File: Vector.hs

package info (click to toggle)
haskell-vector 0.6.0.1-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 632 kB
  • ctags: 20
  • sloc: haskell: 7,341; ansic: 23; makefile: 2
file content (490 lines) | stat: -rw-r--r-- 19,874 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
module Tests.Vector (tests) where

import Boilerplater
import Utilities

import qualified Data.Vector.Generic as V
import qualified Data.Vector
import qualified Data.Vector.Primitive
import qualified Data.Vector.Storable
import qualified Data.Vector.Unboxed
import qualified Data.Vector.Fusion.Stream as S

import Test.QuickCheck

import Test.Framework
import Test.Framework.Providers.QuickCheck2

import Text.Show.Functions ()
import Data.List
import System.Random       (Random)

#define COMMON_CONTEXT(a, v) \
 VANILLA_CONTEXT(a, v), VECTOR_CONTEXT(a, v)

#define VANILLA_CONTEXT(a, v) \
  Eq a,     Show a,     Arbitrary a,     CoArbitrary a,     TestData a,     Model a ~ a,        EqTest a ~ Property

#define VECTOR_CONTEXT(a, v) \
  Eq (v a), Show (v a), Arbitrary (v a), CoArbitrary (v a), TestData (v a), Model (v a) ~ [a],  EqTest (v a) ~ Property, V.Vector v a

-- TODO: implement Vector equivalents of list functions for some of the commented out properties

-- TODO: test and implement some of these other Prelude functions:
--  mapM *
--  mapM_ *
--  sequence
--  sequence_
--  sum *
--  product *
--  scanl *
--  scanl1 *
--  scanr *
--  scanr1 *
--  lookup *
--  lines
--  words
--  unlines
--  unwords
-- NB: this is an exhaustive list of all Prelude list functions that make sense for vectors.
-- Ones with *s are the most plausible candidates.

-- TODO: add tests for the other extra functions
-- IVector exports still needing tests:
--  copy,
--  slice,
--  (//), update, bpermute,
--  prescanl, prescanl',
--  new,
--  unsafeSlice, unsafeIndex,
--  vlength, vnew

-- TODO: test non-IVector stuff?

testSanity :: forall a v. (COMMON_CONTEXT(a, v)) => v a -> [Test]
testSanity _ = [
        testProperty "fromList.toList == id" prop_fromList_toList,
        testProperty "toList.fromList == id" prop_toList_fromList,
        testProperty "unstream.stream == id" prop_unstream_stream,
        testProperty "stream.unstream == id" prop_stream_unstream
    ]
  where
    prop_fromList_toList (v :: v a)        = (V.fromList . V.toList)                        v == v
    prop_toList_fromList (l :: [a])        = ((V.toList :: v a -> [a]) . V.fromList)        l == l
    prop_unstream_stream (v :: v a)        = (V.unstream . V.stream)                        v == v
    prop_stream_unstream (s :: S.Stream a) = ((V.stream :: v a -> S.Stream a) . V.unstream) s == s

testPolymorphicFunctions :: forall a v. (COMMON_CONTEXT(a, v), VECTOR_CONTEXT(Int, v)) => v a -> [Test]
testPolymorphicFunctions _ = $(testProperties [
        'prop_eq,

        'prop_length, 'prop_null,

        'prop_empty, 'prop_singleton, 'prop_replicate,
        'prop_cons, 'prop_snoc, 'prop_append, 'prop_force, 'prop_generate,

        'prop_head, 'prop_last, 'prop_index,
        'prop_unsafeHead, 'prop_unsafeLast, 'prop_unsafeIndex,

        'prop_slice, 'prop_init, 'prop_tail, 'prop_take, 'prop_drop,

        'prop_accum, 'prop_upd, 'prop_backpermute, 'prop_reverse,

        'prop_map, 'prop_zipWith, 'prop_zipWith3,
        'prop_imap, 'prop_izipWith, 'prop_izipWith3,

        'prop_filter, 'prop_ifilter, 'prop_takeWhile, 'prop_dropWhile,
        'prop_partition, 'prop_span, 'prop_break,

        'prop_elem, 'prop_notElem,
        'prop_find, 'prop_findIndex, 'prop_findIndices,
        'prop_elemIndex, 'prop_elemIndices,

