1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
|
{-# LANGUAGE Rank2Types, MultiParamTypeClasses, FlexibleContexts,
TypeFamilies, ScopedTypeVariables #-}
-- |
-- Module : Data.Vector.Generic
-- Copyright : (c) Roman Leshchinskiy 2008-2010
-- License : BSD-style
--
-- Maintainer : Roman Leshchinskiy <rl@cse.unsw.edu.au>
-- Stability : experimental
-- Portability : non-portable
--
-- Generic interface to pure vectors.
--
module Data.Vector.Generic (
-- * Immutable vectors
Vector(..), Mutable,
-- * Accessors
-- ** Length information
length, null,
-- ** Indexing
(!), head, last,
unsafeIndex, unsafeHead, unsafeLast,
-- ** Monadic indexing
indexM, headM, lastM,
unsafeIndexM, unsafeHeadM, unsafeLastM,
-- ** Extracting subvectors (slicing)
slice, init, tail, take, drop,
unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop,
-- * Construction
-- ** Initialisation
empty, singleton, replicate, generate,
-- ** Monadic initialisation
replicateM, create,
-- ** Unfolding
unfoldr, unfoldrN,
-- ** Enumeration
enumFromN, enumFromStepN, enumFromTo, enumFromThenTo,
-- ** Concatenation
cons, snoc, (++),
-- ** Restricting memory usage
force,
-- * Modifying vectors
-- ** Bulk updates
(//), update, update_,
unsafeUpd, unsafeUpdate, unsafeUpdate_,
-- ** Accumulations
accum, accumulate, accumulate_,
unsafeAccum, unsafeAccumulate, unsafeAccumulate_,
-- ** Permutations
reverse, backpermute, unsafeBackpermute,
-- ** Safe destructive updates
modify,
-- * Elementwise operations
-- ** Mapping
map, imap, concatMap,
-- ** Monadic mapping
mapM, mapM_, forM, forM_,
-- ** Zipping
zipWith, zipWith3, zipWith4, zipWith5, zipWith6,
izipWith, izipWith3, izipWith4, izipWith5, izipWith6,
zip, zip3, zip4, zip5, zip6,
-- ** Monadic zipping
zipWithM, zipWithM_,
-- ** Unzipping
unzip, unzip3, unzip4, unzip5, unzip6,
-- * Working with predicates
-- ** Filtering
filter, ifilter, filterM,
takeWhile, dropWhile,
-- ** Partitioning
partition, unstablePartition, span, break,
-- ** Searching
elem, notElem, find, findIndex, findIndices, elemIndex, elemIndices,
-- * Folding
foldl, foldl1, foldl', foldl1', foldr, foldr1, foldr', foldr1',
ifoldl, ifoldl', ifoldr, ifoldr',
-- ** Specialised folds
all, any, and, or,
sum, product,
maximum, maximumBy, minimum, minimumBy,
minIndex, minIndexBy, maxIndex, maxIndexBy,
-- ** Monadic folds
foldM, foldM', fold1M, fold1M',
-- * Prefix sums (scans)
prescanl, prescanl',
postscanl, postscanl',
scanl, scanl', scanl1, scanl1',
prescanr, prescanr',
postscanr, postscanr',
scanr, scanr', scanr1, scanr1',
-- * Conversions
-- ** Lists
toList, fromList, fromListN,
-- ** Mutable vectors
copy, unsafeCopy,
-- * Fusion support
-- ** Conversion to/from Streams
stream, unstream, streamR, unstreamR,
-- ** Recycling support
new, clone,
-- * Utilities
-- ** Comparisons
eq, cmp,
-- ** @Data@ and @Typeable@
gfoldl, dataCast, mkType
) where
import Data.Vector.Generic.Base
import Data.Vector.Generic.Mutable ( MVector )
import qualified Data.Vector.Generic.Mutable as M
import qualified Data.Vector.Generic.New as New
import Data.Vector.Generic.New ( New )
import qualified Data.Vector.Fusion.Stream as Stream
import Data.Vector.Fusion.Stream ( Stream, MStream, inplace )
import qualified Data.Vector.Fusion.Stream.Monadic as MStream
import Data.Vector.Fusion.Stream.Size
import Data.Vector.Fusion.Util
import Control.Monad.ST ( ST, runST )
import Control.Monad.Primitive
import qualified Control.Monad as Monad
import Prelude hiding ( length, null,
replicate, (++),
head, last,
init, tail, take, drop, reverse,
map, concatMap,
zipWith, zipWith3, zip, zip3, unzip, unzip3,
filter, takeWhile, dropWhile, span, break,
elem, notElem,
foldl, foldl1, foldr, foldr1,
all, any, and, or, sum, product, maximum, minimum,
scanl, scanl1, scanr, scanr1,
enumFromTo, enumFromThenTo,
mapM, mapM_ )
import Data.Typeable ( Typeable1, gcast1 )
import Data.Data ( Data, DataType, mkNorepType )
#include "vector.h"
-- Length information
-- ------------------
-- | /O(1)/ Yield the length of the vector.
length :: Vector v a => v a -> Int
{-# INLINE_STREAM length #-}
length v = basicLength v
{-# RULES
"length/unstream [Vector]" forall s.
length (new (New.unstream s)) = Stream.length s
#-}
-- | /O(1)/ Test whether a vector if empty
null :: Vector v a => v a -> Bool
{-# INLINE_STREAM null #-}
null v = basicLength v == 0
{-# RULES
"null/unstream [Vector]" forall s.
null (new (New.unstream s)) = Stream.null s
#-}
-- Indexing
-- --------
-- | O(1) Indexing
(!) :: Vector v a => v a -> Int -> a
{-# INLINE_STREAM (!) #-}
v ! i = BOUNDS_CHECK(checkIndex) "(!)" i (length v)
$ unId (basicUnsafeIndexM v i)
-- | /O(1)/ First element
head :: Vector v a => v a -> a
{-# INLINE_STREAM head #-}
head v = v ! 0
-- | /O(1)/ Last element
last :: Vector v a => v a -> a
{-# INLINE_STREAM last #-}
last v = v ! (length v - 1)
-- | /O(1)/ Unsafe indexing without bounds checking
unsafeIndex :: Vector v a => v a -> Int -> a
{-# INLINE_STREAM unsafeIndex #-}
unsafeIndex v i = UNSAFE_CHECK(checkIndex) "unsafeIndex" i (length v)
$ unId (basicUnsafeIndexM v i)
-- | /O(1)/ First element without checking if the vector is empty
unsafeHead :: Vector v a => v a -> a
{-# INLINE_STREAM unsafeHead #-}
unsafeHead v = unsafeIndex v 0
-- | /O(1)/ Last element without checking if the vector is empty
unsafeLast :: Vector v a => v a -> a
{-# INLINE_STREAM unsafeLast #-}
unsafeLast v = unsafeIndex v (length v - 1)
{-# RULES
"(!)/unstream [Vector]" forall i s.
new (New.unstream s) ! i = s Stream.!! i
"head/unstream [Vector]" forall s.
head (new (New.unstream s)) = Stream.head s
"last/unstream [Vector]" forall s.
last (new (New.unstream s)) = Stream.last s
"unsafeIndex/unstream [Vector]" forall i s.
unsafeIndex (new (New.unstream s)) i = s Stream.!! i
"unsafeHead/unstream [Vector]" forall s.
unsafeHead (new (New.unstream s)) = Stream.head s
"unsafeLast/unstream [Vector]" forall s.
unsafeLast (new (New.unstream s)) = Stream.last s
#-}
-- Monadic indexing
-- ----------------
-- | /O(1)/ Indexing in a monad.
--
-- The monad allows operations to be strict in the vector when necessary.
-- Suppose vector copying is implemented like this:
--
-- > copy mv v = ... write mv i (v ! i) ...
--
-- For lazy vectors, @v ! i@ would not be evaluated which means that @mv@
-- would unnecessarily retain a reference to @v@ in each element written.
--
-- With 'indexM', copying can be implemented like this instead:
--
-- > copy mv v = ... do
-- > x <- indexM v i
-- > write mv i x
--
-- Here, no references to @v@ are retained because indexing (but /not/ the
-- elements) is evaluated eagerly.
