1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
|
{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances, ScopedTypeVariables #-}
-- |
-- Module : Data.Vector.Storable.Mutable
-- Copyright : (c) Roman Leshchinskiy 2009-2010
-- License : BSD-style
--
-- Maintainer : Roman Leshchinskiy <rl@cse.unsw.edu.au>
-- Stability : experimental
-- Portability : non-portable
--
-- Mutable vectors based on Storable.
--
module Data.Vector.Storable.Mutable(
-- * Mutable vectors of 'Storable' types
MVector(..), IOVector, STVector, Storable,
-- * Accessors
-- ** Length information
length, null,
-- ** Extracting subvectors
slice, init, tail, take, drop, splitAt,
unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop,
-- ** Overlapping
overlaps,
-- * Construction
-- ** Initialisation
new, unsafeNew, replicate, replicateM, clone,
-- ** Growing
grow, unsafeGrow,
-- ** Restricting memory usage
clear,
-- * Accessing individual elements
read, write, swap,
unsafeRead, unsafeWrite, unsafeSwap,
-- * Modifying vectors
-- ** Filling and copying
set, copy, move, unsafeCopy, unsafeMove,
-- * Unsafe conversions
unsafeCast,
-- * Raw pointers
unsafeFromForeignPtr, unsafeFromForeignPtr0,
unsafeToForeignPtr, unsafeToForeignPtr0,
unsafeWith
) where
import qualified Data.Vector.Generic.Mutable as G
import Data.Vector.Storable.Internal
import Foreign.Storable
import Foreign.ForeignPtr
#if __GLASGOW_HASKELL__ >= 605
import GHC.ForeignPtr (mallocPlainForeignPtrBytes)
#endif
import Foreign.Ptr
import Foreign.Marshal.Array ( advancePtr, copyArray, moveArray )
import Foreign.C.Types ( CInt )
import Control.Monad.Primitive
import Prelude hiding ( length, null, replicate, reverse, map, read,
take, drop, splitAt, init, tail )
import Data.Typeable ( Typeable )
#include "vector.h"
-- | Mutable 'Storable'-based vectors
data MVector s a = MVector {-# UNPACK #-} !Int
{-# UNPACK #-} !(ForeignPtr a)
deriving ( Typeable )
type IOVector = MVector RealWorld
type STVector s = MVector s
instance Storable a => G.MVector MVector a where
{-# INLINE basicLength #-}
basicLength (MVector n _) = n
{-# INLINE basicUnsafeSlice #-}
basicUnsafeSlice j m (MVector n fp) = MVector m (updPtr (`advancePtr` j) fp)
-- FIXME: this relies on non-portable pointer comparisons
{-# INLINE basicOverlaps #-}
basicOverlaps (MVector m fp) (MVector n fq)
= between p q (q `advancePtr` n) || between q p (p `advancePtr` m)
where
between x y z = x >= y && x < z
p = getPtr fp
q = getPtr fq
{-# INLINE basicUnsafeNew #-}
basicUnsafeNew n
= unsafePrimToPrim
$ do
fp <- mallocVector n
return $ MVector n fp
{-# INLINE basicUnsafeRead #-}
basicUnsafeRead (MVector _ fp) i
= unsafePrimToPrim
$ withForeignPtr fp (`peekElemOff` i)
{-# INLINE basicUnsafeWrite #-}
basicUnsafeWrite (MVector _ fp) i x
= unsafePrimToPrim
$ withForeignPtr fp $ \p -> pokeElemOff p i x
{-# INLINE basicUnsafeCopy #-}
basicUnsafeCopy (MVector n fp) (MVector _ fq)
= unsafePrimToPrim
$ withForeignPtr fp $ \p ->
withForeignPtr fq $ \q ->
copyArray p q n
{-# INLINE basicUnsafeMove #-}
basicUnsafeMove (MVector n fp) (MVector _ fq)
= unsafePrimToPrim
$ withForeignPtr fp $ \p ->
withForeignPtr fq $ \q ->
moveArray p q n
{-# INLINE mallocVector #-}
mallocVector :: Storable a => Int -> IO (ForeignPtr a)
mallocVector =
#if __GLASGOW_HASKELL__ >= 605
doMalloc undefined
where
doMalloc :: Storable b => b -> Int -> IO (ForeignPtr b)
doMalloc dummy size = mallocPlainForeignPtrBytes (size * sizeOf dummy)
#else
mallocForeignPtrArray
#endif
-- Length information
-- ------------------
-- | Length of the mutable vector.
length :: Storable a => MVector s a -> Int
{-# INLINE length #-}
length = G.length
-- | Check whether the vector is empty
null :: Storable a => MVector s a -> Bool
{-# INLINE null #-}
null = G.null
-- Extracting subvectors
-- ---------------------
-- | Yield a part of the mutable vector without copying it.
