1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
|
{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses, TypeFamilies, ScopedTypeVariables, Rank2Types #-}
-- |
-- Module : Data.Vector.Primitive
-- Copyright : (c) Roman Leshchinskiy 2008-2010
-- License : BSD-style
--
-- Maintainer : Roman Leshchinskiy <rl@cse.unsw.edu.au>
-- Stability : experimental
-- Portability : non-portable
--
-- Unboxed vectors of primitive types. The use of this module is not
-- recommended except in very special cases. Adaptive unboxed vectors defined
-- in "Data.Vector.Unboxed" are significantly more flexible at no performance
-- cost.
--
module Data.Vector.Primitive (
-- * Primitive vectors
Vector, MVector(..), Prim,
-- * Accessors
-- ** Length information
length, null,
-- ** Indexing
(!), head, last,
unsafeIndex, unsafeHead, unsafeLast,
-- ** Monadic indexing
indexM, headM, lastM,
unsafeIndexM, unsafeHeadM, unsafeLastM,
-- ** Extracting subvectors (slicing)
slice, init, tail, take, drop,
unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop,
-- * Construction
-- ** Initialisation
empty, singleton, replicate, generate,
-- ** Monadic initialisation
replicateM, create,
-- ** Unfolding
unfoldr, unfoldrN,
-- ** Enumeration
enumFromN, enumFromStepN, enumFromTo, enumFromThenTo,
-- ** Concatenation
cons, snoc, (++),
-- ** Restricting memory usage
force,
-- * Modifying vectors
-- ** Bulk updates
(//), update_,
unsafeUpd, unsafeUpdate_,
-- ** Accumulations
accum, accumulate_,
unsafeAccum, unsafeAccumulate_,
-- ** Permutations
reverse, backpermute, unsafeBackpermute,
-- ** Safe destructive updates
modify,
-- * Elementwise operations
-- ** Mapping
map, imap, concatMap,
-- ** Monadic mapping
mapM, mapM_, forM, forM_,
-- ** Zipping
zipWith, zipWith3, zipWith4, zipWith5, zipWith6,
izipWith, izipWith3, izipWith4, izipWith5, izipWith6,
-- ** Monadic zipping
zipWithM, zipWithM_,
-- * Working with predicates
-- ** Filtering
filter, ifilter, filterM,
takeWhile, dropWhile,
-- ** Partitioning
partition, unstablePartition, span, break,
-- ** Searching
elem, notElem, find, findIndex, findIndices, elemIndex, elemIndices,
-- * Folding
foldl, foldl1, foldl', foldl1', foldr, foldr1, foldr', foldr1',
ifoldl, ifoldl', ifoldr, ifoldr',
-- ** Specialised folds
all, any,
sum, product,
maximum, maximumBy, minimum, minimumBy,
minIndex, minIndexBy, maxIndex, maxIndexBy,
-- ** Monadic folds
foldM, foldM', fold1M, fold1M',
-- * Prefix sums (scans)
prescanl, prescanl',
postscanl, postscanl',
scanl, scanl', scanl1, scanl1',
prescanr, prescanr',
postscanr, postscanr',
scanr, scanr', scanr1, scanr1',
-- * Conversions
-- ** Lists
toList, fromList, fromListN,
-- ** Mutable vectors
copy, unsafeCopy
) where
import qualified Data.Vector.Generic as G
import Data.Vector.Primitive.Mutable ( MVector(..) )
import qualified Data.Vector.Fusion.Stream as Stream
import Data.Primitive.ByteArray
import Data.Primitive ( Prim, sizeOf )
import Control.Monad ( liftM )
import Control.Monad.ST ( ST )
import Control.Monad.Primitive
import Prelude hiding ( length, null,
replicate, (++),
head, last,
init, tail, take, drop, reverse,
map, concatMap,
zipWith, zipWith3, zip, zip3, unzip, unzip3,
filter, takeWhile, dropWhile, span, break,
elem, notElem,
foldl, foldl1, foldr, foldr1,
all, any, sum, product, minimum, maximum,
scanl, scanl1, scanr, scanr1,
enumFromTo, enumFromThenTo,
mapM, mapM_ )
import qualified Prelude
import Data.Typeable ( Typeable )
import Data.Data ( Data(..) )
-- | Unboxed vectors of primitive types
data Vector a = Vector {-# UNPACK #-} !Int
{-# UNPACK #-} !Int
{-# UNPACK #-} !ByteArray
deriving ( Typeable )
instance (Show a, Prim a) => Show (Vector a) where
show = (Prelude.++ " :: Data.Vector.Primitive.Vector") . ("fromList " Prelude.++) . show . toList
instance (Data a, Prim a) => Data (Vector a) where
gfoldl = G.gfoldl
toConstr _ = error "toConstr"
gunfold _ _ = error "gunfold"
dataTypeOf _ = G.mkType "Data.Vector.Primitive.Vector"
dataCast1 = G.dataCast
type instance G.Mutable Vector = MVector
instance Prim a => G.Vector Vector a where
{-# INLINE unsafeFreeze #-}
unsafeFreeze (MVector i n marr)
= Vector i n `liftM` unsafeFreezeByteArray marr
{-# INLINE basicLength #-}
basicLength (Vector _ n _) = n
{-# INLINE basicUnsafeSlice #-}
basicUnsafeSlice j n (Vector i _ arr) = Vector (i+j) n arr
{-# INLINE basicUnsafeIndexM #-}
basicUnsafeIndexM (Vector i _ arr) j = return (indexByteArray arr (i+j))
{-# INLINE basicUnsafeCopy #-}
basicUnsafeCopy (MVector i n dst) (Vector j _ src)
= memcpyByteArray' dst (i * sz) src (j * sz) (n * sz)
where
sz = sizeOf (undefined :: a)
{-# INLINE elemseq #-}
elemseq _ = seq
-- See http://trac.haskell.org/vector/ticket/12
instance (Prim a, Eq a) => Eq (Vector a) where
{-# INLINE (==) #-}
xs == ys = Stream.eq (G.stream xs) (G.stream ys)
{-# INLINE (/=) #-}
xs /= ys = not (Stream.eq (G.stream xs) (G.stream ys))
-- See http://trac.haskell.org/vector/ticket/12
instance (Prim a, Ord a) => Ord (Vector a) where
{-# INLINE compare #-}
compare xs ys = Stream.cmp (G.stream xs) (G.stream ys)
{-# INLINE (<) #-}
xs < ys = Stream.cmp (G.stream xs) (G.stream ys) == LT
{-# INLINE (<=) #-}
xs <= ys = Stream.cmp (G.stream xs) (G.stream ys) /= GT
{-# INLINE (>) #-}
xs > ys = Stream.cmp (G.stream xs) (G.stream ys) == GT
{-# INLINE (>=) #-}
xs >= ys = Stream.cmp (G.stream xs) (G.stream ys) /= LT
-- Length
-- ------
-- | /O(1)/ Yield the length of the vector.