--
indexM :: (Vector v a, Monad m) => v a -> Int -> m a
{-# INLINE_STREAM indexM #-}
indexM v i = BOUNDS_CHECK(checkIndex) "indexM" i (length v)
$ basicUnsafeIndexM v i
-- | /O(1)/ First element of a vector in a monad. See 'indexM' for an
-- explanation of why this is useful.
headM :: (Vector v a, Monad m) => v a -> m a
{-# INLINE_STREAM headM #-}
headM v = indexM v 0
-- | /O(1)/ Last element of a vector in a monad. See 'indexM' for an
-- explanation of why this is useful.
lastM :: (Vector v a, Monad m) => v a -> m a
{-# INLINE_STREAM lastM #-}
lastM v = indexM v (length v - 1)
-- | /O(1)/ Indexing in a monad without bounds checks. See 'indexM' for an
-- explanation of why this is useful.
unsafeIndexM :: (Vector v a, Monad m) => v a -> Int -> m a
{-# INLINE_STREAM unsafeIndexM #-}
unsafeIndexM v i = UNSAFE_CHECK(checkIndex) "unsafeIndexM" i (length v)
$ basicUnsafeIndexM v i
-- | /O(1)/ First element in a monad without checking for empty vectors.
-- See 'indexM' for an explanation of why this is useful.
unsafeHeadM :: (Vector v a, Monad m) => v a -> m a
{-# INLINE_STREAM unsafeHeadM #-}
unsafeHeadM v = unsafeIndexM v 0
-- | /O(1)/ Last element in a monad without checking for empty vectors.
-- See 'indexM' for an explanation of why this is useful.
unsafeLastM :: (Vector v a, Monad m) => v a -> m a
{-# INLINE_STREAM unsafeLastM #-}
unsafeLastM v = unsafeIndexM v (length v - 1)
-- FIXME: the rhs of these rules are lazy in the stream which is WRONG
{- RULES
"indexM/unstream [Vector]" forall v i s.
indexM (new' v (New.unstream s)) i = return (s Stream.!! i)
"headM/unstream [Vector]" forall v s.
headM (new' v (New.unstream s)) = return (Stream.head s)
"lastM/unstream [Vector]" forall v s.
lastM (new' v (New.unstream s)) = return (Stream.last s)
-}
-- Extracting subvectors (slicing)
-- -------------------------------
-- | /O(1)/ Yield a slice of the vector without copying it. The vector must
-- contain at least @i+n@ elements.
slice :: Vector v a => Int -- ^ @i@ starting index
-> Int -- ^ @n@ length
-> v a
-> v a
{-# INLINE_STREAM slice #-}
slice i n v = BOUNDS_CHECK(checkSlice) "slice" i n (length v)
$ basicUnsafeSlice i n v
-- | /O(1)/ Yield all but the last element without copying. The vector may not
-- be empty.
init :: Vector v a => v a -> v a
{-# INLINE_STREAM init #-}
init v = slice 0 (length v - 1) v
-- | /O(1)/ Yield all but the first element without copying. The vector may not
-- be empty.
tail :: Vector v a => v a -> v a
{-# INLINE_STREAM tail #-}
tail v = slice 1 (length v - 1) v
-- | /O(1)/ Yield at the first @n@ elements without copying. The vector may
-- contain less than @n@ elements in which case it is returned unchanged.
take :: Vector v a => Int -> v a -> v a
{-# INLINE_STREAM take #-}
take n v = unsafeSlice 0 (delay_inline min n' (length v)) v
where n' = max n 0
-- | /O(1)/ Yield all but the first @n@ elements without copying. The vector may
-- contain less than @n@ elements in which case an empty vector is returned.
drop :: Vector v a => Int -> v a -> v a
{-# INLINE_STREAM drop #-}
drop n v = unsafeSlice (delay_inline min n' len)
(delay_inline max 0 (len - n')) v
where n' = max n 0
len = length v
-- | /O(1)/ Yield a slice of the vector without copying. The vector must
-- contain at least @i+n@ elements but this is not checked.
unsafeSlice :: Vector v a => Int -- ^ @i@ starting index
-> Int -- ^ @n@ length
-> v a
-> v a
{-# INLINE_STREAM unsafeSlice #-}
unsafeSlice i n v = UNSAFE_CHECK(checkSlice) "unsafeSlice" i n (length v)
$ basicUnsafeSlice i n v
-- | /O(1)/ Yield all but the last element without copying. The vector may not
-- be empty but this is not checked.
unsafeInit :: Vector v a => v a -> v a
{-# INLINE_STREAM unsafeInit #-}
unsafeInit v = unsafeSlice 0 (length v - 1) v
-- | /O(1)/ Yield all but the first element without copying. The vector may not
-- be empty but this is not checked.
unsafeTail :: Vector v a => v a -> v a
{-# INLINE_STREAM unsafeTail #-}
unsafeTail v = unsafeSlice 1 (length v - 1) v
-- | /O(1)/ Yield the first @n@ elements without copying. The vector must
-- contain at least @n@ elements but this is not checked.
unsafeTake :: Vector v a => Int -> v a -> v a
{-# INLINE unsafeTake #-}
unsafeTake n v = unsafeSlice 0 n v
-- | /O(1)/ Yield all but the first @n@ elements without copying. The vector
-- must contain at least @n@ elements but this is not checked.
unsafeDrop :: Vector v a => Int -> v a -> v a
{-# INLINE unsafeDrop #-}
unsafeDrop n v = unsafeSlice n (length v - n) v
{-# RULES
"slice/new [Vector]" forall i n p.
slice i n (new p) = new (New.slice i n p)
"init/new [Vector]" forall p.
init (new p) = new (New.init p)
"tail/new [Vector]" forall p.
tail (new p) = new (New.tail p)
"take/new [Vector]" forall n p.
take n (new p) = new (New.take n p)
"drop/new [Vector]" forall n p.
drop n (new p) = new (New.drop n p)
"unsafeSlice/new [Vector]" forall i n p.
unsafeSlice i n (new p) = new (New.unsafeSlice i n p)
"unsafeInit/new [Vector]" forall p.
unsafeInit (new p) = new (New.unsafeInit p)
"unsafeTail/new [Vector]" forall p.
unsafeTail (new p) = new (New.unsafeTail p)
#-}
-- Initialisation
-- --------------
-- | /O(1)/ Empty vector
empty :: Vector v a => v a
{-# INLINE empty #-}
empty = unstream Stream.empty
-- | /O(1)/ Vector with exactly one element
singleton :: forall v a. Vector v a => a -> v a
{-# INLINE singleton #-}
singleton x = elemseq (undefined :: v a) x
$ unstream (Stream.singleton x)
-- | /O(n)/ Vector of the given length with the same value in each position
replicate :: forall v a. Vector v a => Int -> a -> v a
{-# INLINE replicate #-}
replicate n x = elemseq (undefined :: v a) x
$ unstream
$ Stream.replicate n x
-- | /O(n)/ Construct a vector of the given length by applying the function to
-- each index
generate :: Vector v a => Int -> (Int -> a) -> v a
{-# INLINE generate #-}
generate n f = unstream (Stream.generate n f)
-- Unfolding
-- ---------
-- | /O(n)/ Construct a vector by repeatedly applying the generator function
-- to a seed. The generator function yields 'Just' the next element and the
-- new seed or 'Nothing' if there are no more elements.
--
-- > unfoldr (\n -> if n == 0 then Nothing else Just (n,n-1)) 10
-- > = <10,9,8,7,6,5,4,3,2,1>
unfoldr :: Vector v a => (b -> Maybe (a, b)) -> b -> v a
{-# INLINE unfoldr #-}
unfoldr f = unstream . Stream.unfoldr f
-- | /O(n)/ Construct a vector with at most @n@ by repeatedly applying the
-- generator function to the a seed. The generator function yields 'Just' the
-- next element and the new seed or 'Nothing' if there are no more elements.
