a, v a))   = V.unzip3 `eq` unzip3
    prop_indexed :: P (v a -> v (Int, a))                = V.indexed `eq` (\xs -> [0..] `zip` xs)
    prop_update = \xs ->
      forAll (index_value_pairs (V.length xs)) $ \ps ->
      unP prop xs ps
      where
        prop :: P (v a -> [(Int,a)] -> v a) = (V.//) `eq` (//)

testOrdFunctions :: forall a v. (CommonContext a v, Ord a, Ord (v a)) => v a -> [TestTree]
{-# INLINE testOrdFunctions #-}
testOrdFunctions _ = $(testProperties
  ['prop_compare,
   'prop_maximum, 'prop_minimum,
   'prop_minIndex, 'prop_maxIndex,
   'prop_maximumBy, 'prop_minimumBy,
   'prop_maximumOn, 'prop_minimumOn,
   'prop_maxIndexBy, 'prop_minIndexBy,
   'prop_ListFirstMaxIndexWins, 'prop_FalseListFirstMaxIndexWins ])
  where
    prop_compare :: P (v a -> v a -> Ordering) = compare `eq` compare
    prop_maximum :: P (v a -> a) = not . V.null ===> V.maximum `eq` maximum
    prop_minimum :: P (v a -> a) = not . V.null ===> V.minimum `eq` minimum
    prop_minIndex :: P (v a -> Int) = not . V.null ===> V.minIndex `eq` minIndex
    prop_maxIndex :: P (v a -> Int) = not . V.null ===> V.maxIndex `eq` maxIndex
    prop_maximumBy :: P (v a -> a) =
      not . V.null ===> V.maximumBy compare `eq` maximum
    prop_minimumBy :: P (v a -> a) =
      not . V.null ===> V.minimumBy compare `eq` minimum
    prop_maximumOn :: P (v a -> a) =
      not . V.null ===> V.maximumOn id `eq` maximum
    prop_minimumOn :: P (v a -> a) =
      not . V.null ===> V.minimumOn id `eq` minimum
    prop_maxIndexBy :: P (v a -> Int) =
      not . V.null ===> V.maxIndexBy compare `eq` maxIndex
    prop_ListFirstMaxIndexWins ::  P (v a -> Int) =
        not . V.null ===> ( maxIndex . V.toList) `eq` listMaxIndexFMW
    prop_FalseListFirstMaxIndexWinsDesc ::  P (v a -> Int) =
        (\x -> not $ V.null x && (V.uniq x /= x ) )===> ( maxIndex . V.toList) `eq` listMaxIndexFMW
    prop_FalseListFirstMaxIndexWins :: Property
    prop_FalseListFirstMaxIndexWins = expectFailure prop_FalseListFirstMaxIndexWinsDesc
    prop_minIndexBy :: P (v a -> Int) =
      not . V.null ===> V.minIndexBy compare `eq` minIndex

listMaxIndexFMW :: Ord a => [a] -> Int
listMaxIndexFMW  = ( fst  . extractFMW .  sconcat . DLE.fromList . fmap FMW . zip [0 :: Int ..])

newtype LastMaxWith a i = LMW {extractLMW:: (i,a)}
    deriving(Eq,Show,Read)
instance (Ord a) => Semigroup  (LastMaxWith a i)   where
    (<>) x y | snd (extractLMW x) > snd (extractLMW y) = x
             | snd (extractLMW x) < snd (extractLMW y) = y
             | otherwise = y
newtype FirstMaxWith a i = FMW {extractFMW:: (i,a)}
    deriving(Eq,Show,Read)
instance (Ord a) => Semigroup  (FirstMaxWith a i)   where
    (<>) x y | snd (extractFMW x) > snd (extractFMW y) = x
             | snd (extractFMW x) < snd (extractFMW y) = y
             | otherwise = x