length :: Prim a => Vector a -> Int
{-# INLINE length #-}
length = G.length
-- | /O(1)/ Test whether a vector if empty
null :: Prim a => Vector a -> Bool
{-# INLINE null #-}
null = G.null
-- Indexing
-- --------
-- | O(1) Indexing
(!) :: Prim a => Vector a -> Int -> a
{-# INLINE (!) #-}
(!) = (G.!)
-- | /O(1)/ First element
head :: Prim a => Vector a -> a
{-# INLINE head #-}
head = G.head
-- | /O(1)/ Last element
last :: Prim a => Vector a -> a
{-# INLINE last #-}
last = G.last
-- | /O(1)/ Unsafe indexing without bounds checking
unsafeIndex :: Prim a => Vector a -> Int -> a
{-# INLINE unsafeIndex #-}
unsafeIndex = G.unsafeIndex
-- | /O(1)/ First element without checking if the vector is empty
unsafeHead :: Prim a => Vector a -> a
{-# INLINE unsafeHead #-}
unsafeHead = G.unsafeHead
-- | /O(1)/ Last element without checking if the vector is empty
unsafeLast :: Prim a => Vector a -> a
{-# INLINE unsafeLast #-}
unsafeLast = G.unsafeLast
-- Monadic indexing
-- ----------------
-- | /O(1)/ Indexing in a monad.
--
-- The monad allows operations to be strict in the vector when necessary.
-- Suppose vector copying is implemented like this:
--
-- > copy mv v = ... write mv i (v ! i) ...
--
-- For lazy vectors, @v ! i@ would not be evaluated which means that @mv@
-- would unnecessarily retain a reference to @v@ in each element written.
--
-- With 'indexM', copying can be implemented like this instead:
--
-- > copy mv v = ... do
-- > x <- indexM v i
-- > write mv i x
--
-- Here, no references to @v@ are retained because indexing (but /not/ the
-- elements) is evaluated eagerly.
--
indexM :: (Prim a, Monad m) => Vector a -> Int -> m a
{-# INLINE indexM #-}
indexM = G.indexM
-- | /O(1)/ First element of a vector in a monad. See 'indexM' for an
-- explanation of why this is useful.
headM :: (Prim a, Monad m) => Vector a -> m a
{-# INLINE headM #-}
headM = G.headM
-- | /O(1)/ Last element of a vector in a monad. See 'indexM' for an
-- explanation of why this is useful.
lastM :: (Prim a, Monad m) => Vector a -> m a
{-# INLINE lastM #-}
lastM = G.lastM
-- | /O(1)/ Indexing in a monad without bounds checks. See 'indexM' for an
-- explanation of why this is useful.
unsafeIndexM :: (Prim a, Monad m) => Vector a -> Int -> m a
{-# INLINE unsafeIndexM #-}
unsafeIndexM = G.unsafeIndexM
-- | /O(1)/ First element in a monad without checking for empty vectors.
-- See 'indexM' for an explanation of why this is useful.
unsafeHeadM :: (Prim a, Monad m) => Vector a -> m a
{-# INLINE unsafeHeadM #-}
unsafeHeadM = G.unsafeHeadM
-- | /O(1)/ Last element in a monad without checking for empty vectors.