--
-- > unfoldrN 3 (\n -> Just (n,n-1)) 10 = <10,9,8>
unfoldrN :: Vector v a => Int -> (b -> Maybe (a, b)) -> b -> v a
{-# INLINE unfoldrN #-}
unfoldrN n f = unstream . Stream.unfoldrN n f
-- Enumeration
-- -----------
-- | /O(n)/ Yield a vector of the given length containing the values @x@, @x+1@
-- etc. This operation is usually more efficient than 'enumFromTo'.
--
-- > enumFromN 5 3 = <5,6,7>
enumFromN :: (Vector v a, Num a) => a -> Int -> v a
{-# INLINE enumFromN #-}
enumFromN x n = enumFromStepN x 1 n
-- | /O(n)/ Yield a vector of the given length containing the values @x@, @x+y@,
-- @x+y+y@ etc. This operations is usually more efficient than 'enumFromThenTo'.
--
-- > enumFromStepN 1 0.1 5 = <1,1.1,1.2,1.3,1.4>
enumFromStepN :: forall v a. (Vector v a, Num a) => a -> a -> Int -> v a
{-# INLINE enumFromStepN #-}
enumFromStepN x y n = elemseq (undefined :: v a) x
$ elemseq (undefined :: v a) y
$ unstream
$ Stream.enumFromStepN x y n
-- | /O(n)/ Enumerate values from @x@ to @y@.
--
-- /WARNING:/ This operation can be very inefficient. If at all possible, use
-- 'enumFromN' instead.
enumFromTo :: (Vector v a, Enum a) => a -> a -> v a
{-# INLINE enumFromTo #-}
enumFromTo x y = unstream (Stream.enumFromTo x y)
-- | /O(n)/ Enumerate values from @x@ to @y@ with a specific step @z@.
--
-- /WARNING:/ This operation can be very inefficient. If at all possible, use
-- 'enumFromStepN' instead.
enumFromThenTo :: (Vector v a, Enum a) => a -> a -> a -> v a
{-# INLINE enumFromThenTo #-}
enumFromThenTo x y z = unstream (Stream.enumFromThenTo x y z)
-- Concatenation
-- -------------
-- | /O(n)/ Prepend an element
cons :: forall v a. Vector v a => a -> v a -> v a
{-# INLINE cons #-}
cons x v = elemseq (undefined :: v a) x
$ unstream
$ Stream.cons x
$ stream v
-- | /O(n)/ Append an element
snoc :: forall v a. Vector v a => v a -> a -> v a
{-# INLINE snoc #-}
snoc v x = elemseq (undefined :: v a) x
$ unstream
$ Stream.snoc (stream v) x
infixr 5 ++
-- | /O(m+n)/ Concatenate two vectors
(++) :: Vector v a => v a -> v a -> v a
{-# INLINE (++) #-}
v ++ w = unstream (stream v Stream.++ stream w)
-- Monadic initialisation
-- ----------------------
-- | /O(n)/ Execute the monadic action the given number of times and store the
-- results in a vector.
replicateM :: (Monad m, Vector v a) => Int -> m a -> m (v a)
-- FIXME: specialise for ST and IO?
{-# INLINE replicateM #-}
replicateM n m = fromListN n `Monad.liftM` Monad.replicateM n m
-- | Execute the monadic action and freeze the resulting vector.
--
-- @
-- create (do { v \<- 'M.new' 2; 'M.write' v 0 \'a\'; 'M.write' v 1 \'b\' }) = \<'a','b'\>
-- @
create :: Vector v a => (forall s. ST s (Mutable v s a)) -> v a
{-# INLINE create #-}
create p = new (New.create p)
-- Restricting memory usage
-- ------------------------
-- | /O(n)/ Yield the argument but force it not to retain any extra memory,
-- possibly by copying it.
--
-- This is especially useful when dealing with slices. For example:
--
-- > force (slice 0 2 <huge vector>)
--
-- Here, the slice retains a reference to the huge vector. Forcing it creates
-- a copy of just the elements that belong to the slice and allows the huge
-- vector to be garbage collected.
force :: Vector v a => v a -> v a
-- FIXME: we probably ought to inline this later as the rules still might fire
-- otherwise
{-# INLINE_STREAM force #-}
force v = new (clone v)
-- Bulk updates
-- ------------
-- | /O(m+n)/ For each pair @(i,a)@ from the list, replace the vector
-- element at position @i@ by @a@.
--
-- > <5,9,2,7> // [(2,1),(0,3),(2,8)] = <3,9,8,7>
--
(//) :: Vector v a => v a -- ^ initial vector (of length @m@)
-> [(Int, a)] -- ^ list of index/value pairs (of length @n@)
-> v a
{-# INLINE (//) #-}
v // us = update_stream v (Stream.fromList us)
-- | /O(m+n)/ For each pair @(i,a)@ from the vector of index/value pairs,
-- replace the vector element at position @i@ by @a@.
--
-- > update <5,9,2,7> <(2,1),(0,3),(2,8)> = <3,9,8,7>
--
update :: (Vector v a, Vector v (Int, a))
=> v a -- ^ initial vector (of length @m@)
-> v (Int, a) -- ^ vector of index/value pairs (of length @n@)
-> v a
{-# INLINE update #-}
update v w = update_stream v (stream w)
-- | /O(m+min(n1,n2))/ For each index @i@ from the index vector and the
-- corresponding value @a@ from the value vector, replace the element of the
-- initial vector at position @i@ by @a@.
--
-- > update_ <5,9,2,7> <2,0,2> <1,3,8> = <3,9,8,7>
--
-- This function is useful for instances of 'Vector' that cannot store pairs.
-- Otherwise, 'update' is probably more convenient.
--
-- @
-- update_ xs is ys = 'update' xs ('zip' is ys)
-- @
update_ :: (Vector v a, Vector v Int)
=> v a -- ^ initial vector (of length @m@)
-> v Int -- ^ index vector (of length @n1@)
-> v a -- ^ value vector (of length @n2@)
-> v a
{-# INLINE update_ #-}
update_ v is w = update_stream v (Stream.zipWith (,) (stream is) (stream w))
update_stream :: Vector v a => v a -> Stream (Int,a) -> v a
{-# INLINE update_stream #-}
update_stream = modifyWithStream M.update
-- | Same as ('//') but without bounds checking.
unsafeUpd :: Vector v a => v a -> [(Int, a)] -> v a
{-# INLINE unsafeUpd #-}
unsafeUpd v us = unsafeUpdate_stream v (Stream.fromList us)
-- | Same as 'update' but without bounds checking.
unsafeUpdate :: (Vector v a, Vector v (Int, a)) => v a -> v (Int, a) -> v a
{-# INLINE unsafeUpdate #-}
unsafeUpdate v w = unsafeUpdate_stream v (stream w)
-- | Same as 'update_' but without bounds checking.
unsafeUpdate_ :: (Vector v a, Vector v Int) => v a -> v Int -> v a -> v a
{-# INLINE unsafeUpdate_ #-}
unsafeUpdate_ v is w
= unsafeUpdate_stream v (Stream.zipWith (,) (stream is) (stream w))
unsafeUpdate_stream :: Vector v a => v a -> Stream (Int,a) -> v a
{-# INLINE unsafeUpdate_stream #-}
unsafeUpdate_stream = modifyWithStream M.unsafeUpdate
-- Accumulations
-- -------------
-- | /O(m+n)/ For each pair @(i,b)@ from the list, replace the vector element
-- @a@ at position @i@ by @f a b@.
--
-- > accum (+) <5,9,2> [(2,4),(1,6),(0,3),(1,7)] = <5+3, 9+6+7, 2+4>
accum :: Vector v a
=> (a -> b -> a) -- ^ accumulating function @f@
-> v a -- ^ initial vector (of length @m@)
-> [(Int,b)] -- ^ list of index/value pairs (of length @n@)
-> v a
{-# INLINE accum #-}
accum f v us = accum_stream f v (Stream.fromList us)
-- | /O(m+n)/ For each pair @(i,b)@ from the vector of pairs, replace the vector
-- element @a@ at position @i@ by @f a b@.