testEnumFunctions :: forall a v. (CommonContext a v, Enum a, Ord a, Num a, Random a) => v a -> [TestTree]
{-# INLINE testEnumFunctions #-}
testEnumFunctions _ = $(testProperties
  [ 'prop_enumFromN, 'prop_enumFromThenN,
    'prop_enumFromTo, 'prop_enumFromThenTo])
  where
    prop_enumFromN :: P (a -> Int -> v a)
      = (\_ n -> n < 1000)
        ===> V.enumFromN `eq` (\x n -> take n $ scanl (+) x $ repeat 1)

    prop_enumFromThenN :: P (a -> a -> Int -> v a)
      = (\_ _ n -> n < 1000)
        ===> V.enumFromStepN `eq` (\x y n -> take n $ scanl (+) x $ repeat y)

    prop_enumFromTo = \m ->
                      forAll (choose (-2,100)) $ \n ->
                      unP prop m (m+n)
      where
        prop  :: P (a -> a -> v a) = V.enumFromTo `eq` enumFromTo

    prop_enumFromThenTo = \i j ->
                          j /= i ==>
                          forAll (choose (ks i j)) $ \k ->
                          unP prop i j k
      where
        prop :: P (a -> a -> a -> v a) = V.enumFromThenTo `eq` enumFromThenTo

        ks i j | j < i     = (i-d*100, i+d*2)
               | otherwise = (i-d*2, i+d*100)
          where
            d = abs (j-i)

testMonoidFunctions :: forall a v. (CommonContext a v, Monoid (v a)) => v a -> [TestTree]
{-# INLINE testMonoidFunctions #-}
testMonoidFunctions _ = $(testProperties
  [ 'prop_mempty, 'prop_mappend, 'prop_mconcat ])
  where
    prop_mempty  :: P (v a)               = mempty `eq` mempty
    prop_mappend :: P (v a -> v a -> v a) = mappend `eq` mappend
    prop_mconcat :: P ([v a] -> v a)      = mconcat `eq` mconcat

testFunctorFunctions :: forall a v. (CommonContext a v, Functor v) => v a -> [TestTree]
{-# INLINE testFunctorFunctions #-}
testFunctorFunctions _ = $(testProperties
  [ 'prop_fmap ])
  where
    prop_fmap :: P ((a -> a) -> v a -> v a) = fmap `eq` fmap

testMonadFunctions :: forall a v. (CommonContext a v, VectorContext (a, a) v, MonadZip v) => v a -> [TestTree]
{-# INLINE testMonadFunctions #-}
testMonadFunctions _ = $(testProperties [ 'prop_return, 'prop_bind
                                        , 'prop_mzip, 'prop_munzip
                                        ])
  where
    prop_return :: P (a -> v a) = return `eq` return
    prop_bind   :: P (v a -> (a -> v a) -> v a) = (>>=) `eq` (>>=)
    prop_mzip   :: P (v a -> v a -> v (a, a)) = mzip `eq` zip
    prop_munzip :: P (v (a, a) -> (v a, v a)) = munzip `eq` unzip

testSequenceFunctions
  :: forall a v. ( CommonContext a v
                 , Model (v (Writer [a] a)) ~ [Writer [a] a]
                 , V.Vector v (Writer [a] a)
                 , Arbitrary (v (Writer [a] a))
                 , Show      (v (Writer [a] a))
                 , TestData  (v (Writer [a] a))
                 )
  => v a -> [TestTree]
testSequenceFunctions _ = $(testProperties [ 'prop_sequence, 'prop_sequence_
                                           ])
  where
    prop_sequence :: P (v (Writer [a] a) -> Writer [a] (v a))
      = V.sequence `eq` sequence
    prop_sequence_ :: P (v (Writer [a] a) -> Writer [a] ())
      = V.sequence_ `eq` sequence_

testApplicativeFunctions :: forall a v. (CommonContext a v, V.Vector v (a -> a), Applicative.Applicative v) => v a -> [TestTree]
{-# INLINE testApplicativeFunctions #-}
testApplicativeFunctions _ = $(testProperties
  [ 'prop_applicative_pure, 'prop_applicative_appl ])
  where
    prop_applicative_pure :: P (a -> v a)
      = Applicative.pure `eq` Applicative.pure
    prop_applicative_appl :: [a -> a] -> P (v a -> v a)
      = \fs -> (Applicative.<*>) (V.fromList fs) `eq` (Applicative.<*>) fs