-- See 'indexM' for an explanation of why this is useful.
unsafeLastM :: (Prim a, Monad m) => Vector a -> m a
{-# INLINE unsafeLastM #-}
unsafeLastM = G.unsafeLastM
-- Extracting subvectors (slicing)
-- -------------------------------
-- | /O(1)/ Yield a slice of the vector without copying it. The vector must
-- contain at least @i+n@ elements.
slice :: Prim a
=> Int -- ^ @i@ starting index
-> Int -- ^ @n@ length
-> Vector a
-> Vector a
{-# INLINE slice #-}
slice = G.slice
-- | /O(1)/ Yield all but the last element without copying. The vector may not
-- be empty.
init :: Prim a => Vector a -> Vector a
{-# INLINE init #-}
init = G.init
-- | /O(1)/ Yield all but the first element without copying. The vector may not
-- be empty.
tail :: Prim a => Vector a -> Vector a
{-# INLINE tail #-}
tail = G.tail
-- | /O(1)/ Yield at the first @n@ elements without copying. The vector may
-- contain less than @n@ elements in which case it is returned unchanged.
take :: Prim a => Int -> Vector a -> Vector a
{-# INLINE take #-}
take = G.take
-- | /O(1)/ Yield all but the first @n@ elements without copying. The vector may
-- contain less than @n@ elements in which case an empty vector is returned.
drop :: Prim a => Int -> Vector a -> Vector a
{-# INLINE drop #-}
drop = G.drop
-- | /O(1)/ Yield a slice of the vector without copying. The vector must
-- contain at least @i+n@ elements but this is not checked.
unsafeSlice :: Prim a => Int -- ^ @i@ starting index
-> Int -- ^ @n@ length
-> Vector a
-> Vector a
{-# INLINE unsafeSlice #-}
unsafeSlice = G.unsafeSlice
-- | /O(1)/ Yield all but the last element without copying. The vector may not
-- be empty but this is not checked.
unsafeInit :: Prim a => Vector a -> Vector a
{-# INLINE unsafeInit #-}
unsafeInit = G.unsafeInit
-- | /O(1)/ Yield all but the first element without copying. The vector may not
-- be empty but this is not checked.
unsafeTail :: Prim a => Vector a -> Vector a
{-# INLINE unsafeTail #-}
unsafeTail = G.unsafeTail
-- | /O(1)/ Yield the first @n@ elements without copying. The vector must
-- contain at least @n@ elements but this is not checked.
unsafeTake :: Prim a => Int -> Vector a -> Vector a
{-# INLINE unsafeTake #-}
unsafeTake = G.unsafeTake
-- | /O(1)/ Yield all but the first @n@ elements without copying. The vector
-- must contain at least @n@ elements but this is not checked.
unsafeDrop :: Prim a => Int -> Vector a -> Vector a
{-# INLINE unsafeDrop #-}
unsafeDrop = G.unsafeDrop
-- Initialisation
-- --------------
-- | /O(1)/ Empty vector
empty :: Prim a => Vector a
{-# INLINE empty #-}
empty = G.empty
-- | /O(1)/ Vector with exactly one element
singleton :: Prim a => a -> Vector a
{-# INLINE singleton #-}
singleton = G.singleton
-- | /O(n)/ Vector of the given length with the same value in each position
replicate :: Prim a => Int -> a -> Vector a
{-# INLINE replicate #-}
replicate = G.replicate
-- | /O(n)/ Construct a vector of the given length by applying the function to
-- each index
generate :: Prim a => Int -> (Int -> a) -> Vector a
{-# INLINE generate #-}
generate = G.generate
-- Unfolding
-- ---------
-- | /O(n)/ Construct a vector by repeatedly applying the generator function
-- to a seed. The generator function yields 'Just' the next element and the
-- new seed or 'Nothing' if there are no more elements.
--
-- > unfoldr (\n -> if n == 0 then Nothing else Just (n,n-1)) 10
-- > = <10,9,8,7,6,5,4,3,2,1>
unfoldr :: Prim a => (b -> Maybe (a, b)) -> b -> Vector a
{-# INLINE unfoldr #-}
unfoldr = G.unfoldr
-- | /O(n)/ Construct a vector with at most @n@ by repeatedly applying the
-- generator function to the a seed. The generator function yields 'Just' the
-- next element and the new seed or 'Nothing' if there are no more elements.
--
-- > unfoldrN 3 (\n -> Just (n,n-1)) 10 = <10,9,8>
unfoldrN :: Prim a => Int -> (b -> Maybe (a, b)) -> b -> Vector a
{-# INLINE unfoldrN #-}
unfoldrN = G.unfoldrN
-- Enumeration
-- -----------
-- | /O(n)/ Yield a vector of the given length containing the values @x@, @x+1@
-- etc. This operation is usually more efficient than 'enumFromTo'.
--
-- > enumFromN 5 3 = <5,6,7>
enumFromN :: (Prim a, Num a) => a -> Int -> Vector a
{-# INLINE enumFromN #-}
enumFromN = G.enumFromN
-- | /O(n)/ Yield a vector of the given length containing the values @x@, @x+y@,
-- @x+y+y@ etc. This operations is usually more efficient than 'enumFromThenTo'.
--
-- > enumFromStepN 1 0.1 5 = <1,1.1,1.2,1.3,1.4>
enumFromStepN :: (Prim a, Num a) => a -> a -> Int -> Vector a
{-# INLINE enumFromStepN #-}
enumFromStepN = G.enumFromStepN
-- | /O(n)/ Enumerate values from @x@ to @y@.
--
-- /WARNING:/ This operation can be very inefficient. If at all possible, use
-- 'enumFromN' instead.
enumFromTo :: (Prim a, Enum a) => a -> a -> Vector a
{-# INLINE enumFromTo #-}
enumFromTo = G.enumFromTo
-- | /O(n)/ Enumerate values from @x@ to @y@ with a specific step @z@.