        'prop_foldl, 'prop_foldl1, 'prop_foldl', 'prop_foldl1',
        'prop_foldr, 'prop_foldr1, 'prop_foldr', 'prop_foldr1',
        'prop_ifoldl, 'prop_ifoldl', 'prop_ifoldr, 'prop_ifoldr',

        'prop_all, 'prop_any,

        'prop_prescanl, 'prop_prescanl',
        'prop_postscanl, 'prop_postscanl',
        'prop_scanl, 'prop_scanl', 'prop_scanl1, 'prop_scanl1',

        'prop_prescanr, 'prop_prescanr',
        'prop_postscanr, 'prop_postscanr',
        'prop_scanr, 'prop_scanr', 'prop_scanr1, 'prop_scanr1',

        'prop_concatMap {- ,
        'prop_unfoldr -}
    ])
  where
    -- Prelude
    prop_eq :: P (v a -> v a -> Bool) = (==) `eq` (==)

    prop_length :: P (v a -> Int)     = V.length `eq` length
    prop_null   :: P (v a -> Bool)    = V.null `eq` null

    prop_empty  :: P (v a)            = V.empty `eq` []
    prop_singleton :: P (a -> v a)    = V.singleton `eq` singleton
    prop_replicate :: P (Int -> a -> v a)
              = (\n _ -> n < 1000) ===> V.replicate `eq` replicate
    prop_cons      :: P (a -> v a -> v a) = V.cons `eq` (:)
    prop_snoc      :: P (v a -> a -> v a) = V.snoc `eq` snoc
    prop_append    :: P (v a -> v a -> v a) = (V.++) `eq` (++)
    prop_force     :: P (v a -> v a)        = V.force `eq` id
    prop_generate  :: P (Int -> (Int -> a) -> v a)
              = (\n _ -> n < 1000) ===> V.generate `eq` generate

    prop_head      :: P (v a -> a) = not . V.null ===> V.head `eq` head
    prop_last      :: P (v a -> a) = not . V.null ===> V.last `eq` last
    prop_index        = \xs ->
                        not (V.null xs) ==>
                        forAll (choose (0, V.length xs-1)) $ \i ->
                        unP prop xs i
      where
        prop :: P (v a -> Int -> a) = (V.!) `eq` (!!)
    prop_unsafeHead  :: P (v a -> a) = not . V.null ===> V.unsafeHead `eq` head
    prop_unsafeLast  :: P (v a -> a) = not . V.null ===> V.unsafeLast `eq` last
    prop_unsafeIndex  = \xs ->
                        not (V.null xs) ==>
                        forAll (choose (0, V.length xs-1)) $ \i ->
                        unP prop xs i
      where
        prop :: P (v a -> Int -> a) = V.unsafeIndex `eq` (!!)

    prop_slice        = \xs ->
                        forAll (choose (0, V.length xs))     $ \i ->
                        forAll (choose (0, V.length xs - i)) $ \n ->
                        unP prop i n xs
      where
        prop :: P (Int -> Int -> v a -> v a) = V.slice `eq` slice

    prop_tail :: P (v a -> v a) = not . V.null ===> V.tail `eq` tail
    prop_init :: P (v a -> v a) = not . V.null ===> V.init `eq` init
    prop_take :: P (Int -> v a -> v a) = V.take `eq` take
    prop_drop :: P (Int -> v a -> v a) = V.drop `eq` drop

    prop_accum = \f xs ->
                 forAll (index_value_pairs (V.length xs)) $ \ps ->
                 unP prop f xs ps
      where
        prop :: P ((a -> a -> a) -> v a -> [(Int,a)] -> v a)
          = V.accum `eq` accum

    prop_upd        = \xs ->
                        forAll (index_value_pairs (V.length xs)) $ \ps ->
                        unP prop xs ps
      where
        prop :: P (v a -> [(Int,a)] -> v a) = (V.//) `eq` (//)

    prop_backpermute  = \xs ->
                        forAll (indices (V.length xs)) $ \is ->
                        unP prop xs (V.fromList is)
      where
        prop :: P (v a -> v Int -> v a) = V.backpermute `eq` backpermute

