1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
{-# LANGUAGE FlexibleInstances, GADTs #-}
module Utilities where
import Test.QuickCheck
import qualified Data.Vector as DV
import qualified Data.Vector.Generic as DVG
import qualified Data.Vector.Primitive as DVP
import qualified Data.Vector.Storable as DVS
import qualified Data.Vector.Unboxed as DVU
import qualified Data.Vector.Fusion.Stream as S
import Data.List ( sortBy )
instance Show a => Show (S.Stream a) where
show s = "Data.Vector.Fusion.Stream.fromList " ++ show (S.toList s)
instance Arbitrary a => Arbitrary (DV.Vector a) where
arbitrary = fmap DV.fromList arbitrary
instance CoArbitrary a => CoArbitrary (DV.Vector a) where
coarbitrary = coarbitrary . DV.toList
instance (Arbitrary a, DVP.Prim a) => Arbitrary (DVP.Vector a) where
arbitrary = fmap DVP.fromList arbitrary
instance (CoArbitrary a, DVP.Prim a) => CoArbitrary (DVP.Vector a) where
coarbitrary = coarbitrary . DVP.toList
instance (Arbitrary a, DVS.Storable a) => Arbitrary (DVS.Vector a) where
arbitrary = fmap DVS.fromList arbitrary
instance (CoArbitrary a, DVS.Storable a) => CoArbitrary (DVS.Vector a) where
coarbitrary = coarbitrary . DVS.toList
instance (Arbitrary a, DVU.Unbox a) => Arbitrary (DVU.Vector a) where
arbitrary = fmap DVU.fromList arbitrary
instance (CoArbitrary a, DVU.Unbox a) => CoArbitrary (DVU.Vector a) where
coarbitrary = coarbitrary . DVU.toList
instance Arbitrary a => Arbitrary (S.Stream a) where
arbitrary = fmap S.fromList arbitrary
instance CoArbitrary a => CoArbitrary (S.Stream a) where
coarbitrary = coarbitrary . S.toList
class (Testable (EqTest a), Conclusion (EqTest a)) => TestData a where
type Model a
model :: a -> Model a
unmodel :: Model a -> a
type EqTest a
equal :: a -> a -> EqTest a
instance Eq a => TestData (S.Stream a) where
type Model (S.Stream a) = [a]
model = S.toList
unmodel = S.fromList
type EqTest (S.Stream a) = Property
equal x y = property (x == y)
instance Eq a => TestData (DV.Vector a) where
type Model (DV.Vector a) = [a]
model = DV.toList
unmodel = DV.fromList
type EqTest (DV.Vector a) = Property
equal x y = property (x == y)
instance (Eq a, DVP.Prim a) => TestData (DVP.Vector a) where
type Model (DVP.Vector a) = [a]
model = DVP.toList
unmodel = DVP.fromList
type EqTest (DVP.Vector a) = Property
equal x y = property (x == y)
instance (Eq a, DVS.Storable a) => TestData (DVS.Vector a) where
type Model (DVS.Vector a) = [a]
model = DVS.toList
unmodel = DVS.fromList
type EqTest (DVS.Vector a) = Property
equal x y = property (x == y)
instance (Eq a, DVU.Unbox a) => TestData (DVU.Vector a) where
type Model (DVU.Vector a) = [a]
model = DVU.toList
unmodel = DVU.fromList
type EqTest (DVU.Vector a) = Property
equal x y = property (x == y)
#define id_TestData(ty) \
instance TestData ty where { \
type Model ty = ty; \
model = id; \
unmodel = id; \
\
type EqTest ty = Property; \
equal x y = property (x == y) }
id_TestData(())
id_TestData(Bool)
id_TestData(Int)
id_TestData(Float)
id_TestData(Double)
id_TestData(Ordering)
-- Functorish models
-- All of these need UndecidableInstances although they are actually well founded. Oh well.
