1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
|
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE FlexibleContexts #-}
module Bench.Vector.Algo.NextPermutation (generatePermTests) where
import qualified Data.Vector.Unboxed as V
import qualified Data.Vector.Unboxed.Mutable as M
import qualified Data.Vector.Generic.Mutable as G
import System.Random.Stateful
( StatefulGen, UniformRange(uniformRM) )
-- | Generate a list of benchmarks for permutation algorithms.
-- The list contains pairs of benchmark names and corresponding actions.
-- The actions are to be executed by the benchmarking framework.
--
-- The list contains the following benchmarks:
-- - @(next|prev)Permutation@ on a small vector repeated until the end of the permutation cycle
-- - Bijective versions of @(next|prev)Permutation@ on a vector of size @n@, repeated @n@ times
-- - ascending permutation
-- - descending permutation
-- - random permutation
-- - Baseline for bijective versions: just copying a vector of size @n@. Note that the tests for
-- bijective versions begins with copying a vector.
generatePermTests :: StatefulGen g IO => g -> Int -> IO [(String, IO ())]
generatePermTests gen useSize = do
let !k = useSizeToPermLen useSize
let !vasc = V.generate useSize id
!vdesc = V.generate useSize (useSize-1-)
!vrnd <- randomPermutationWith gen useSize
return
[ ("nextPermutation (small vector, until end)", loopPermutations k)
, ("nextPermutationBijective (ascending perm of size n, n times)", repeatNextPermutation vasc useSize)
, ("nextPermutationBijective (descending perm of size n, n times)", repeatNextPermutation vdesc useSize)
, ("nextPermutationBijective (random perm of size n, n times)", repeatNextPermutation vrnd useSize)
, ("prevPermutation (small vector, until end)", loopRevPermutations k)
, ("prevPermutationBijective (ascending perm of size n, n times)", repeatPrevPermutation vasc useSize)
, ("prevPermutationBijective (descending perm of size n, n times)", repeatPrevPermutation vdesc useSize)
, ("prevPermutationBijective (random perm of size n, n times)", repeatPrevPermutation vrnd useSize)
, ("baseline for *Bijective (just copying the vector of size n)", V.thaw vrnd >> return ())
]
-- | Given a PRNG and a length @n@, generate a random permutation of @[0..n-1]@.
randomPermutationWith :: (StatefulGen g IO) => g -> Int -> IO (V.Vector Int)
randomPermutationWith gen n = do
v <- M.generate n id
V.forM_ (V.generate (n-1) id) $ \ !i -> do
j <- uniformRM (i,n-1) gen
M.swap v i j
V.unsafeFreeze v
-- | Given @useSize@ benchmark option, compute the largest @n <= 12@ such that @n! <= useSize@.
-- Repeat-nextPermutation-until-end benchmark will use @n@ as the length of the vector.
-- Note that 12 is the largest @n@ such that @n!@ can be represented as an 'Int32'.
useSizeToPermLen :: Int -> Int
useSizeToPermLen us = case V.findIndex (> max 0 us) $ V.scanl' (*) 1 $ V.generate 12 (+1) of
Just i -> i-1
Nothing -> 12
-- | A bijective version of @G.nextPermutation@ that reverses the vector
-- if it is already in descending order.
-- "Bijective" here means that the function forms a cycle over all permutations
-- of the vector's elements.
--
-- This has a nice property that should be benchmarked:
-- this function takes amortized constant time each call,
-- if successively called either Omega(n) times on a single vector having distinct elements,
-- or arbitrary times on a single vector initially in strictly ascending order.
nextPermutationBijective :: (G.MVector v a, Ord a) => v G.RealWorld a -> IO Bool
nextPermutationBijective v = do
res <- G.nextPermutation v
if res then return True else G.reverse v >> return False
-- | A bijective version of @G.prevPermutation@ that reverses the vector
-- if it is already in ascending order.
-- "Bijective" here means that the function forms a cycle over all permutations
-- of the vector's elements.
--
-- This has a nice property that should be benchmarked:
-- this function takes amortized constant time each call,
-- if successively called either Omega(n) times on a single vector having distinct elements,
-- or arbitrary times on a single vector initially in strictly descending order.
prevPermutationBijective :: (G.MVector v a, Ord a) => v G.RealWorld a -> IO Bool
prevPermutationBijective v = do
res <- G.prevPermutation v
if res then return True else G.reverse v >> return False
-- | Repeat @nextPermutation@ on @[0..n-1]@ until the end.
loopPermutations :: Int -> IO ()
loopPermutations n = do
v <- M.generate n id
let loop = do
res <- M.nextPermutation v
if res then loop else return ()
loop
-- | Repeat @prevPermutation@ on @[n-1,n-2..0]@ until the end.
loopRevPermutations :: Int -> IO ()
loopRevPermutations n = do
v <- M.generate n (n-1-)
let loop = do
res <- M.prevPermutation v
if res then loop else return ()
loop
-- | Repeat @nextPermutationBijective@ on a given vector given times.
repeatNextPermutation :: V.Vector Int -> Int -> IO ()
repeatNextPermutation !v !n = do
!mv <- V.thaw v
let loop !i | i <= 0 = return ()
loop !i = do
_ <- nextPermutationBijective mv
loop (i-1)
loop n
-- | Repeat @prevPermutationBijective@ on a given vector given times.
repeatPrevPermutation :: V.Vector Int -> Int -> IO ()
repeatPrevPermutation !v !n = do
!mv <- V.thaw v
let loop !i | i <= 0 = return ()
loop !i = do
_ <- prevPermutationBijective mv
loop (i-1)
loop n
|