--
-- /WARNING:/ This operation can be very inefficient. If at all possible, use
-- 'enumFromStepN' instead.
enumFromThenTo :: (Prim a, Enum a) => a -> a -> a -> Vector a
{-# INLINE enumFromThenTo #-}
enumFromThenTo = G.enumFromThenTo
-- Concatenation
-- -------------
-- | /O(n)/ Prepend an element
cons :: Prim a => a -> Vector a -> Vector a
{-# INLINE cons #-}
cons = G.cons
-- | /O(n)/ Append an element
snoc :: Prim a => Vector a -> a -> Vector a
{-# INLINE snoc #-}
snoc = G.snoc
infixr 5 ++
-- | /O(m+n)/ Concatenate two vectors
(++) :: Prim a => Vector a -> Vector a -> Vector a
{-# INLINE (++) #-}
(++) = (G.++)
-- Monadic initialisation
-- ----------------------
-- | /O(n)/ Execute the monadic action the given number of times and store the
-- results in a vector.
replicateM :: (Monad m, Prim a) => Int -> m a -> m (Vector a)
{-# INLINE replicateM #-}
replicateM = G.replicateM
-- | Execute the monadic action and freeze the resulting vector.
--
-- @
-- create (do { v \<- new 2; write v 0 \'a\'; write v 1 \'b\' }) = \<'a','b'\>
-- @
create :: Prim a => (forall s. ST s (MVector s a)) -> Vector a
{-# INLINE create #-}
create = G.create
-- Restricting memory usage
-- ------------------------
-- | /O(n)/ Yield the argument but force it not to retain any extra memory,
-- possibly by copying it.
--
-- This is especially useful when dealing with slices. For example:
--
-- > force (slice 0 2 <huge vector>)
--
-- Here, the slice retains a reference to the huge vector. Forcing it creates
-- a copy of just the elements that belong to the slice and allows the huge
-- vector to be garbage collected.
force :: Prim a => Vector a -> Vector a
{-# INLINE force #-}
force = G.force
-- Bulk updates
-- ------------
-- | /O(m+n)/ For each pair @(i,a)@ from the list, replace the vector
-- element at position @i@ by @a@.
--
-- > <5,9,2,7> // [(2,1),(0,3),(2,8)] = <3,9,8,7>
--
(//) :: Prim a => Vector a -- ^ initial vector (of length @m@)
-> [(Int, a)] -- ^ list of index/value pairs (of length @n@)
-> Vector a
{-# INLINE (//) #-}
(//) = (G.//)
-- | /O(m+min(n1,n2))/ For each index @i@ from the index vector and the
-- corresponding value @a@ from the value vector, replace the element of the
-- initial vector at position @i@ by @a@.
--
-- > update_ <5,9,2,7> <2,0,2> <1,3,8> = <3,9,8,7>
--
update_ :: Prim a
=> Vector a -- ^ initial vector (of length @m@)
-> Vector Int -- ^ index vector (of length @n1@)
-> Vector a -- ^ value vector (of length @n2@)
-> Vector a
{-# INLINE update_ #-}
update_ = G.update_
-- | Same as ('//') but without bounds checking.
unsafeUpd :: Prim a => Vector a -> [(Int, a)] -> Vector a
{-# INLINE unsafeUpd #-}
unsafeUpd = G.unsafeUpd
-- | Same as 'update_' but without bounds checking.
unsafeUpdate_ :: Prim a => Vector a -> Vector Int -> Vector a -> Vector a
{-# INLINE unsafeUpdate_ #-}
unsafeUpdate_ = G.unsafeUpdate_
-- Accumulations
-- -------------
-- | /O(m+n)/ For each pair @(i,b)@ from the list, replace the vector element
-- @a@ at position @i@ by @f a b@.
--
-- > accum (+) <5,9,2> [(2,4),(1,6),(0,3),(1,7)] = <5+3, 9+6+7, 2+4>
accum :: Prim a
=> (a -> b -> a) -- ^ accumulating function @f@
-> Vector a -- ^ initial vector (of length @m@)
-> [(Int,b)] -- ^ list of index/value pairs (of length @n@)
-> Vector a
{-# INLINE accum #-}
accum = G.accum
-- | /O(m+min(n1,n2))/ For each index @i@ from the index vector and the
-- corresponding value @b@ from the the value vector,
-- replace the element of the initial vector at
-- position @i@ by @f a b@.
--
-- > accumulate_ (+) <5,9,2> <2,1,0,1> <4,6,3,7> = <5+3, 9+6+7, 2+4>
--
accumulate_ :: (Prim a, Prim b)
=> (a -> b -> a) -- ^ accumulating function @f@
-> Vector a -- ^ initial vector (of length @m@)
-> Vector Int -- ^ index vector (of length @n1@)
-> Vector b -- ^ value vector (of length @n2@)
-> Vector a
{-# INLINE accumulate_ #-}
accumulate_ = G.accumulate_
-- | Same as 'accum' but without bounds checking.
unsafeAccum :: Prim a => (a -> b -> a) -> Vector a -> [(Int,b)] -> Vector a
{-# INLINE unsafeAccum #-}
unsafeAccum = G.unsafeAccum
-- | Same as 'accumulate_' but without bounds checking.
unsafeAccumulate_ :: (Prim a, Prim b) =>
(a -> b -> a) -> Vector a -> Vector Int -> Vector b -> Vector a
{-# INLINE unsafeAccumulate_ #-}
unsafeAccumulate_ = G.unsafeAccumulate_
-- Permutations
-- ------------
-- | /O(n)/ Reverse a vector
reverse :: Prim a => Vector a -> Vector a
{-# INLINE reverse #-}
reverse = G.reverse
-- | /O(n)/ Yield the vector obtained by replacing each element @i@ of the
-- index vector by @xs'!'i@. This is equivalent to @'map' (xs'!') is@ but is
-- often much more efficient.