slice :: Storable a => Int -> Int -> MVector s a -> MVector s a
{-# INLINE slice #-}
slice = G.slice
take :: Storable a => Int -> MVector s a -> MVector s a
{-# INLINE take #-}
take = G.take
drop :: Storable a => Int -> MVector s a -> MVector s a
{-# INLINE drop #-}
drop = G.drop
splitAt :: Storable a => Int -> MVector s a -> (MVector s a, MVector s a)
{-# INLINE splitAt #-}
splitAt = G.splitAt
init :: Storable a => MVector s a -> MVector s a
{-# INLINE init #-}
init = G.init
tail :: Storable a => MVector s a -> MVector s a
{-# INLINE tail #-}
tail = G.tail
-- | Yield a part of the mutable vector without copying it. No bounds checks
-- are performed.
unsafeSlice :: Storable a
=> Int -- ^ starting index
-> Int -- ^ length of the slice
-> MVector s a
-> MVector s a
{-# INLINE unsafeSlice #-}
unsafeSlice = G.unsafeSlice
unsafeTake :: Storable a => Int -> MVector s a -> MVector s a
{-# INLINE unsafeTake #-}
unsafeTake = G.unsafeTake
unsafeDrop :: Storable a => Int -> MVector s a -> MVector s a
{-# INLINE unsafeDrop #-}
unsafeDrop = G.unsafeDrop
unsafeInit :: Storable a => MVector s a -> MVector s a
{-# INLINE unsafeInit #-}
unsafeInit = G.unsafeInit
unsafeTail :: Storable a => MVector s a -> MVector s a
{-# INLINE unsafeTail #-}
unsafeTail = G.unsafeTail
-- Overlapping
-- -----------
-- Check whether two vectors overlap.
overlaps :: Storable a => MVector s a -> MVector s a -> Bool
{-# INLINE overlaps #-}
overlaps = G.overlaps
-- Initialisation
-- --------------
-- | Create a mutable vector of the given length.
new :: (PrimMonad m, Storable a) => Int -> m (MVector (PrimState m) a)
{-# INLINE new #-}
new = G.new
-- | Create a mutable vector of the given length. The length is not checked.
unsafeNew :: (PrimMonad m, Storable a) => Int -> m (MVector (PrimState m) a)
{-# INLINE unsafeNew #-}
unsafeNew = G.unsafeNew
-- | Create a mutable vector of the given length (0 if the length is negative)
-- and fill it with an initial value.
replicate :: (PrimMonad m, Storable a) => Int -> a -> m (MVector (PrimState m) a)
{-# INLINE replicate #-}
replicate = G.replicate
-- | Create a mutable vector of the given length (0 if the length is negative)
-- and fill it with values produced by repeatedly executing the monadic action.
replicateM :: (PrimMonad m, Storable a) => Int -> m a -> m (MVector (PrimState m) a)
{-# INLINE replicateM #-}
replicateM = G.replicateM
-- | Create a copy of a mutable vector.
clone :: (PrimMonad m, Storable a)
=> MVector (PrimState m) a -> m (MVector (PrimState m) a)
{-# INLINE clone #-}
clone = G.clone
-- Growing
-- -------
-- | Grow a vector by the given number of elements. The number must be
-- positive.
grow :: (PrimMonad m, Storable a)
=> MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
{-# INLINE grow #-}
grow = G.grow
-- | Grow a vector by the given number of elements. The number must be
-- positive but this is not checked.
unsafeGrow :: (PrimMonad m, Storable a)
=> MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
{-# INLINE unsafeGrow #-}
unsafeGrow = G.unsafeGrow
-- Restricting memory usage
-- ------------------------
-- | Reset all elements of the vector to some undefined value, clearing all
-- references to external objects. This is usually a noop for unboxed vectors.
clear :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> m ()
{-# INLINE clear #-}
clear = G.clear
-- Accessing individual elements
-- -----------------------------
-- | Yield the element at the given position.
read :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> m a
{-# INLINE read #-}
read = G.read
-- | Replace the element at the given position.
write
:: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> a -> m ()
{-# INLINE write #-}
write = G.write
-- | Swap the elements at the given positions.
swap
:: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> Int -> m ()
{-# INLINE swap #-}
swap = G.swap
-- | Yield the element at the given position. No bounds checks are performed.
unsafeRead :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> m a
{-# INLINE unsafeRead #-}
unsafeRead = G.unsafeRead
-- | Replace the element at the given position. No bounds checks are performed.
unsafeWrite
:: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> a -> m ()
{-# INLINE unsafeWrite #-}
unsafeWrite = G.unsafeWrite
-- | Swap the elements at the given positions. No bounds checks are performed.
unsafeSwap
:: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> Int -> m ()
{-# INLINE unsafeSwap #-}
unsafeSwap = G.unsafeSwap
-- Filling and copying
-- -------------------
-- | Set all elements of the vector to the given value.
set :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> a -> m ()
{-# INLINE set #-}
set = G.set
-- | Copy a vector. The two vectors must have the same length and may not
-- overlap.
copy :: (PrimMonad m, Storable a)
=> MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
{-# INLINE copy #-}
copy = G.copy
-- | Copy a vector. The two vectors must have the same length and may not
-- overlap. This is not checked.
unsafeCopy :: (PrimMonad m, Storable a)
=> MVector (PrimState m) a -- ^ target
-> MVector (PrimState m) a -- ^ source
-> m ()
{-# INLINE unsafeCopy #-}
unsafeCopy = G.unsafeCopy
-- | Move the contents of a vector. The two vectors must have the same
-- length.