    prop_reverse :: P (v a -> v a) = V.reverse `eq` reverse

    prop_map :: P ((a -> a) -> v a -> v a) = V.map `eq` map
    prop_zipWith :: P ((a -> a -> a) -> v a -> v a -> v a) = V.zipWith `eq` zipWith
    prop_zipWith3 :: P ((a -> a -> a -> a) -> v a -> v a -> v a -> v a)
             = V.zipWith3 `eq` zipWith3
    prop_imap :: P ((Int -> a -> a) -> v a -> v a) = V.imap `eq` imap
    prop_izipWith :: P ((Int -> a -> a -> a) -> v a -> v a -> v a) = V.izipWith `eq` izipWith
    prop_izipWith3 :: P ((Int -> a -> a -> a -> a) -> v a -> v a -> v a -> v a)
             = V.izipWith3 `eq` izipWith3

    prop_filter :: P ((a -> Bool) -> v a -> v a) = V.filter `eq` filter
    prop_ifilter :: P ((Int -> a -> Bool) -> v a -> v a) = V.ifilter `eq` ifilter
    prop_takeWhile :: P ((a -> Bool) -> v a -> v a) = V.takeWhile `eq` takeWhile
    prop_dropWhile :: P ((a -> Bool) -> v a -> v a) = V.dropWhile `eq` dropWhile
    prop_partition :: P ((a -> Bool) -> v a -> (v a, v a))
      = V.partition `eq` partition
    prop_span :: P ((a -> Bool) -> v a -> (v a, v a)) = V.span `eq` span
    prop_break :: P ((a -> Bool) -> v a -> (v a, v a)) = V.break `eq` break

    prop_elem    :: P (a -> v a -> Bool) = V.elem `eq` elem
    prop_notElem :: P (a -> v a -> Bool) = V.notElem `eq` notElem
    prop_find    :: P ((a -> Bool) -> v a -> Maybe a) = V.find `eq` find
    prop_findIndex :: P ((a -> Bool) -> v a -> Maybe Int)
      = V.findIndex `eq` findIndex
    prop_findIndices :: P ((a -> Bool) -> v a -> v Int)
        = V.findIndices `eq` findIndices
    prop_elemIndex :: P (a -> v a -> Maybe Int) = V.elemIndex `eq` elemIndex
    prop_elemIndices :: P (a -> v a -> v Int) = V.elemIndices `eq` elemIndices

    prop_foldl :: P ((a -> a -> a) -> a -> v a -> a) = V.foldl `eq` foldl
    prop_foldl1 :: P ((a -> a -> a) -> v a -> a)     = notNull2 ===>
                        V.foldl1 `eq` foldl1
    prop_foldl' :: P ((a -> a -> a) -> a -> v a -> a) = V.foldl' `eq` foldl'
    prop_foldl1' :: P ((a -> a -> a) -> v a -> a)     = notNull2 ===>
                        V.foldl1' `eq` foldl1'
    prop_foldr :: P ((a -> a -> a) -> a -> v a -> a) = V.foldr `eq` foldr
    prop_foldr1 :: P ((a -> a -> a) -> v a -> a)     = notNull2 ===>
                        V.foldr1 `eq` foldr1
    prop_foldr' :: P ((a -> a -> a) -> a -> v a -> a) = V.foldr' `eq` foldr
    prop_foldr1' :: P ((a -> a -> a) -> v a -> a)     = notNull2 ===>
                        V.foldr1' `eq` foldr1
    prop_ifoldl :: P ((a -> Int -> a -> a) -> a -> v a -> a)
        = V.ifoldl `eq` ifoldl
    prop_ifoldl' :: P ((a -> Int -> a -> a) -> a -> v a -> a)
        = V.ifoldl' `eq` ifoldl
    prop_ifoldr :: P ((Int -> a -> a -> a) -> a -> v a -> a)
        = V.ifoldr `eq` ifoldr
    prop_ifoldr' :: P ((Int -> a -> a -> a) -> a -> v a -> a)
        = V.ifoldr' `eq` ifoldr

    prop_all :: P ((a -> Bool) -> v a -> Bool) = V.all `eq` all
    prop_any :: P ((a -> Bool) -> v a -> Bool) = V.any `eq` any