--
-- > accumulate (+) <5,9,2> <(2,4),(1,6),(0,3),(1,7)> = <5+3, 9+6+7, 2+4>
accumulate :: (Vector v a, Vector v (Int, b))
=> (a -> b -> a) -- ^ accumulating function @f@
-> v a -- ^ initial vector (of length @m@)
-> v (Int,b) -- ^ vector of index/value pairs (of length @n@)
-> v a
{-# INLINE accumulate #-}
accumulate f v us = accum_stream f v (stream us)
-- | /O(m+min(n1,n2))/ For each index @i@ from the index vector and the
-- corresponding value @b@ from the the value vector,
-- replace the element of the initial vector at
-- position @i@ by @f a b@.
--
-- > accumulate_ (+) <5,9,2> <2,1,0,1> <4,6,3,7> = <5+3, 9+6+7, 2+4>
--
-- This function is useful for instances of 'Vector' that cannot store pairs.
-- Otherwise, 'accumulate' is probably more convenient:
--
-- @
-- accumulate_ f as is bs = 'accumulate' f as ('zip' is bs)
-- @
accumulate_ :: (Vector v a, Vector v Int, Vector v b)
=> (a -> b -> a) -- ^ accumulating function @f@
-> v a -- ^ initial vector (of length @m@)
-> v Int -- ^ index vector (of length @n1@)
-> v b -- ^ value vector (of length @n2@)
-> v a
{-# INLINE accumulate_ #-}
accumulate_ f v is xs = accum_stream f v (Stream.zipWith (,) (stream is)
(stream xs))
accum_stream :: Vector v a => (a -> b -> a) -> v a -> Stream (Int,b) -> v a
{-# INLINE accum_stream #-}
accum_stream f = modifyWithStream (M.accum f)
-- | Same as 'accum' but without bounds checking.
unsafeAccum :: Vector v a => (a -> b -> a) -> v a -> [(Int,b)] -> v a
{-# INLINE unsafeAccum #-}
unsafeAccum f v us = unsafeAccum_stream f v (Stream.fromList us)
-- | Same as 'accumulate' but without bounds checking.
unsafeAccumulate :: (Vector v a, Vector v (Int, b))
=> (a -> b -> a) -> v a -> v (Int,b) -> v a
{-# INLINE unsafeAccumulate #-}
unsafeAccumulate f v us = unsafeAccum_stream f v (stream us)
-- | Same as 'accumulate_' but without bounds checking.
unsafeAccumulate_ :: (Vector v a, Vector v Int, Vector v b)
=> (a -> b -> a) -> v a -> v Int -> v b -> v a
{-# INLINE unsafeAccumulate_ #-}
unsafeAccumulate_ f v is xs
= unsafeAccum_stream f v (Stream.zipWith (,) (stream is) (stream xs))
unsafeAccum_stream
:: Vector v a => (a -> b -> a) -> v a -> Stream (Int,b) -> v a
{-# INLINE unsafeAccum_stream #-}
unsafeAccum_stream f = modifyWithStream (M.unsafeAccum f)
-- Permutations
-- ------------
-- | /O(n)/ Reverse a vector
reverse :: (Vector v a) => v a -> v a
{-# INLINE reverse #-}
-- FIXME: make this fuse better, add support for recycling
reverse = unstream . streamR
-- | /O(n)/ Yield the vector obtained by replacing each element @i@ of the
-- index vector by @xs'!'i@. This is equivalent to @'map' (xs'!') is@ but is
-- often much more efficient.
--
-- > backpermute <a,b,c,d> <0,3,2,3,1,0> = <a,d,c,d,b,a>
backpermute :: (Vector v a, Vector v Int)
=> v a -- ^ @xs@ value vector
-> v Int -- ^ @is@ index vector (of length @n@)
-> v a
{-# INLINE backpermute #-}
-- This somewhat non-intuitive definition ensures that the resulting vector
-- does not retain references to the original one even if it is lazy in its
-- elements. This would not be the case if we simply used map (v!)
backpermute v is = seq v
$ unstream
$ Stream.unbox
$ Stream.map (indexM v)
$ stream is
-- | Same as 'backpermute' but without bounds checking.
unsafeBackpermute :: (Vector v a, Vector v Int) => v a -> v Int -> v a
{-# INLINE unsafeBackpermute #-}
unsafeBackpermute v is = seq v
$ unstream
$ Stream.unbox
$ Stream.map (unsafeIndexM v)
$ stream is
-- Safe destructive updates
-- ------------------------
-- | Apply a destructive operation to a vector. The operation will be
-- performed in place if it is safe to do so and will modify a copy of the
-- vector otherwise.
--
-- @
-- modify (\\v -> 'M.write' v 0 \'x\') ('replicate' 3 \'a\') = \<\'x\',\'a\',\'a\'\>
-- @
modify :: Vector v a => (forall s. Mutable v s a -> ST s ()) -> v a -> v a
{-# INLINE modify #-}
modify p = new . New.modify p . clone
-- We have to make sure that this is strict in the stream but we can't seq on
-- it while fusion is happening. Hence this ugliness.
modifyWithStream :: Vector v a
=> (forall s. Mutable v s a -> Stream b -> ST s ())
-> v a -> Stream b -> v a
{-# INLINE modifyWithStream #-}
modifyWithStream p v s = new (New.modifyWithStream p (clone v) s)
-- Mapping
-- -------
-- | /O(n)/ Map a function over a vector
map :: (Vector v a, Vector v b) => (a -> b) -> v a -> v b
{-# INLINE map #-}
map f = unstream . inplace (MStream.map f) . stream
-- | /O(n)/ Apply a function to every element of a vector and its index
imap :: (Vector v a, Vector v b) => (Int -> a -> b) -> v a -> v b
{-# INLINE imap #-}
imap f = unstream . inplace (MStream.map (uncurry f) . MStream.indexed)
. stream
-- | Map a function over a vector and concatenate the results.
concatMap :: (Vector v a, Vector v b) => (a -> v b) -> v a -> v b
{-# INLINE concatMap #-}
concatMap f = unstream . Stream.concatMap (stream . f) . stream
-- Monadic mapping
-- ---------------
-- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a
-- vector of results
mapM :: (Monad m, Vector v a, Vector v b) => (a -> m b) -> v a -> m (v b)
-- FIXME: specialise for ST and IO?
{-# INLINE mapM #-}
mapM f = unstreamM . Stream.mapM f . stream
-- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the
-- results
mapM_ :: (Monad m, Vector v a) => (a -> m b) -> v a -> m ()
{-# INLINE mapM_ #-}
mapM_ f = Stream.mapM_ f . stream
-- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a
-- vector of results. Equvalent to @flip 'mapM'@.
forM :: (Monad m, Vector v a, Vector v b) => v a -> (a -> m b) -> m (v b)
{-# INLINE forM #-}
forM as f = mapM f as
-- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the
-- results. Equivalent to @flip 'mapM_'@.
forM_ :: (Monad m, Vector v a) => v a -> (a -> m b) -> m ()
{-# INLINE forM_ #-}
forM_ as f = mapM_ f as
-- Zipping
-- -------
-- | /O(min(m,n))/ Zip two vectors with the given function.
zipWith :: (Vector v a, Vector v b, Vector v c)
=> (a -> b -> c) -> v a -> v b -> v c
{-# INLINE zipWith #-}
zipWith f xs ys = unstream (Stream.zipWith f (stream xs) (stream ys))
-- | Zip three vectors with the given function.
zipWith3 :: (Vector v a, Vector v b, Vector v c, Vector v d)
=> (a -> b -> c -> d) -> v a -> v b -> v c -> v d
{-# INLINE zipWith3 #-}
zipWith3 f as bs cs = unstream (Stream.zipWith3 f (stream as)
(stream bs)
(stream cs))
zipWith4 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e)
=> (a -> b -> c -> d -> e) -> v a -> v b -> v c -> v d -> v e
{-# INLINE zipWith4 #-}
zipWith4 f as bs cs ds
= unstream (Stream.zipWith4 f (stream as)
(stream bs)
(stream cs)
(stream ds))
zipWith5 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
Vector v f)
=> (a -> b -> c -> d -> e -> f) -> v a -> v b -> v c -> v d -> v e
-> v f
{-# INLINE zipWith5 #-}
zipWith5 f as bs cs ds es
= unstream (Stream.zipWith5 f (stream as)
(stream bs)
(stream cs)
(stream ds)
(stream es))
zipWith6 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
Vector v f, Vector v g)
=> (a -> b -> c -> d -> e -> f -> g)
-> v a -> v b -> v c -> v d -> v e -> v f -> v g
{-# INLINE zipWith6 #-}
zipWith6 f as bs cs ds es fs
= unstream (Stream.zipWith6 f (stream as)
(stream bs)
(stream cs)
(stream ds)
(stream es)
(stream fs))
-- | /O(min(m,n))/ Zip two vectors with a function that also takes the
-- elements' indices.