--
-- > backpermute <a,b,c,d> <0,3,2,3,1,0> = <a,d,c,d,b,a>
backpermute :: Prim a => Vector a -> Vector Int -> Vector a
{-# INLINE backpermute #-}
backpermute = G.backpermute
-- | Same as 'backpermute' but without bounds checking.
unsafeBackpermute :: Prim a => Vector a -> Vector Int -> Vector a
{-# INLINE unsafeBackpermute #-}
unsafeBackpermute = G.unsafeBackpermute
-- Safe destructive updates
-- ------------------------
-- | Apply a destructive operation to a vector. The operation will be
-- performed in place if it is safe to do so and will modify a copy of the
-- vector otherwise.
--
-- @
-- modify (\\v -> write v 0 \'x\') ('replicate' 3 \'a\') = \<\'x\',\'a\',\'a\'\>
-- @
modify :: Prim a => (forall s. MVector s a -> ST s ()) -> Vector a -> Vector a
{-# INLINE modify #-}
modify = G.modify
-- Mapping
-- -------
-- | /O(n)/ Map a function over a vector
map :: (Prim a, Prim b) => (a -> b) -> Vector a -> Vector b
{-# INLINE map #-}
map = G.map
-- | /O(n)/ Apply a function to every element of a vector and its index
imap :: (Prim a, Prim b) => (Int -> a -> b) -> Vector a -> Vector b
{-# INLINE imap #-}
imap = G.imap
-- | Map a function over a vector and concatenate the results.
concatMap :: (Prim a, Prim b) => (a -> Vector b) -> Vector a -> Vector b
{-# INLINE concatMap #-}
concatMap = G.concatMap
-- Monadic mapping
-- ---------------
-- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a
-- vector of results
mapM :: (Monad m, Prim a, Prim b) => (a -> m b) -> Vector a -> m (Vector b)
{-# INLINE mapM #-}
mapM = G.mapM
-- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the
-- results
mapM_ :: (Monad m, Prim a) => (a -> m b) -> Vector a -> m ()
{-# INLINE mapM_ #-}
mapM_ = G.mapM_
-- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a
-- vector of results. Equvalent to @flip 'mapM'@.
forM :: (Monad m, Prim a, Prim b) => Vector a -> (a -> m b) -> m (Vector b)
{-# INLINE forM #-}
forM = G.forM
-- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the
-- results. Equivalent to @flip 'mapM_'@.
forM_ :: (Monad m, Prim a) => Vector a -> (a -> m b) -> m ()
{-# INLINE forM_ #-}
forM_ = G.forM_
-- Zipping
-- -------
-- | /O(min(m,n))/ Zip two vectors with the given function.
zipWith :: (Prim a, Prim b, Prim c)
=> (a -> b -> c) -> Vector a -> Vector b -> Vector c
{-# INLINE zipWith #-}
zipWith = G.zipWith
-- | Zip three vectors with the given function.
zipWith3 :: (Prim a, Prim b, Prim c, Prim d)
=> (a -> b -> c -> d) -> Vector a -> Vector b -> Vector c -> Vector d
{-# INLINE zipWith3 #-}
zipWith3 = G.zipWith3
zipWith4 :: (Prim a, Prim b, Prim c, Prim d, Prim e)
=> (a -> b -> c -> d -> e)
-> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
{-# INLINE zipWith4 #-}
zipWith4 = G.zipWith4
zipWith5 :: (Prim a, Prim b, Prim c, Prim d, Prim e,
Prim f)
=> (a -> b -> c -> d -> e -> f)
-> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-> Vector f
{-# INLINE zipWith5 #-}
zipWith5 = G.zipWith5
zipWith6 :: (Prim a, Prim b, Prim c, Prim d, Prim e,
Prim f, Prim g)
=> (a -> b -> c -> d -> e -> f -> g)
-> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-> Vector f -> Vector g
{-# INLINE zipWith6 #-}
zipWith6 = G.zipWith6
-- | /O(min(m,n))/ Zip two vectors with a function that also takes the
-- elements' indices.
izipWith :: (Prim a, Prim b, Prim c)
=> (Int -> a -> b -> c) -> Vector a -> Vector b -> Vector c
{-# INLINE izipWith #-}
izipWith = G.izipWith
-- | Zip three vectors and their indices with the given function.