    prop_prescanl :: P ((a -> a -> a) -> a -> v a -> v a)
                = V.prescanl `eq` prescanl
    prop_prescanl' :: P ((a -> a -> a) -> a -> v a -> v a)
                = V.prescanl' `eq` prescanl
    prop_postscanl :: P ((a -> a -> a) -> a -> v a -> v a)
                = V.postscanl `eq` postscanl
    prop_postscanl' :: P ((a -> a -> a) -> a -> v a -> v a)
                = V.postscanl' `eq` postscanl
    prop_scanl :: P ((a -> a -> a) -> a -> v a -> v a)
                = V.scanl `eq` scanl
    prop_scanl' :: P ((a -> a -> a) -> a -> v a -> v a)
               = V.scanl' `eq` scanl
    prop_scanl1 :: P ((a -> a -> a) -> v a -> v a) = notNull2 ===>
                 V.scanl1 `eq` scanl1
    prop_scanl1' :: P ((a -> a -> a) -> v a -> v a) = notNull2 ===>
                 V.scanl1' `eq` scanl1
 
    prop_prescanr :: P ((a -> a -> a) -> a -> v a -> v a)
                = V.prescanr `eq` prescanr
    prop_prescanr' :: P ((a -> a -> a) -> a -> v a -> v a)
                = V.prescanr' `eq` prescanr
    prop_postscanr :: P ((a -> a -> a) -> a -> v a -> v a)
                = V.postscanr `eq` postscanr
    prop_postscanr' :: P ((a -> a -> a) -> a -> v a -> v a)
                = V.postscanr' `eq` postscanr
    prop_scanr :: P ((a -> a -> a) -> a -> v a -> v a)
                = V.scanr `eq` scanr
    prop_scanr' :: P ((a -> a -> a) -> a -> v a -> v a)
               = V.scanr' `eq` scanr
    prop_scanr1 :: P ((a -> a -> a) -> v a -> v a) = notNull2 ===>
                 V.scanr1 `eq` scanr1
    prop_scanr1' :: P ((a -> a -> a) -> v a -> v a) = notNull2 ===>
                 V.scanr1' `eq` scanr1

    prop_concatMap    = forAll arbitrary $ \xs ->
                        forAll (sized (\n -> resize (n `div` V.length xs) arbitrary)) $ \f -> unP prop f xs
      where
        prop :: P ((a -> v a) -> v a -> v a) = V.concatMap `eq` concatMap

    --prop_span         = (V.span :: (a -> Bool) -> v a -> (v a, v a))  `eq2` span
    --prop_break        = (V.break :: (a -> Bool) -> v a -> (v a, v a)) `eq2` break
    --prop_splitAt      = (V.splitAt :: Int -> v a -> (v a, v a))       `eq2` splitAt
    --prop_all          = (V.all :: (a -> Bool) -> v a -> Bool)         `eq2` all
    --prop_any          = (V.any :: (a -> Bool) -> v a -> Bool)         `eq2` any

    -- Data.List
    --prop_findIndices  = V.findIndices `eq2` (findIndices :: (a -> Bool) -> v a -> v Int)
    --prop_isPrefixOf   = V.isPrefixOf  `eq2` (isPrefixOf  :: v a -> v a -> Bool)
    --prop_elemIndex    = V.elemIndex   `eq2` (elemIndex   :: a -> v a -> Maybe Int)
    --prop_elemIndices  = V.elemIndices `eq2` (elemIndices :: a -> v a -> v Int)
    --
    --prop_mapAccumL  = eq3
    --    (V.mapAccumL :: (X -> W -> (X,W)) -> X -> B   -> (X, B))
    --    (  mapAccumL :: (X -> W -> (X,W)) -> X -> [W] -> (X, [W]))
    -- 
    --prop_mapAccumR  = eq3
    --    (V.mapAccumR :: (X -> W -> (X,W)) -> X -> B   -> (X, B))
    --    (  mapAccumR :: (X -> W -> (X,W)) -> X -> [W] -> (X, [W]))