izipWith :: (Vector v a, Vector v b, Vector v c)
=> (Int -> a -> b -> c) -> v a -> v b -> v c
{-# INLINE izipWith #-}
izipWith f xs ys = unstream
(Stream.zipWith (uncurry f) (Stream.indexed (stream xs))
(stream ys))
izipWith3 :: (Vector v a, Vector v b, Vector v c, Vector v d)
=> (Int -> a -> b -> c -> d) -> v a -> v b -> v c -> v d
{-# INLINE izipWith3 #-}
izipWith3 f as bs cs
= unstream (Stream.zipWith3 (uncurry f) (Stream.indexed (stream as))
(stream bs)
(stream cs))
izipWith4 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e)
=> (Int -> a -> b -> c -> d -> e) -> v a -> v b -> v c -> v d -> v e
{-# INLINE izipWith4 #-}
izipWith4 f as bs cs ds
= unstream (Stream.zipWith4 (uncurry f) (Stream.indexed (stream as))
(stream bs)
(stream cs)
(stream ds))
izipWith5 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
Vector v f)
=> (Int -> a -> b -> c -> d -> e -> f) -> v a -> v b -> v c -> v d
-> v e -> v f
{-# INLINE izipWith5 #-}
izipWith5 f as bs cs ds es
= unstream (Stream.zipWith5 (uncurry f) (Stream.indexed (stream as))
(stream bs)
(stream cs)
(stream ds)
(stream es))
izipWith6 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
Vector v f, Vector v g)
=> (Int -> a -> b -> c -> d -> e -> f -> g)
-> v a -> v b -> v c -> v d -> v e -> v f -> v g
{-# INLINE izipWith6 #-}
izipWith6 f as bs cs ds es fs
= unstream (Stream.zipWith6 (uncurry f) (Stream.indexed (stream as))
(stream bs)
(stream cs)
(stream ds)
(stream es)
(stream fs))
-- | /O(min(m,n))/ Zip two vectors
zip :: (Vector v a, Vector v b, Vector v (a,b)) => v a -> v b -> v (a, b)
{-# INLINE zip #-}
zip = zipWith (,)
zip3 :: (Vector v a, Vector v b, Vector v c, Vector v (a, b, c))
=> v a -> v b -> v c -> v (a, b, c)
{-# INLINE zip3 #-}
zip3 = zipWith3 (,,)
zip4 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v (a, b, c, d))
=> v a -> v b -> v c -> v d -> v (a, b, c, d)
{-# INLINE zip4 #-}
zip4 = zipWith4 (,,,)
zip5 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
Vector v (a, b, c, d, e))
=> v a -> v b -> v c -> v d -> v e -> v (a, b, c, d, e)
{-# INLINE zip5 #-}
zip5 = zipWith5 (,,,,)
zip6 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
Vector v f, Vector v (a, b, c, d, e, f))
=> v a -> v b -> v c -> v d -> v e -> v f -> v (a, b, c, d, e, f)
{-# INLINE zip6 #-}
zip6 = zipWith6 (,,,,,)
-- Monadic zipping
-- ---------------
-- | /O(min(m,n))/ Zip the two vectors with the monadic action and yield a
-- vector of results
zipWithM :: (Monad m, Vector v a, Vector v b, Vector v c)
=> (a -> b -> m c) -> v a -> v b -> m (v c)
-- FIXME: specialise for ST and IO?
{-# INLINE zipWithM #-}
zipWithM f as bs = unstreamM $ Stream.zipWithM f (stream as) (stream bs)
-- | /O(min(m,n))/ Zip the two vectors with the monadic action and ignore the
-- results
zipWithM_ :: (Monad m, Vector v a, Vector v b)
=> (a -> b -> m c) -> v a -> v b -> m ()
{-# INLINE zipWithM_ #-}
zipWithM_ f as bs = Stream.zipWithM_ f (stream as) (stream bs)
-- Unzipping
-- ---------
-- | /O(min(m,n))/ Unzip a vector of pairs.
unzip :: (Vector v a, Vector v b, Vector v (a,b)) => v (a, b) -> (v a, v b)
{-# INLINE unzip #-}
unzip xs = (map fst xs, map snd xs)
unzip3 :: (Vector v a, Vector v b, Vector v c, Vector v (a, b, c))
=> v (a, b, c) -> (v a, v b, v c)
{-# INLINE unzip3 #-}
unzip3 xs = (map (\(a, b, c) -> a) xs,
map (\(a, b, c) -> b) xs,
map (\(a, b, c) -> c) xs)
unzip4 :: (Vector v a, Vector v b, Vector v c, Vector v d,
Vector v (a, b, c, d))
=> v (a, b, c, d) -> (v a, v b, v c, v d)
{-# INLINE unzip4 #-}
unzip4 xs = (map (\(a, b, c, d) -> a) xs,
map (\(a, b, c, d) -> b) xs,
map (\(a, b, c, d) -> c) xs,
map (\(a, b, c, d) -> d) xs)
unzip5 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
Vector v (a, b, c, d, e))
=> v (a, b, c, d, e) -> (v a, v b, v c, v d, v e)
{-# INLINE unzip5 #-}
unzip5 xs = (map (\(a, b, c, d, e) -> a) xs,
map (\(a, b, c, d, e) -> b) xs,
map (\(a, b, c, d, e) -> c) xs,
map (\(a, b, c, d, e) -> d) xs,
map (\(a, b, c, d, e) -> e) xs)
unzip6 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
Vector v f, Vector v (a, b, c, d, e, f))
=> v (a, b, c, d, e, f) -> (v a, v b, v c, v d, v e, v f)
{-# INLINE unzip6 #-}
unzip6 xs = (map (\(a, b, c, d, e, f) -> a) xs,
map (\(a, b, c, d, e, f) -> b) xs,
map (\(a, b, c, d, e, f) -> c) xs,
map (\(a, b, c, d, e, f) -> d) xs,
map (\(a, b, c, d, e, f) -> e) xs,
map (\(a, b, c, d, e, f) -> f) xs)
-- Filtering
-- ---------
-- | /O(n)/ Drop elements that do not satisfy the predicate
filter :: Vector v a => (a -> Bool) -> v a -> v a
{-# INLINE filter #-}
filter f = unstream . inplace (MStream.filter f) . stream
-- | /O(n)/ Drop elements that do not satisfy the predicate which is applied to
-- values and their indices
ifilter :: Vector v a => (Int -> a -> Bool) -> v a -> v a
{-# INLINE ifilter #-}
ifilter f = unstream
. inplace (MStream.map snd . MStream.filter (uncurry f)
. MStream.indexed)
. stream
-- | /O(n)/ Drop elements that do not satisfy the monadic predicate
filterM :: (Monad m, Vector v a) => (a -> m Bool) -> v a -> m (v a)
{-# INLINE filterM #-}
filterM f = unstreamM . Stream.filterM f . stream
-- | /O(n)/ Yield the longest prefix of elements satisfying the predicate
-- without copying.
takeWhile :: Vector v a => (a -> Bool) -> v a -> v a
{-# INLINE takeWhile #-}
takeWhile f = unstream . Stream.takeWhile f . stream
-- | /O(n)/ Drop the longest prefix of elements that satisfy the predicate
-- without copying.
dropWhile :: Vector v a => (a -> Bool) -> v a -> v a
{-# INLINE dropWhile #-}
dropWhile f = unstream . Stream.dropWhile f . stream
-- Parititioning
-- -------------
-- | /O(n)/ Split the vector in two parts, the first one containing those
-- elements that satisfy the predicate and the second one those that don't. The
-- relative order of the elements is preserved at the cost of a sometimes
-- reduced performance compared to 'unstablePartition'.
partition :: Vector v a => (a -> Bool) -> v a -> (v a, v a)
{-# INLINE partition #-}
partition f = partition_stream f . stream
-- FIXME: Make this inplace-fusible (look at how stable_partition is
-- implemented in C++)
partition_stream :: Vector v a => (a -> Bool) -> Stream a -> (v a, v a)
{-# INLINE_STREAM partition_stream #-}
partition_stream f s = s `seq` runST (
do
(mv1,mv2) <- M.partitionStream f s
v1 <- unsafeFreeze mv1
v2 <- unsafeFreeze mv2
return (v1,v2))
-- | /O(n)/ Split the vector in two parts, the first one containing those
-- elements that satisfy the predicate and the second one those that don't.