izipWith3 :: (Prim a, Prim b, Prim c, Prim d)
=> (Int -> a -> b -> c -> d)
-> Vector a -> Vector b -> Vector c -> Vector d
{-# INLINE izipWith3 #-}
izipWith3 = G.izipWith3
izipWith4 :: (Prim a, Prim b, Prim c, Prim d, Prim e)
=> (Int -> a -> b -> c -> d -> e)
-> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
{-# INLINE izipWith4 #-}
izipWith4 = G.izipWith4
izipWith5 :: (Prim a, Prim b, Prim c, Prim d, Prim e,
Prim f)
=> (Int -> a -> b -> c -> d -> e -> f)
-> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-> Vector f
{-# INLINE izipWith5 #-}
izipWith5 = G.izipWith5
izipWith6 :: (Prim a, Prim b, Prim c, Prim d, Prim e,
Prim f, Prim g)
=> (Int -> a -> b -> c -> d -> e -> f -> g)
-> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-> Vector f -> Vector g
{-# INLINE izipWith6 #-}
izipWith6 = G.izipWith6
-- Monadic zipping
-- ---------------
-- | /O(min(m,n))/ Zip the two vectors with the monadic action and yield a
-- vector of results
zipWithM :: (Monad m, Prim a, Prim b, Prim c)
=> (a -> b -> m c) -> Vector a -> Vector b -> m (Vector c)
{-# INLINE zipWithM #-}
zipWithM = G.zipWithM
-- | /O(min(m,n))/ Zip the two vectors with the monadic action and ignore the
-- results
zipWithM_ :: (Monad m, Prim a, Prim b)
=> (a -> b -> m c) -> Vector a -> Vector b -> m ()
{-# INLINE zipWithM_ #-}
zipWithM_ = G.zipWithM_
-- Filtering
-- ---------
-- | /O(n)/ Drop elements that do not satisfy the predicate
filter :: Prim a => (a -> Bool) -> Vector a -> Vector a
{-# INLINE filter #-}
filter = G.filter
-- | /O(n)/ Drop elements that do not satisfy the predicate which is applied to
-- values and their indices
ifilter :: Prim a => (Int -> a -> Bool) -> Vector a -> Vector a
{-# INLINE ifilter #-}
ifilter = G.ifilter
-- | /O(n)/ Drop elements that do not satisfy the monadic predicate
filterM :: (Monad m, Prim a) => (a -> m Bool) -> Vector a -> m (Vector a)
{-# INLINE filterM #-}
filterM = G.filterM
-- | /O(n)/ Yield the longest prefix of elements satisfying the predicate
-- without copying.
takeWhile :: Prim a => (a -> Bool) -> Vector a -> Vector a
{-# INLINE takeWhile #-}
takeWhile = G.takeWhile
-- | /O(n)/ Drop the longest prefix of elements that satisfy the predicate
-- without copying.
dropWhile :: Prim a => (a -> Bool) -> Vector a -> Vector a
{-# INLINE dropWhile #-}
dropWhile = G.dropWhile
-- Parititioning
-- -------------
-- | /O(n)/ Split the vector in two parts, the first one containing those
-- elements that satisfy the predicate and the second one those that don't. The
-- relative order of the elements is preserved at the cost of a sometimes
-- reduced performance compared to 'unstablePartition'.
partition :: Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
{-# INLINE partition #-}
partition = G.partition
-- | /O(n)/ Split the vector in two parts, the first one containing those
-- elements that satisfy the predicate and the second one those that don't.
-- The order of the elements is not preserved but the operation is often
-- faster than 'partition'.
unstablePartition :: Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
{-# INLINE unstablePartition #-}
unstablePartition = G.unstablePartition
-- | /O(n)/ Split the vector into the longest prefix of elements that satisfy
-- the predicate and the rest without copying.
span :: Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
{-# INLINE span #-}
span = G.span
-- | /O(n)/ Split the vector into the longest prefix of elements that do not
-- satisfy the predicate and the rest without copying.
break :: Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
{-# INLINE break #-}
break = G.break
-- Searching
-- ---------
infix 4 `elem`
-- | /O(n)/ Check if the vector contains an element
elem :: (Prim a, Eq a) => a -> Vector a -> Bool
{-# INLINE elem #-}
elem = G.elem
infix 4 `notElem`
-- | /O(n)/ Check if the vector does not contain an element (inverse of 'elem')
notElem :: (Prim a, Eq a) => a -> Vector a -> Bool
{-# INLINE notElem #-}
notElem = G.notElem
-- | /O(n)/ Yield 'Just' the first element matching the predicate or 'Nothing'
-- if no such element exists.
find :: Prim a => (a -> Bool) -> Vector a -> Maybe a
{-# INLINE find #-}
find = G.find
-- | /O(n)/ Yield 'Just' the index of the first element matching the predicate
-- or 'Nothing' if no such element exists.
findIndex :: Prim a => (a -> Bool) -> Vector a -> Maybe Int
{-# INLINE findIndex #-}
findIndex = G.findIndex
-- | /O(n)/ Yield the indices of elements satisfying the predicate in ascending
-- order.
findIndices :: Prim a => (a -> Bool) -> Vector a -> Vector Int
{-# INLINE findIndices #-}
findIndices = G.findIndices
-- | /O(n)/ Yield 'Just' the index of the first occurence of the given element or
-- 'Nothing' if the vector does not contain the element. This is a specialised
-- version of 'findIndex'.
elemIndex :: (Prim a, Eq a) => a -> Vector a -> Maybe Int
{-# INLINE elemIndex #-}
elemIndex = G.elemIndex
-- | /O(n)/ Yield the indices of all occurences of the given element in
-- ascending order. This is a specialised version of 'findIndices'.