    -- Because the vectors are strict, we need to be totally sure that the unfold eventually terminates. This
    -- is achieved by injecting our own bit of state into the unfold - the maximum number of unfolds allowed.
    limitUnfolds f (theirs, ours) | ours >= 0
                                  , Just (out, theirs') <- f theirs = Just (out, (theirs', ours - 1))
                                  | otherwise                       = Nothing
    prop_unfoldr :: P (Int -> (Int -> Maybe (a,Int)) -> Int -> v a)
         = (\n f a -> V.unfoldr (limitUnfolds f) (a, n))
           `eq` (\n f a -> unfoldr (limitUnfolds f) (a, n))


testTuplyFunctions:: forall a v. (COMMON_CONTEXT(a, v), VECTOR_CONTEXT((a, a), v), VECTOR_CONTEXT((a, a, a), v)) => v a -> [Test]
testTuplyFunctions _ = $(testProperties ['prop_zip, 'prop_zip3, 'prop_unzip, 'prop_unzip3])
  where
    prop_zip    :: P (v a -> v a -> v (a, a))           = V.zip `eq` zip
    prop_zip3   :: P (v a -> v a -> v a -> v (a, a, a)) = V.zip3 `eq` zip3
    prop_unzip  :: P (v (a, a) -> (v a, v a))           = V.unzip `eq` unzip
    prop_unzip3 :: P (v (a, a, a) -> (v a, v a, v a))   = V.unzip3 `eq` unzip3

testOrdFunctions :: forall a v. (COMMON_CONTEXT(a, v), Ord a, Ord (v a)) => v a -> [Test]
testOrdFunctions _ = $(testProperties
  ['prop_compare,
   'prop_maximum, 'prop_minimum,
   'prop_minIndex, 'prop_maxIndex ])
  where
    prop_compare :: P (v a -> v a -> Ordering) = compare `eq` compare
    prop_maximum :: P (v a -> a) = not . V.null ===> V.maximum `eq` maximum
    prop_minimum :: P (v a -> a) = not . V.null ===> V.minimum `eq` minimum
    prop_minIndex :: P (v a -> Int) = not . V.null ===> V.minIndex `eq` minIndex
    prop_maxIndex :: P (v a -> Int) = not . V.null ===> V.maxIndex `eq` maxIndex

testEnumFunctions :: forall a v. (COMMON_CONTEXT(a, v), Enum a, Ord a, Num a, Random a) => v a -> [Test]
testEnumFunctions _ = $(testProperties
  [ 'prop_enumFromN, 'prop_enumFromThenN,
    'prop_enumFromTo, 'prop_enumFromThenTo])
  where
    prop_enumFromN :: P (a -> Int -> v a)
      = (\_ n -> n < 1000)
        ===> V.enumFromN `eq` (\x n -> take n $ scanl (+) x $ repeat 1)

    prop_enumFromThenN :: P (a -> a -> Int -> v a)
      = (\_ _ n -> n < 1000)
        ===> V.enumFromStepN `eq` (\x y n -> take n $ scanl (+) x $ repeat y)

    prop_enumFromTo = \m ->
                      forAll (choose (-2,100)) $ \n ->
                      unP prop m (m+n)
      where
        prop  :: P (a -> a -> v a) = V.enumFromTo `eq` enumFromTo

    prop_enumFromThenTo = \i j ->
                          j /= i ==>
                          forAll (choose (ks i j)) $ \k ->
                          unP prop i j k
      where
        prop :: P (a -> a -> a -> v a) = V.enumFromThenTo `eq` enumFromThenTo

        ks i j | j < i     = (i-d*100, i+d*2)
               | otherwise = (i-d*2, i+d*100)
          where
            d = abs (j-i)
                          
testBoolFunctions :: forall v. (COMMON_CONTEXT(Bool, v)) => v Bool -> [Test]
testBoolFunctions _ = $(testProperties ['prop_and, 'prop_or])
  where
    prop_and :: P (v Bool -> Bool) = V.and `eq` and
    prop_or  :: P (v Bool -> Bool) = V.or `eq` or

testNumFunctions :: forall a v. (COMMON_CONTEXT(a, v), Num a) => v a -> [Test]
testNumFunctions _ = $(testProperties ['prop_sum, 'prop_product])
  where
    prop_sum     :: P (v a -> a) = V.sum `eq` sum
    prop_product :: P (v a -> a) = V.product `eq` product

testNestedVectorFunctions :: forall a v. (COMMON_CONTEXT(a, v)) => v a -> [Test]
testNestedVectorFunctions _ = $(testProperties [])
  where
    -- Prelude
    --prop_concat       = (V.concat :: [v a] -> v a)                    `eq1` concat
    