-- The order of the elements is not preserved but the operation is often
-- faster than 'partition'.
unstablePartition :: Vector v a => (a -> Bool) -> v a -> (v a, v a)
{-# INLINE unstablePartition #-}
unstablePartition f = unstablePartition_stream f . stream
unstablePartition_stream
:: Vector v a => (a -> Bool) -> Stream a -> (v a, v a)
{-# INLINE_STREAM unstablePartition_stream #-}
unstablePartition_stream f s = s `seq` runST (
do
(mv1,mv2) <- M.unstablePartitionStream f s
v1 <- unsafeFreeze mv1
v2 <- unsafeFreeze mv2
return (v1,v2))
unstablePartition_new :: Vector v a => (a -> Bool) -> New v a -> (v a, v a)
{-# INLINE_STREAM unstablePartition_new #-}
unstablePartition_new f (New.New p) = runST (
do
mv <- p
i <- M.unstablePartition f mv
v <- unsafeFreeze mv
return (unsafeTake i v, unsafeDrop i v))
{-# RULES
"unstablePartition" forall f p.
unstablePartition_stream f (stream (new p))
= unstablePartition_new f p
#-}
-- FIXME: make span and break fusible
-- | /O(n)/ Split the vector into the longest prefix of elements that satisfy
-- the predicate and the rest without copying.
span :: Vector v a => (a -> Bool) -> v a -> (v a, v a)
{-# INLINE span #-}
span f = break (not . f)
-- | /O(n)/ Split the vector into the longest prefix of elements that do not
-- satisfy the predicate and the rest without copying.
break :: Vector v a => (a -> Bool) -> v a -> (v a, v a)
{-# INLINE break #-}
break f xs = case findIndex f xs of
Just i -> (unsafeSlice 0 i xs, unsafeSlice i (length xs - i) xs)
Nothing -> (xs, empty)
-- Searching
-- ---------
infix 4 `elem`
-- | /O(n)/ Check if the vector contains an element
elem :: (Vector v a, Eq a) => a -> v a -> Bool
{-# INLINE elem #-}
elem x = Stream.elem x . stream
infix 4 `notElem`
-- | /O(n)/ Check if the vector does not contain an element (inverse of 'elem')
notElem :: (Vector v a, Eq a) => a -> v a -> Bool
{-# INLINE notElem #-}
notElem x = Stream.notElem x . stream
-- | /O(n)/ Yield 'Just' the first element matching the predicate or 'Nothing'
-- if no such element exists.
find :: Vector v a => (a -> Bool) -> v a -> Maybe a
{-# INLINE find #-}
find f = Stream.find f . stream
-- | /O(n)/ Yield 'Just' the index of the first element matching the predicate
-- or 'Nothing' if no such element exists.
findIndex :: Vector v a => (a -> Bool) -> v a -> Maybe Int
{-# INLINE findIndex #-}
findIndex f = Stream.findIndex f . stream
-- | /O(n)/ Yield the indices of elements satisfying the predicate in ascending
-- order.
findIndices :: (Vector v a, Vector v Int) => (a -> Bool) -> v a -> v Int
{-# INLINE findIndices #-}
findIndices f = unstream
. inplace (MStream.map fst . MStream.filter (f . snd)
. MStream.indexed)
. stream
-- | /O(n)/ Yield 'Just' the index of the first occurence of the given element or
-- 'Nothing' if the vector does not contain the element. This is a specialised
-- version of 'findIndex'.
elemIndex :: (Vector v a, Eq a) => a -> v a -> Maybe Int
{-# INLINE elemIndex #-}
elemIndex x = findIndex (x==)
-- | /O(n)/ Yield the indices of all occurences of the given element in
-- ascending order. This is a specialised version of 'findIndices'.
elemIndices :: (Vector v a, Vector v Int, Eq a) => a -> v a -> v Int
{-# INLINE elemIndices #-}
elemIndices x = findIndices (x==)
-- Folding
-- -------
-- | /O(n)/ Left fold
foldl :: Vector v b => (a -> b -> a) -> a -> v b -> a
{-# INLINE foldl #-}
foldl f z = Stream.foldl f z . stream
-- | /O(n)/ Left fold on non-empty vectors
foldl1 :: Vector v a => (a -> a -> a) -> v a -> a
{-# INLINE foldl1 #-}
foldl1 f = Stream.foldl1 f . stream
-- | /O(n)/ Left fold with strict accumulator
foldl' :: Vector v b => (a -> b -> a) -> a -> v b -> a
{-# INLINE foldl' #-}
foldl' f z = Stream.foldl' f z . stream
-- | /O(n)/ Left fold on non-empty vectors with strict accumulator
foldl1' :: Vector v a => (a -> a -> a) -> v a -> a
{-# INLINE foldl1' #-}
foldl1' f = Stream.foldl1' f . stream
-- | /O(n)/ Right fold
foldr :: Vector v a => (a -> b -> b) -> b -> v a -> b
{-# INLINE foldr #-}
foldr f z = Stream.foldr f z . stream
-- | /O(n)/ Right fold on non-empty vectors
foldr1 :: Vector v a => (a -> a -> a) -> v a -> a
{-# INLINE foldr1 #-}
foldr1 f = Stream.foldr1 f . stream
-- | /O(n)/ Right fold with a strict accumulator
foldr' :: Vector v a => (a -> b -> b) -> b -> v a -> b
{-# INLINE foldr' #-}
foldr' f z = Stream.foldl' (flip f) z . streamR
-- | /O(n)/ Right fold on non-empty vectors with strict accumulator
foldr1' :: Vector v a => (a -> a -> a) -> v a -> a
{-# INLINE foldr1' #-}
foldr1' f = Stream.foldl1' (flip f) . streamR
-- | /O(n)/ Left fold (function applied to each element and its index)
ifoldl :: Vector v b => (a -> Int -> b -> a) -> a -> v b -> a
{-# INLINE ifoldl #-}
ifoldl f z = Stream.foldl (uncurry . f) z . Stream.indexed . stream
-- | /O(n)/ Left fold with strict accumulator (function applied to each element
-- and its index)
ifoldl' :: Vector v b => (a -> Int -> b -> a) -> a -> v b -> a
{-# INLINE ifoldl' #-}
ifoldl' f z = Stream.foldl' (uncurry . f) z . Stream.indexed . stream
-- | /O(n)/ Right fold (function applied to each element and its index)
ifoldr :: Vector v a => (Int -> a -> b -> b) -> b -> v a -> b
{-# INLINE ifoldr #-}
ifoldr f z = Stream.foldr (uncurry f) z . Stream.indexed . stream
-- | /O(n)/ Right fold with strict accumulator (function applied to each
-- element and its index)
ifoldr' :: Vector v a => (Int -> a -> b -> b) -> b -> v a -> b
{-# INLINE ifoldr' #-}
ifoldr' f z xs = Stream.foldl' (flip (uncurry f)) z
$ Stream.indexedR (length xs) $ streamR xs
-- Specialised folds
-- -----------------
-- | /O(n)/ Check if all elements satisfy the predicate.
all :: Vector v a => (a -> Bool) -> v a -> Bool
{-# INLINE all #-}
all f = Stream.and . Stream.map f . stream
-- | /O(n)/ Check if any element satisfies the predicate.