elemIndices :: (Prim a, Eq a) => a -> Vector a -> Vector Int
{-# INLINE elemIndices #-}
elemIndices = G.elemIndices
-- Folding
-- -------
-- | /O(n)/ Left fold
foldl :: Prim b => (a -> b -> a) -> a -> Vector b -> a
{-# INLINE foldl #-}
foldl = G.foldl
-- | /O(n)/ Left fold on non-empty vectors
foldl1 :: Prim a => (a -> a -> a) -> Vector a -> a
{-# INLINE foldl1 #-}
foldl1 = G.foldl1
-- | /O(n)/ Left fold with strict accumulator
foldl' :: Prim b => (a -> b -> a) -> a -> Vector b -> a
{-# INLINE foldl' #-}
foldl' = G.foldl'
-- | /O(n)/ Left fold on non-empty vectors with strict accumulator
foldl1' :: Prim a => (a -> a -> a) -> Vector a -> a
{-# INLINE foldl1' #-}
foldl1' = G.foldl1'
-- | /O(n)/ Right fold
foldr :: Prim a => (a -> b -> b) -> b -> Vector a -> b
{-# INLINE foldr #-}
foldr = G.foldr
-- | /O(n)/ Right fold on non-empty vectors
foldr1 :: Prim a => (a -> a -> a) -> Vector a -> a
{-# INLINE foldr1 #-}
foldr1 = G.foldr1
-- | /O(n)/ Right fold with a strict accumulator
foldr' :: Prim a => (a -> b -> b) -> b -> Vector a -> b
{-# INLINE foldr' #-}
foldr' = G.foldr'
-- | /O(n)/ Right fold on non-empty vectors with strict accumulator
foldr1' :: Prim a => (a -> a -> a) -> Vector a -> a
{-# INLINE foldr1' #-}
foldr1' = G.foldr1'
-- | /O(n)/ Left fold (function applied to each element and its index)
ifoldl :: Prim b => (a -> Int -> b -> a) -> a -> Vector b -> a
{-# INLINE ifoldl #-}
ifoldl = G.ifoldl
-- | /O(n)/ Left fold with strict accumulator (function applied to each element
-- and its index)
ifoldl' :: Prim b => (a -> Int -> b -> a) -> a -> Vector b -> a
{-# INLINE ifoldl' #-}
ifoldl' = G.ifoldl'
-- | /O(n)/ Right fold (function applied to each element and its index)
ifoldr :: Prim a => (Int -> a -> b -> b) -> b -> Vector a -> b
{-# INLINE ifoldr #-}
ifoldr = G.ifoldr
-- | /O(n)/ Right fold with strict accumulator (function applied to each
-- element and its index)
ifoldr' :: Prim a => (Int -> a -> b -> b) -> b -> Vector a -> b
{-# INLINE ifoldr' #-}
ifoldr' = G.ifoldr'
-- Specialised folds
-- -----------------
-- | /O(n)/ Check if all elements satisfy the predicate.
all :: Prim a => (a -> Bool) -> Vector a -> Bool
{-# INLINE all #-}
all = G.all
-- | /O(n)/ Check if any element satisfies the predicate.
any :: Prim a => (a -> Bool) -> Vector a -> Bool
{-# INLINE any #-}
any = G.any
-- | /O(n)/ Compute the sum of the elements
sum :: (Prim a, Num a) => Vector a -> a
{-# INLINE sum #-}
sum = G.sum
-- | /O(n)/ Compute the produce of the elements
product :: (Prim a, Num a) => Vector a -> a
{-# INLINE product #-}
product = G.product
-- | /O(n)/ Yield the maximum element of the vector. The vector may not be
-- empty.
maximum :: (Prim a, Ord a) => Vector a -> a
{-# INLINE maximum #-}
maximum = G.maximum
-- | /O(n)/ Yield the maximum element of the vector according to the given
-- comparison function. The vector may not be empty.
maximumBy :: Prim a => (a -> a -> Ordering) -> Vector a -> a
{-# INLINE maximumBy #-}
maximumBy = G.maximumBy
-- | /O(n)/ Yield the minimum element of the vector. The vector may not be
-- empty.
minimum :: (Prim a, Ord a) => Vector a -> a
{-# INLINE minimum #-}
minimum = G.minimum
-- | /O(n)/ Yield the minimum element of the vector according to the given
-- comparison function. The vector may not be empty.
minimumBy :: Prim a => (a -> a -> Ordering) -> Vector a -> a
{-# INLINE minimumBy #-}
minimumBy = G.minimumBy
-- | /O(n)/ Yield the index of the maximum element of the vector. The vector
-- may not be empty.
maxIndex :: (Prim a, Ord a) => Vector a -> Int
{-# INLINE maxIndex #-}
maxIndex = G.maxIndex
-- | /O(n)/ Yield the index of the maximum element of the vector according to
-- the given comparison function. The vector may not be empty.
maxIndexBy :: Prim a => (a -> a -> Ordering) -> Vector a -> Int
{-# INLINE maxIndexBy #-}
maxIndexBy = G.maxIndexBy
-- | /O(n)/ Yield the index of the minimum element of the vector. The vector
-- may not be empty.
minIndex :: (Prim a, Ord a) => Vector a -> Int
{-# INLINE minIndex #-}
minIndex = G.minIndex
-- | /O(n)/ Yield the index of the minimum element of the vector according to
-- the given comparison function. The vector may not be empty.
