File: MultiMap.hs

package info (click to toggle)
haskell-warp 3.0.0.5-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 300 kB
  • ctags: 2
  • sloc: haskell: 2,890; makefile: 8
file content (236 lines) | stat: -rw-r--r-- 6,729 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
module Network.Wai.Handler.Warp.MultiMap (
    MMap
  , Some(..)
  , empty
  , singleton
  , insert
  , search
  , searchWith
  , isEmpty
  , valid
  , pruneWith
  , fromList
  , toList
  , fromSortedList
  , toSortedList
  , merge
  ) where

import Control.Applicative ((<$>))
import Data.List (foldl')

----------------------------------------------------------------

-- | One ore more list to implement multimap.
data Some a = One !a
            | Tom !a !(Some a) -- Two or more
            deriving (Eq,Show)

-- This is slow but assuming rarely used.
snoc :: Some a -> a -> Some a
snoc (One x) y    = Tom x (One y)
snoc (Tom x xs) y = Tom x (snoc xs y)

top :: Some a -> a
top (One x)   = x
top (Tom x _) = x

----------------------------------------------------------------

-- | Red black tree as multimap.
data MMap k v = Leaf -- color is Black
              | Node Color !(MMap k v) !k !(Some v) !(MMap k v)
              deriving (Show)

data Color = B -- ^ Black
           | R -- ^ Red
           deriving (Eq, Show)

----------------------------------------------------------------

instance (Eq k, Eq v) => Eq (MMap k v) where
    t1 == t2 = toSortedList t1 == toSortedList t2

----------------------------------------------------------------

-- | O(log N)
search :: Ord k => k -> MMap k v -> Maybe v
search _ Leaf = Nothing
search xk (Node _ l k v r) = case compare xk k of
    LT -> search xk l
    GT -> search xk r
    EQ -> Just $ top v

-- | O(log N)
searchWith :: Ord k => k -> (Some v -> Maybe v) -> MMap k v -> Maybe v
searchWith _ _ Leaf = Nothing
searchWith xk f (Node _ l k v r) = case compare xk k of
    LT -> searchWith xk f l
    GT -> searchWith xk f r
    EQ -> f v

----------------------------------------------------------------

-- | O(1)
isEmpty :: (Eq k, Eq v) => MMap k v -> Bool
isEmpty Leaf = True
isEmpty _    = False

-- | O(1)
empty :: MMap k v
empty = Leaf

----------------------------------------------------------------

-- | O(1)
singleton :: Ord k => k -> v -> MMap k v
singleton k v = Node B Leaf k (One v) Leaf

----------------------------------------------------------------

-- | O(log N)
insert :: Ord k => k -> v -> MMap k v -> MMap k v
insert kx kv t = turnB (insert' kx kv t)

insert' :: Ord k => k -> v -> MMap k v -> MMap k v
insert' xk xv Leaf = Node R Leaf xk (One xv) Leaf
insert' xk xv (Node B l k v r) = case compare xk k of
    LT -> balanceL' (insert' xk xv l) k v r
    GT -> balanceR' l k v (insert' xk xv r)
    EQ -> Node B l k (snoc v xv) r
insert' xk xv (Node R l k v r) = case compare xk k of
    LT -> Node R (insert' xk xv l) k v r
    GT -> Node R l k v (insert' xk xv r)
    EQ -> Node R l k (snoc v xv) r

balanceL' :: MMap k v -> k -> Some v -> MMap k v -> MMap k v
balanceL' (Node R (Node R a xk xv b) yk yv c) zk zv d =
    Node R (Node B a xk xv b) yk yv (Node B c zk zv d)
balanceL' (Node R a xk xv (Node R b yk yv c)) zk zv d =
    Node R (Node B a xk xv b) yk yv (Node B c zk zv d)
balanceL' l k v r = Node B l k v r

balanceR' :: MMap k v -> k -> Some v -> MMap k v -> MMap k v
balanceR' a xk xv (Node R b yk yv (Node R c zk zv d)) =
    Node R (Node B a xk xv b) yk yv (Node B c zk zv d)
balanceR' a xk xv (Node R (Node R b yk yv c) zk zv d) =
    Node R (Node B a xk xv b) yk yv (Node B c zk zv d)
balanceR' l xk xv r = Node B l xk xv r

turnB :: MMap k v -> MMap k v
turnB Leaf             = error "turnB"
turnB (Node _ l k v r) = Node B l k v r