    -- Data.List
    --prop_transpose    = V.transpose   `eq1` (transpose   :: [v a] -> [v a])
    --prop_group        = V.group       `eq1` (group       :: v a -> [v a])
    --prop_inits        = V.inits       `eq1` (inits       :: v a -> [v a])
    --prop_tails        = V.tails       `eq1` (tails       :: v a -> [v a])


testGeneralBoxedVector dummy = concatMap ($ dummy) [
        testSanity,
        testPolymorphicFunctions,
        testOrdFunctions,
        testTuplyFunctions,
        testNestedVectorFunctions
    ]

testBoolBoxedVector dummy = concatMap ($ dummy)
  [
    testGeneralBoxedVector
  , testBoolFunctions
  ]

testNumericBoxedVector dummy = concatMap ($ dummy)
  [
    testGeneralBoxedVector
  , testNumFunctions
  , testEnumFunctions
  ]



testGeneralPrimitiveVector dummy = concatMap ($ dummy) [
        testSanity,
        testPolymorphicFunctions,
        testOrdFunctions
    ]

testBoolPrimitiveVector dummy = concatMap ($ dummy)
  [
    testGeneralPrimitiveVector
  , testBoolFunctions
  ]

testNumericPrimitiveVector dummy = concatMap ($ dummy)
 [
   testGeneralPrimitiveVector
 , testNumFunctions
 , testEnumFunctions
 ]



testGeneralStorableVector dummy = concatMap ($ dummy) [
        testSanity,
        testPolymorphicFunctions,
        testOrdFunctions
    ]

testNumericStorableVector dummy = concatMap ($ dummy)
  [
    testGeneralStorableVector
  , testNumFunctions
  , testEnumFunctions
  ]



testGeneralUnboxedVector dummy = concatMap ($ dummy) [
        testSanity,
        testPolymorphicFunctions,
        testOrdFunctions
    ]

testUnitUnboxedVector dummy = concatMap ($ dummy)
  [
    testGeneralUnboxedVector
  ]

testBoolUnboxedVector dummy = concatMap ($ dummy)
  [
    testGeneralUnboxedVector
  , testBoolFunctions
  ]

testNumericUnboxedVector dummy = concatMap ($ dummy)
  [
    testGeneralUnboxedVector
  , testNumFunctions
  , testEnumFunctions
  ]

testTupleUnboxedVector dummy = concatMap ($ dummy)
  [
    testGeneralUnboxedVector
  ]

tests = [
        testGroup "Data.Vector.Vector (Bool)"           (testBoolBoxedVector      (undefined :: Data.Vector.Vector Bool)),
        testGroup "Data.Vector.Vector (Int)"            (testNumericBoxedVector   (undefined :: Data.Vector.Vector Int)),

        testGroup "Data.Vector.Primitive.Vector (Int)"    (testNumericPrimitiveVector (undefined :: Data.Vector.Primitive.Vector Int)),
        testGroup "Data.Vector.Primitive.Vector (Double)" (testNumericPrimitiveVector (undefined :: Data.Vector.Primitive.Vector Double)),

        testGroup "Data.Vector.Storable.Vector (Int)"    (testNumericStorableVector (undefined :: Data.Vector.Storable.Vector Int)),
        testGroup "Data.Vector.Storable.Vector (Double)" (testNumericStorableVector (undefined :: Data.Vector.Storable.Vector Double)),

        testGroup "Data.Vector.Unboxed.Vector ()"       (testUnitUnboxedVector (undefined :: Data.Vector.Unboxed.Vector ())),
        testGroup "Data.Vector.Unboxed.Vector (Int)"    (testNumericUnboxedVector (undefined :: Data.Vector.Unboxed.Vector Int)),
        testGroup "Data.Vector.Unboxed.Vector (Double)" (testNumericUnboxedVector (undefined :: Data.Vector.Unboxed.Vector Double)),
       testGroup "Data.Vector.Unboxed.Vector (Int,Bool)" (testTupleUnboxedVector (undefined :: Data.Vector.Unboxed.Vector (Int,Bool))),
         testGroup "Data.Vector.Unboxed.Vector (Int,Bool,Int)" (testTupleUnboxedVector (undefined :: Data.Vector.Unboxed.Vector (Int,Bool,Int)))

    ]