minIndexBy :: Prim a => (a -> a -> Ordering) -> Vector a -> Int
{-# INLINE minIndexBy #-}
minIndexBy = G.minIndexBy
-- Monadic folds
-- -------------
-- | /O(n)/ Monadic fold
foldM :: (Monad m, Prim b) => (a -> b -> m a) -> a -> Vector b -> m a
{-# INLINE foldM #-}
foldM = G.foldM
-- | /O(n)/ Monadic fold over non-empty vectors
fold1M :: (Monad m, Prim a) => (a -> a -> m a) -> Vector a -> m a
{-# INLINE fold1M #-}
fold1M = G.fold1M
-- | /O(n)/ Monadic fold with strict accumulator
foldM' :: (Monad m, Prim b) => (a -> b -> m a) -> a -> Vector b -> m a
{-# INLINE foldM' #-}
foldM' = G.foldM'
-- | /O(n)/ Monad fold over non-empty vectors with strict accumulator
fold1M' :: (Monad m, Prim a) => (a -> a -> m a) -> Vector a -> m a
{-# INLINE fold1M' #-}
fold1M' = G.fold1M'
-- Prefix sums (scans)
-- -------------------
-- | /O(n)/ Prescan
--
-- @
-- prescanl f z = 'init' . 'scanl' f z
-- @
--
-- Example: @prescanl (+) 0 \<1,2,3,4\> = \<0,1,3,6\>@
--
prescanl :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a
{-# INLINE prescanl #-}
prescanl = G.prescanl
-- | /O(n)/ Prescan with strict accumulator
prescanl' :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a
{-# INLINE prescanl' #-}
prescanl' = G.prescanl'
-- | /O(n)/ Scan
--
-- @
-- postscanl f z = 'tail' . 'scanl' f z
-- @
--
-- Example: @postscanl (+) 0 \<1,2,3,4\> = \<1,3,6,10\>@
--
postscanl :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a
{-# INLINE postscanl #-}
postscanl = G.postscanl
-- | /O(n)/ Scan with strict accumulator
postscanl' :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a
{-# INLINE postscanl' #-}
postscanl' = G.postscanl'
-- | /O(n)/ Haskell-style scan
--
-- > scanl f z <x1,...,xn> = <y1,...,y(n+1)>
-- > where y1 = z
-- > yi = f y(i-1) x(i-1)
--
-- Example: @scanl (+) 0 \<1,2,3,4\> = \<0,1,3,6,10\>@
--
scanl :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a
{-# INLINE scanl #-}
scanl = G.scanl
-- | /O(n)/ Haskell-style scan with strict accumulator
scanl' :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a
{-# INLINE scanl' #-}
scanl' = G.scanl'
-- | /O(n)/ Scan over a non-empty vector
--
-- > scanl f <x1,...,xn> = <y1,...,yn>
-- > where y1 = x1
-- > yi = f y(i-1) xi
--
scanl1 :: Prim a => (a -> a -> a) -> Vector a -> Vector a
{-# INLINE scanl1 #-}
scanl1 = G.scanl1
-- | /O(n)/ Scan over a non-empty vector with a strict accumulator
scanl1' :: Prim a => (a -> a -> a) -> Vector a -> Vector a
{-# INLINE scanl1' #-}
scanl1' = G.scanl1'
-- | /O(n)/ Right-to-left prescan
--
-- @
-- prescanr f z = 'reverse' . 'prescanl' (flip f) z . 'reverse'
-- @
--
prescanr :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b
{-# INLINE prescanr #-}
prescanr = G.prescanr
-- | /O(n)/ Right-to-left prescan with strict accumulator
prescanr' :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b
{-# INLINE prescanr' #-}
prescanr' = G.prescanr'
-- | /O(n)/ Right-to-left scan
postscanr :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b
{-# INLINE postscanr #-}
postscanr = G.postscanr
-- | /O(n)/ Right-to-left scan with strict accumulator
postscanr' :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b
{-# INLINE postscanr' #-}
postscanr' = G.postscanr'
-- | /O(n)/ Right-to-left Haskell-style scan
scanr :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b
{-# INLINE scanr #-}
scanr = G.scanr
-- | /O(n)/ Right-to-left Haskell-style scan with strict accumulator
scanr' :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b
{-# INLINE scanr' #-}
scanr' = G.scanr'
-- | /O(n)/ Right-to-left scan over a non-empty vector
scanr1 :: Prim a => (a -> a -> a) -> Vector a -> Vector a
{-# INLINE scanr1 #-}
scanr1 = G.scanr1
-- | /O(n)/ Right-to-left scan over a non-empty vector with a strict
-- accumulator
scanr1' :: Prim a => (a -> a -> a) -> Vector a -> Vector a
{-# INLINE scanr1' #-}
scanr1' = G.scanr1'
-- Conversions - Lists
-- ------------------------
-- | /O(n)/ Convert a vector to a list
toList :: Prim a => Vector a -> [a]
{-# INLINE toList #-}
toList = G.toList
-- | /O(n)/ Convert a list to a vector
fromList :: Prim a => [a] -> Vector a
{-# INLINE fromList #-}
fromList = G.fromList
-- | /O(n)/ Convert the first @n@ elements of a list to a vector
--
-- @
-- fromListN n xs = 'fromList' ('take' n xs)
-- @
fromListN :: Prim a => Int -> [a] -> Vector a
{-# INLINE fromListN #-}
fromListN = G.fromListN
-- Conversions - Mutable vectors
-- -----------------------------
-- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must
-- have the same length.
unsafeCopy
:: (Prim a, PrimMonad m) => MVector (PrimState m) a -> Vector a -> m ()
{-# INLINE unsafeCopy #-}
unsafeCopy = G.unsafeCopy
-- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must
-- have the same length. This is not checked.
copy :: (Prim a, PrimMonad m) => MVector (PrimState m) a -> Vector a -> m ()
{-# INLINE copy #-}
copy = G.copy
|