any :: Vector v a => (a -> Bool) -> v a -> Bool
{-# INLINE any #-}
any f = Stream.or . Stream.map f . stream
-- | /O(n)/ Check if all elements are 'True'
and :: Vector v Bool => v Bool -> Bool
{-# INLINE and #-}
and = Stream.and . stream
-- | /O(n)/ Check if any element is 'True'
or :: Vector v Bool => v Bool -> Bool
{-# INLINE or #-}
or = Stream.or . stream
-- | /O(n)/ Compute the sum of the elements
sum :: (Vector v a, Num a) => v a -> a
{-# INLINE sum #-}
sum = Stream.foldl' (+) 0 . stream
-- | /O(n)/ Compute the produce of the elements
product :: (Vector v a, Num a) => v a -> a
{-# INLINE product #-}
product = Stream.foldl' (*) 1 . stream
-- | /O(n)/ Yield the maximum element of the vector. The vector may not be
-- empty.
maximum :: (Vector v a, Ord a) => v a -> a
{-# INLINE maximum #-}
maximum = Stream.foldl1' max . stream
-- | /O(n)/ Yield the maximum element of the vector according to the given
-- comparison function. The vector may not be empty.
maximumBy :: Vector v a => (a -> a -> Ordering) -> v a -> a
{-# INLINE maximumBy #-}
maximumBy cmp = Stream.foldl1' maxBy . stream
where
{-# INLINE maxBy #-}
maxBy x y = case cmp x y of
LT -> y
_ -> x
-- | /O(n)/ Yield the minimum element of the vector. The vector may not be
-- empty.
minimum :: (Vector v a, Ord a) => v a -> a
{-# INLINE minimum #-}
minimum = Stream.foldl1' min . stream
-- | /O(n)/ Yield the minimum element of the vector according to the given
-- comparison function. The vector may not be empty.
minimumBy :: Vector v a => (a -> a -> Ordering) -> v a -> a
{-# INLINE minimumBy #-}
minimumBy cmp = Stream.foldl1' minBy . stream
where
{-# INLINE minBy #-}
minBy x y = case cmp x y of
GT -> y
_ -> x
-- | /O(n)/ Yield the index of the maximum element of the vector. The vector
-- may not be empty.
maxIndex :: (Vector v a, Ord a) => v a -> Int
{-# INLINE maxIndex #-}
maxIndex = maxIndexBy compare
-- | /O(n)/ Yield the index of the maximum element of the vector according to
-- the given comparison function. The vector may not be empty.
maxIndexBy :: Vector v a => (a -> a -> Ordering) -> v a -> Int
{-# INLINE maxIndexBy #-}
maxIndexBy cmp = fst . Stream.foldl1' imax . Stream.indexed . stream
where
imax (i,x) (j,y) = i `seq` j `seq`
case cmp x y of
LT -> (j,y)
_ -> (i,x)
-- | /O(n)/ Yield the index of the minimum element of the vector. The vector
-- may not be empty.
minIndex :: (Vector v a, Ord a) => v a -> Int
{-# INLINE minIndex #-}
minIndex = minIndexBy compare
-- | /O(n)/ Yield the index of the minimum element of the vector according to
-- the given comparison function. The vector may not be empty.
minIndexBy :: Vector v a => (a -> a -> Ordering) -> v a -> Int
{-# INLINE minIndexBy #-}
minIndexBy cmp = fst . Stream.foldl1' imin . Stream.indexed . stream
where
imin (i,x) (j,y) = i `seq` j `seq`
case cmp x y of
GT -> (j,y)
_ -> (i,x)
-- Monadic folds
-- -------------
-- | /O(n)/ Monadic fold
foldM :: (Monad m, Vector v b) => (a -> b -> m a) -> a -> v b -> m a
{-# INLINE foldM #-}
foldM m z = Stream.foldM m z . stream
-- | /O(n)/ Monadic fold over non-empty vectors
fold1M :: (Monad m, Vector v a) => (a -> a -> m a) -> v a -> m a
{-# INLINE fold1M #-}
fold1M m = Stream.fold1M m . stream
-- | /O(n)/ Monadic fold with strict accumulator
foldM' :: (Monad m, Vector v b) => (a -> b -> m a) -> a -> v b -> m a
{-# INLINE foldM' #-}
foldM' m z = Stream.foldM' m z . stream
-- | /O(n)/ Monad fold over non-empty vectors with strict accumulator
fold1M' :: (Monad m, Vector v a) => (a -> a -> m a) -> v a -> m a
{-# INLINE fold1M' #-}
fold1M' m = Stream.fold1M' m . stream
-- Prefix sums (scans)
-- -------------------
-- | /O(n)/ Prescan
--
-- @
-- prescanl f z = 'init' . 'scanl' f z
-- @
--
-- Example: @prescanl (+) 0 \<1,2,3,4\> = \<0,1,3,6\>@
--
prescanl :: (Vector v a, Vector v b) => (a -> b -> a) -> a -> v b -> v a
{-# INLINE prescanl #-}
prescanl f z = unstream . inplace (MStream.prescanl f z) . stream
-- | /O(n)/ Prescan with strict accumulator
prescanl' :: (Vector v a, Vector v b) => (a -> b -> a) -> a -> v b -> v a
{-# INLINE prescanl' #-}
prescanl' f z = unstream . inplace (MStream.prescanl' f z) . stream
-- | /O(n)/ Scan
--
-- @
-- postscanl f z = 'tail' . 'scanl' f z
-- @
--
-- Example: @postscanl (+) 0 \<1,2,3,4\> = \<1,3,6,10\>@
--
postscanl :: (Vector v a, Vector v b) => (a -> b -> a) -> a -> v b -> v a
{-# INLINE postscanl #-}
postscanl f z = unstream . inplace (MStream.postscanl f z) . stream
-- | /O(n)/ Scan with strict accumulator
postscanl' :: (Vector v a, Vector v b) => (a -> b -> a) -> a -> v b -> v a
{-# INLINE postscanl' #-}
postscanl' f z = unstream . inplace (MStream.postscanl' f z) . stream
-- | /O(n)/ Haskell-style scan
--
-- > scanl f z <x1,...,xn> = <y1,...,y(n+1)>
-- > where y1 = z
-- > yi = f y(i-1) x(i-1)
--
-- Example: @scanl (+) 0 \<1,2,3,4\> = \<0,1,3,6,10\>@
--
scanl :: (Vector v a, Vector v b) => (a -> b -> a) -> a -> v b -> v a
{-# INLINE scanl #-}
scanl f z = unstream . Stream.scanl f z . stream
-- | /O(n)/ Haskell-style scan with strict accumulator
scanl' :: (Vector v a, Vector v b) => (a -> b -> a) -> a -> v b -> v a
{-# INLINE scanl' #-}
scanl' f z = unstream . Stream.scanl' f z . stream
-- | /O(n)/ Scan over a non-empty vector
--
-- > scanl f <x1,...,xn> = <y1,...,yn>
-- > where y1 = x1
-- > yi = f y(i-1) xi
--
scanl1 :: Vector v a => (a -> a -> a) -> v a -> v a
{-# INLINE scanl1 #-}
scanl1 f = unstream . inplace (MStream.scanl1 f) . stream
-- | /O(n)/ Scan over a non-empty vector with a strict accumulator
scanl1' :: Vector v a => (a -> a -> a) -> v a -> v a
{-# INLINE scanl1' #-}
scanl1' f = unstream . inplace (MStream.scanl1' f) . stream
-- | /O(n)/ Right-to-left prescan
--
-- @
-- prescanr f z = 'reverse' . 'prescanl' (flip f) z . 'reverse'
-- @
--
prescanr :: (Vector v a, Vector v b) => (a -> b -> b) -> b -> v a -> v b
{-# INLINE prescanr #-}
prescanr f z = unstreamR . inplace (MStream.prescanl (flip f) z) . streamR
-- | /O(n)/ Right-to-left prescan with strict accumulator
prescanr' :: (Vector v a, Vector v b) => (a -> b -> b) -> b -> v a -> v b
{-# INLINE prescanr' #-}
prescanr' f z = unstreamR . inplace (MStream.prescanl' (flip f) z) . streamR
-- | /O(n)/ Right-to-left scan
postscanr :: (Vector v a, Vector v b) => (a -> b -> b) -> b -> v a -> v b
{-# INLINE postscanr #-}
postscanr f z = unstreamR . inplace (MStream.postscanl (flip f) z) . streamR