testAlternativeFunctions :: forall a v. (CommonContext a v, Applicative.Alternative v) => v a -> [TestTree]
{-# INLINE testAlternativeFunctions #-}
testAlternativeFunctions _ = $(testProperties
  [ 'prop_alternative_empty, 'prop_alternative_or ])
  where
    prop_alternative_empty :: P (v a) = Applicative.empty `eq` Applicative.empty
    prop_alternative_or :: P (v a -> v a -> v a)
      = (Applicative.<|>) `eq` (Applicative.<|>)

testBoolFunctions :: forall v. (CommonContext Bool v) => v Bool -> [TestTree]
{-# INLINE testBoolFunctions #-}
testBoolFunctions _ = $(testProperties ['prop_and, 'prop_or])
  where
    prop_and :: P (v Bool -> Bool) = V.and `eq` and
    prop_or  :: P (v Bool -> Bool) = V.or `eq` or

testNumFunctions :: forall a v. (CommonContext a v, Num a) => v a -> [TestTree]
{-# INLINE testNumFunctions #-}
testNumFunctions _ = $(testProperties ['prop_sum, 'prop_product])
  where
    prop_sum     :: P (v a -> a) = V.sum `eq` sum
    prop_product :: P (v a -> a) = V.product `eq` product

testNestedVectorFunctions :: forall a v. (CommonContext a v) => v a -> [TestTree]
{-# INLINE testNestedVectorFunctions #-}
testNestedVectorFunctions _ = $(testProperties
  [ 'prop_concat
  ])
  where
    prop_concat :: P ([v a] -> v a) = V.concat `eq` concat

testDataFunctions :: forall a v. (CommonContext a v, Data a, Data (v a)) => v a -> [TestTree]
{-# INLINE testDataFunctions #-}
testDataFunctions _ = $(testProperties ['prop_glength])
  where
    prop_glength :: P (v a -> Int) = glength `eq` glength
      where
        glength :: Data b => b -> Int
        glength xs = gmapQl (+) 0 toA xs

        toA :: Data b => b -> Int
        toA x = maybe (glength x) (const 1) (cast x :: Maybe a)

testUnstream :: forall v. (CommonContext Int v) => v Int -> [TestTree]
{-# INLINE testUnstream #-}
testUnstream _ =
  [ testProperty "unstream == vunstream (exact)" $ \(n :: Int) ->
      let v1,v2 :: v Int
          v1 = runST $ V.freeze =<< MV.unstream  (streamExact n)
          v2 = runST $ V.freeze =<< MV.vunstream (streamExact n)
      in v1 == v2
  , testProperty "unstream == vunstream (unknown)" $ \(n :: Int) ->
      let v1,v2 :: v Int
          v1 = runST $ V.freeze =<< MV.unstream  (streamUnknown n)
          v2 = runST $ V.freeze =<< MV.vunstream (streamUnknown n)
      in v1 == v2
  --
  , testProperty "unstreamR ~= vunstream (exact)" $ \(n :: Int) ->
      let v1,v2 :: v Int
          v1 = runST $ V.freeze =<< MV.unstreamR (streamExact n)
          v2 = runST $ V.freeze =<< MV.vunstream (streamExact n)
      in V.reverse v1 == v2
  , testProperty "unstreamR ~= vunstream (unknown)" $ \(n :: Int) ->
      let v1,v2 :: v Int
          v1 = runST $ V.freeze =<< MV.unstreamR (streamUnknown n)
          v2 = runST $ V.freeze =<< MV.vunstream (streamUnknown n)
      in V.reverse v1 == v2
  ]
  where
    streamExact n = S.generate (abs n) id
    streamUnknown = S.unfoldr (\i -> if i > 0 then (Just (i-1,i-1)) else Nothing) . abs