instance (Eq a, TestData a) => TestData (Maybe a) where
type Model (Maybe a) = Maybe (Model a)
model = fmap model
unmodel = fmap unmodel
type EqTest (Maybe a) = Property
equal x y = property (x == y)
instance (Eq a, TestData a) => TestData [a] where
type Model [a] = [Model a]
model = fmap model
unmodel = fmap unmodel
type EqTest [a] = Property
equal x y = property (x == y)
instance (Eq a, Eq b, TestData a, TestData b) => TestData (a,b) where
type Model (a,b) = (Model a, Model b)
model (a,b) = (model a, model b)
unmodel (a,b) = (unmodel a, unmodel b)
type EqTest (a,b) = Property
equal x y = property (x == y)
instance (Eq a, Eq b, Eq c, TestData a, TestData b, TestData c) => TestData (a,b,c) where
type Model (a,b,c) = (Model a, Model b, Model c)
model (a,b,c) = (model a, model b, model c)
unmodel (a,b,c) = (unmodel a, unmodel b, unmodel c)
type EqTest (a,b,c) = Property
equal x y = property (x == y)
instance (Arbitrary a, Show a, TestData a, TestData b) => TestData (a -> b) where
type Model (a -> b) = Model a -> Model b
model f = model . f . unmodel
unmodel f = unmodel . f . model
type EqTest (a -> b) = a -> EqTest b
equal f g x = equal (f x) (g x)
newtype P a = P { unP :: EqTest a }
instance TestData a => Testable (P a) where
property (P a) = property a
infix 4 `eq`
eq :: TestData a => a -> Model a -> P a
eq x y = P (equal x (unmodel y))
class Conclusion p where
type Predicate p
predicate :: Predicate p -> p -> p
instance Conclusion Property where
type Predicate Property = Bool
predicate = (==>)
instance Conclusion p => Conclusion (a -> p) where
type Predicate (a -> p) = a -> Predicate p
predicate f p = \x -> predicate (f x) (p x)
infixr 0 ===>
(===>) :: TestData a => Predicate (EqTest a) -> P a -> P a
p ===> P a = P (predicate p a)
notNull2 _ xs = not $ DVG.null xs
notNullS2 _ s = not $ S.null s
-- Generators
index_value_pairs :: Arbitrary a => Int -> Gen [(Int,a)]
index_value_pairs 0 = return []
index_value_pairs m = sized $ \n ->
do
len <- choose (0,n)
is <- sequence [choose (0,m-1) | i <- [1..len]]
xs <- vector len
return $ zip is xs
indices :: Int -> Gen [Int]
indices 0 = return []
indices m = sized $ \n ->
do
len <- choose (0,n)
sequence [choose (0,m-1) | i <- [1..len]]
-- Additional list functions
singleton x = [x]
snoc xs x = xs ++ [x]
generate n f = [f i | i <- [0 .. n-1]]
slice i n xs = take n (drop i xs)
backpermute xs is = map (xs!!) is
prescanl f z = init . scanl f z
postscanl f z = tail . scanl f z
prescanr f z = tail . scanr f z
postscanr f z = init . scanr f z
accum :: (a -> b -> a) -> [a] -> [(Int,b)] -> [a]
accum f xs ps = go xs ps' 0
where
ps' = sortBy (\p q -> compare (fst p) (fst q)) ps
go (x:xs) ((i,y) : ps) j
| i == j = go (f x y : xs) ps j
go (x:xs) ps j = x : go xs ps (j+1)
go [] _ _ = []
(//) :: [a] -> [(Int, a)] -> [a]
xs // ps = go xs ps' 0
where
ps' = sortBy (\p q -> compare (fst p) (fst q)) ps
go (x:xs) ((i,y) : ps) j
| i == j = go (y:xs) ps j
go (x:xs) ps j = x : go xs ps (j+1)
go [] _ _ = []
imap :: (Int -> a -> a) -> [a] -> [a]
imap f = map (uncurry f) . zip [0..]
izipWith :: (Int -> a -> a -> a) -> [a] -> [a] -> [a]
izipWith f = zipWith (uncurry f) . zip [0..]
izipWith3 :: (Int -> a -> a -> a -> a) -> [a] -> [a] -> [a] -> [a]
izipWith3 f = zipWith3 (uncurry f) . zip [0..]
ifilter :: (Int -> a -> Bool) -> [a] -> [a]
ifilter f = map snd . filter (uncurry f) . zip [0..]
ifoldl :: (a -> Int -> a -> a) -> a -> [a] -> a
ifoldl f z = foldl (uncurry . f) z . zip [0..]
ifoldr :: (Int -> a -> b -> b) -> b -> [a] -> b
ifoldr f z = foldr (uncurry f) z . zip [0..]
minIndex :: Ord a => [a] -> Int
minIndex = fst . foldr1 imin . zip [0..]
where
imin (i,x) (j,y) | x <= y = (i,x)
| otherwise = (j,y)
maxIndex :: Ord a => [a] -> Int
maxIndex = fst . foldr1 imax . zip [0..]
where
imax (i,x) (j,y) | x >= y = (i,x)
| otherwise = (j,y)
|