----------------------------------------------------------------

-- | O(N log N)
fromList :: Ord k => [(k,v)] -> MMap k v
fromList = foldl' (\t (k,v) -> insert k v t) empty

-- | O(N)
toList :: MMap k v -> [(k,v)]
toList t = inorder t []
  where
    inorder Leaf xs = xs
    inorder (Node _ l k v r) xs = inorder l (pairs k v ++ inorder r xs)
    pairs k (One v) = [(k,v)]
    pairs k (Tom v vs) = (k,v) : pairs k vs

----------------------------------------------------------------

-- | O(N)
-- "Constructing Red-Black Trees" by Ralf Hinze
fromSortedList :: Ord k => [(k,Some v)] -> MMap k v
fromSortedList = linkAll . foldr add []

data Digit k v = Uno k (Some v) (MMap k v)
               | Due k (Some v) (MMap k v) k (Some v) (MMap k v)
               deriving (Eq,Show)

incr :: Digit k v -> [Digit k v] -> [Digit k v]
incr (Uno k v t) [] = [Uno k v t]
incr (Uno k1 v1 t1) (Uno k2 v2 t2 : ps) = Due k1 v1 t1 k2 v2 t2 : ps
incr (Uno k1 v1 t1) (Due k2 v2 t2 k3 v3 t3 : ps) = Uno k1 v1 t1 : incr (Uno k2 v2 (Node B t2 k3 v3 t3)) ps
incr _ _ = error "incr"

add :: (k,Some v) -> [Digit k v] -> [Digit k v]
add (k,v) ps = incr (Uno k v Leaf) ps

linkAll :: [Digit k v] -> MMap k v
linkAll = foldl' link Leaf

link :: MMap k v -> Digit k v -> MMap k v
link l (Uno k v t) = Node B l k v t
--link l (Due k1 v1 t1 k2 v2 t2) = Node B (Node R l k1 v1 t1) k2 v2 t2
link l (Due k1 v1 t1 k2 v2 t2) = Node B l k1 v1 (Node R t1 k2 v2 t2)

----------------------------------------------------------------

-- | O(N)
toSortedList :: MMap k v -> [(k,Some v)]
toSortedList t = inorder t []
  where
    inorder Leaf xs = xs
    inorder (Node _ l k v r) xs = inorder l ((k,v) : inorder r xs)

----------------------------------------------------------------

-- | O(N)
pruneWith :: Ord k =>
             MMap k v
          -> (k -> Some v -> IO [(k, Some v)])
          -> IO (MMap k v)
pruneWith t run = fromSortedList <$> inorder t []
  where
    inorder Leaf xs = return xs
    inorder (Node _ l k v r) xs = do
        ys <- run k v
        zs <- inorder r xs
        inorder l (ys ++ zs)

----------------------------------------------------------------

-- O(N log N) where N is the size of the second argument
merge :: Ord k => MMap k v -> MMap k v -> MMap k v
merge base m = foldl' ins base xs
  where
    ins t (k,v) = insert k v t
    xs = toList m

----------------------------------------------------------------
-- for testing

valid :: Ord k => MMap k v -> Bool
valid t = isBalanced t && isOrdered t

isBalanced :: MMap k v -> Bool
isBalanced t = isBlackSame t && isRedSeparate t

isBlackSame :: MMap k v -> Bool
isBlackSame t = all (n==) ns
  where
    n:ns = blacks t

blacks :: MMap k v -> [Int]
blacks = blacks' 0
  where
    blacks' n Leaf = [n+1]
    blacks' n (Node R l _ _ r) = blacks' n  l ++ blacks' n  r
    blacks' n (Node B l _ _ r) = blacks' n' l ++ blacks' n' r
      where
        n' = n + 1

isRedSeparate :: MMap k v -> Bool
isRedSeparate = reds B

reds :: Color -> MMap k v -> Bool
reds _ Leaf = True
reds R (Node R _ _ _ _) = False
reds _ (Node c l _ _ r) = reds c l && reds c r

isOrdered :: Ord k => MMap k v -> Bool
isOrdered t = ordered $ toSortedList t
  where
    ordered [] = True
    ordered [_] = True
    ordered (x:y:xys) = fst x <= fst y && ordered (y:xys)