-- | /O(n)/ Right-to-left scan with strict accumulator
postscanr' :: (Vector v a, Vector v b) => (a -> b -> b) -> b -> v a -> v b
{-# INLINE postscanr' #-}
postscanr' f z = unstreamR . inplace (MStream.postscanl' (flip f) z) . streamR
-- | /O(n)/ Right-to-left Haskell-style scan
scanr :: (Vector v a, Vector v b) => (a -> b -> b) -> b -> v a -> v b
{-# INLINE scanr #-}
scanr f z = unstreamR . Stream.scanl (flip f) z . streamR
-- | /O(n)/ Right-to-left Haskell-style scan with strict accumulator
scanr' :: (Vector v a, Vector v b) => (a -> b -> b) -> b -> v a -> v b
{-# INLINE scanr' #-}
scanr' f z = unstreamR . Stream.scanl' (flip f) z . streamR
-- | /O(n)/ Right-to-left scan over a non-empty vector
scanr1 :: Vector v a => (a -> a -> a) -> v a -> v a
{-# INLINE scanr1 #-}
scanr1 f = unstreamR . inplace (MStream.scanl1 (flip f)) . streamR
-- | /O(n)/ Right-to-left scan over a non-empty vector with a strict
-- accumulator
scanr1' :: Vector v a => (a -> a -> a) -> v a -> v a
{-# INLINE scanr1' #-}
scanr1' f = unstreamR . inplace (MStream.scanl1' (flip f)) . streamR
-- Conversions - Lists
-- ------------------------
-- | /O(n)/ Convert a vector to a list
toList :: Vector v a => v a -> [a]
{-# INLINE toList #-}
toList = Stream.toList . stream
-- | /O(n)/ Convert a list to a vector
fromList :: Vector v a => [a] -> v a
{-# INLINE fromList #-}
fromList = unstream . Stream.fromList
-- | /O(n)/ Convert the first @n@ elements of a list to a vector
--
-- @
-- fromListN n xs = 'fromList' ('take' n xs)
-- @
fromListN :: Vector v a => Int -> [a] -> v a
{-# INLINE fromListN #-}
fromListN n = unstream . Stream.fromListN n
-- Conversions - Mutable vectors
-- -----------------------------
-- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must
-- have the same length.
copy
:: (PrimMonad m, Vector v a) => Mutable v (PrimState m) a -> v a -> m ()
{-# INLINE copy #-}
copy dst src = BOUNDS_CHECK(check) "copy" "length mismatch"
(M.length dst == length src)
$ unsafeCopy dst src
-- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must
-- have the same length. This is not checked.
unsafeCopy
:: (PrimMonad m, Vector v a) => Mutable v (PrimState m) a -> v a -> m ()
{-# INLINE unsafeCopy #-}
unsafeCopy dst src = UNSAFE_CHECK(check) "unsafeCopy" "length mismatch"
(M.length dst == length src)
$ (dst `seq` src `seq` basicUnsafeCopy dst src)
-- Conversions to/from Streams
-- ---------------------------
-- | /O(1)/ Convert a vector to a 'Stream'
stream :: Vector v a => v a -> Stream a
{-# INLINE_STREAM stream #-}
stream v = v `seq` (Stream.unfoldr get 0 `Stream.sized` Exact n)
where
n = length v
-- NOTE: the False case comes first in Core so making it the recursive one
-- makes the code easier to read
{-# INLINE get #-}
get i | i >= n = Nothing
| otherwise = case basicUnsafeIndexM v i of Box x -> Just (x, i+1)
-- | /O(n)/ Construct a vector from a 'Stream'
unstream :: Vector v a => Stream a -> v a
{-# INLINE unstream #-}
unstream s = new (New.unstream s)
{-# RULES
"stream/unstream [Vector]" forall s.
stream (new (New.unstream s)) = s
"New.unstream/stream [Vector]" forall v.
New.unstream (stream v) = clone v
"clone/new [Vector]" forall p.
clone (new p) = p
"inplace [Vector]"
forall (f :: forall m. Monad m => MStream m a -> MStream m a) m.
New.unstream (inplace f (stream (new m))) = New.transform f m
"uninplace [Vector]"
forall (f :: forall m. Monad m => MStream m a -> MStream m a) m.
stream (new (New.transform f m)) = inplace f (stream (new m))
#-}
-- | /O(1)/ Convert a vector to a 'Stream', proceeding from right to left
streamR :: Vector v a => v a -> Stream a
{-# INLINE_STREAM streamR #-}
streamR v = v `seq` (Stream.unfoldr get n `Stream.sized` Exact n)
where
n = length v
{-# INLINE get #-}
get 0 = Nothing
get i = let i' = i-1
in
case basicUnsafeIndexM v i' of Box x -> Just (x, i')
-- | /O(n)/ Construct a vector from a 'Stream', proceeding from right to left
unstreamR :: Vector v a => Stream a -> v a
{-# INLINE unstreamR #-}
unstreamR s = new (New.unstreamR s)
{-# RULES
"streamR/unstreamR [Vector]" forall s.
streamR (new (New.unstreamR s)) = s
"New.unstreamR/streamR/new [Vector]" forall p.
New.unstreamR (streamR (new p)) = p
"inplace right [Vector]"
forall (f :: forall m. Monad m => MStream m a -> MStream m a) m.
New.unstreamR (inplace f (streamR (new m))) = New.transformR f m
"uninplace right [Vector]"
forall (f :: forall m. Monad m => MStream m a -> MStream m a) m.
streamR (new (New.transformR f m)) = inplace f (streamR (new m))
#-}
unstreamM :: (Vector v a, Monad m) => MStream m a -> m (v a)
{-# INLINE_STREAM unstreamM #-}
unstreamM s = do
xs <- MStream.toList s
return $ unstream $ Stream.unsafeFromList (MStream.size s) xs
-- Recycling support
-- -----------------
-- | Construct a vector from a monadic initialiser.
new :: Vector v a => New v a -> v a
{-# INLINE_STREAM new #-}
new m = m `seq` runST (unsafeFreeze =<< New.run m)
-- | Convert a vector to an initialiser which, when run, produces a copy of
-- the vector.
clone :: Vector v a => v a -> New v a
{-# INLINE_STREAM clone #-}
clone v = v `seq` New.create (
do
mv <- M.new (length v)
unsafeCopy mv v
return mv)
-- Comparisons
-- -----------
-- | /O(n)/ Check if two vectors are equal. All 'Vector' instances are also
-- instances of 'Eq' and it is usually more appropriate to use those. This
-- function is primarily intended for implementing 'Eq' instances for new
-- vector types.
eq :: (Vector v a, Eq a) => v a -> v a -> Bool
{-# INLINE eq #-}
xs `eq` ys = stream xs == stream ys
-- | /O(n)/ Compare two vectors lexicographically. All 'Vector' instances are
-- also instances of 'Ord' and it is usually more appropriate to use those. This
-- function is primarily intended for implementing 'Ord' instances for new
-- vector types.
cmp :: (Vector v a, Ord a) => v a -> v a -> Ordering
{-# INLINE cmp #-}
cmp xs ys = compare (stream xs) (stream ys)
-- Data and Typeable
-- -----------------
-- | Generic definion of 'Data.Data.gfoldl' that views a 'Vector' as a
-- list.
gfoldl :: (Vector v a, Data a)
=> (forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g)
-> v a
-> c (v a)
{-# INLINE gfoldl #-}
gfoldl f z v = z fromList `f` toList v
mkType :: String -> DataType
{-# INLINE mkType #-}
mkType = mkNorepType
dataCast :: (Vector v a, Data a, Typeable1 v, Typeable1 t)
=> (forall d. Data d => c (t d)) -> Maybe (c (v a))
{-# INLINE dataCast #-}
dataCast f = gcast1 f
|