--
-- If the vectors do not overlap, then this is equivalent to 'copy'.
-- Otherwise, the copying is performed as if the source vector were
-- copied to a temporary vector and then the temporary vector was copied
-- to the target vector.
move :: (PrimMonad m, Storable a)
=> MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
{-# INLINE move #-}
move = G.move
-- | Move the contents of a vector. The two vectors must have the same
-- length, but this is not checked.
--
-- If the vectors do not overlap, then this is equivalent to 'unsafeCopy'.
-- Otherwise, the copying is performed as if the source vector were
-- copied to a temporary vector and then the temporary vector was copied
-- to the target vector.
unsafeMove :: (PrimMonad m, Storable a)
=> MVector (PrimState m) a -- ^ target
-> MVector (PrimState m) a -- ^ source
-> m ()
{-# INLINE unsafeMove #-}
unsafeMove = G.unsafeMove
-- Unsafe conversions
-- ------------------
-- | /O(1)/ Unsafely cast a mutable vector from one element type to another.
-- The operation just changes the type of the underlying pointer and does not
-- modify the elements.
--
-- The resulting vector contains as many elements as can fit into the
-- underlying memory block.
--
unsafeCast :: forall a b s.
(Storable a, Storable b) => MVector s a -> MVector s b
{-# INLINE unsafeCast #-}
unsafeCast (MVector n fp)
= MVector ((n * sizeOf (undefined :: a)) `div` sizeOf (undefined :: b))
(castForeignPtr fp)
-- Raw pointers
-- ------------
-- | Create a mutable vector from a 'ForeignPtr' with an offset and a length.
--
-- Modifying data through the 'ForeignPtr' afterwards is unsafe if the vector
-- could have been frozen before the modification.
--
-- If your offset is 0 it is more efficient to use 'unsafeFromForeignPtr0'.
unsafeFromForeignPtr :: Storable a
=> ForeignPtr a -- ^ pointer
-> Int -- ^ offset
-> Int -- ^ length
-> MVector s a
{-# INLINE unsafeFromForeignPtr #-}
unsafeFromForeignPtr fp i n = unsafeFromForeignPtr0 fp' n
where
fp' = updPtr (`advancePtr` i) fp
{-# RULES
"unsafeFromForeignPtr fp 0 n -> unsafeFromForeignPtr0 fp n " forall fp n.
unsafeFromForeignPtr fp 0 n = unsafeFromForeignPtr0 fp n
#-}
-- | /O(1)/ Create a mutable vector from a 'ForeignPtr' and a length.
--
-- It is assumed the pointer points directly to the data (no offset).
-- Use `unsafeFromForeignPtr` if you need to specify an offset.
--
-- Modifying data through the 'ForeignPtr' afterwards is unsafe if the vector
-- could have been frozen before the modification.
unsafeFromForeignPtr0 :: Storable a
=> ForeignPtr a -- ^ pointer
-> Int -- ^ length
-> MVector s a
{-# INLINE unsafeFromForeignPtr0 #-}
unsafeFromForeignPtr0 fp n = MVector n fp
-- | Yield the underlying 'ForeignPtr' together with the offset to the data
-- and its length. Modifying the data through the 'ForeignPtr' is
-- unsafe if the vector could have frozen before the modification.
unsafeToForeignPtr :: Storable a => MVector s a -> (ForeignPtr a, Int, Int)
{-# INLINE unsafeToForeignPtr #-}
unsafeToForeignPtr (MVector n fp) = (fp, 0, n)
-- | /O(1)/ Yield the underlying 'ForeignPtr' together with its length.
--
-- You can assume the pointer points directly to the data (no offset).
--
-- Modifying the data through the 'ForeignPtr' is unsafe if the vector could
-- have frozen before the modification.
unsafeToForeignPtr0 :: Storable a => MVector s a -> (ForeignPtr a, Int)
{-# INLINE unsafeToForeignPtr0 #-}
unsafeToForeignPtr0 (MVector n fp) = (fp, n)
-- | Pass a pointer to the vector's data to the IO action. Modifying data
-- through the pointer is unsafe if the vector could have been frozen before
-- the modification.
unsafeWith :: Storable a => IOVector a -> (Ptr a -> IO b) -> IO b
{-# INLINE unsafeWith #-}
unsafeWith (MVector n fp) = withForeignPtr fp
|