1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
module Network.Wai.Handler.Warp.MultiMap (
MMap
, Some(..)
, empty
, singleton
, insert
, search
, searchWith
, isEmpty
, valid
, pruneWith
, fromList
, toList
, fromSortedList
, toSortedList
, merge
) where
import Control.Applicative ((<$>))
import Data.List (foldl')
----------------------------------------------------------------
-- | One ore more list to implement multimap.
data Some a = One !a
| Tom !a !(Some a) -- Two or more
deriving (Eq,Show)
-- This is slow but assuming rarely used.
snoc :: Some a -> a -> Some a
snoc (One x) y = Tom x (One y)
snoc (Tom x xs) y = Tom x (snoc xs y)
top :: Some a -> a
top (One x) = x
top (Tom x _) = x
----------------------------------------------------------------
-- | Red black tree as multimap.
data MMap k v = Leaf -- color is Black
| Node Color !(MMap k v) !k !(Some v) !(MMap k v)
deriving (Show)
data Color = B -- ^ Black
| R -- ^ Red
deriving (Eq, Show)
----------------------------------------------------------------
instance (Eq k, Eq v) => Eq (MMap k v) where
t1 == t2 = toSortedList t1 == toSortedList t2
----------------------------------------------------------------
-- | O(log N)
search :: Ord k => k -> MMap k v -> Maybe v
search _ Leaf = Nothing
search xk (Node _ l k v r) = case compare xk k of
LT -> search xk l
GT -> search xk r
EQ -> Just $ top v
-- | O(log N)
searchWith :: Ord k => k -> (Some v -> Maybe v) -> MMap k v -> Maybe v
searchWith _ _ Leaf = Nothing
searchWith xk f (Node _ l k v r) = case compare xk k of
LT -> searchWith xk f l
GT -> searchWith xk f r
EQ -> f v
----------------------------------------------------------------
-- | O(1)
isEmpty :: (Eq k, Eq v) => MMap k v -> Bool
isEmpty Leaf = True
isEmpty _ = False
-- | O(1)
empty :: MMap k v
empty = Leaf
----------------------------------------------------------------
-- | O(1)
singleton :: Ord k => k -> v -> MMap k v
singleton k v = Node B Leaf k (One v) Leaf
----------------------------------------------------------------
-- | O(log N)
insert :: Ord k => k -> v -> MMap k v -> MMap k v
insert kx kv t = turnB (insert' kx kv t)
insert' :: Ord k => k -> v -> MMap k v -> MMap k v
insert' xk xv Leaf = Node R Leaf xk (One xv) Leaf
insert' xk xv (Node B l k v r) = case compare xk k of
LT -> balanceL' (insert' xk xv l) k v r
GT -> balanceR' l k v (insert' xk xv r)
EQ -> Node B l k (snoc v xv) r
insert' xk xv (Node R l k v r) = case compare xk k of
LT -> Node R (insert' xk xv l) k v r
GT -> Node R l k v (insert' xk xv r)
EQ -> Node R l k (snoc v xv) r
balanceL' :: MMap k v -> k -> Some v -> MMap k v -> MMap k v
balanceL' (Node R (Node R a xk xv b) yk yv c) zk zv d =
Node R (Node B a xk xv b) yk yv (Node B c zk zv d)
balanceL' (Node R a xk xv (Node R b yk yv c)) zk zv d =
Node R (Node B a xk xv b) yk yv (Node B c zk zv d)
balanceL' l k v r = Node B l k v r
balanceR' :: MMap k v -> k -> Some v -> MMap k v -> MMap k v
balanceR' a xk xv (Node R b yk yv (Node R c zk zv d)) =
Node R (Node B a xk xv b) yk yv (Node B c zk zv d)
balanceR' a xk xv (Node R (Node R b yk yv c) zk zv d) =
Node R (Node B a xk xv b) yk yv (Node B c zk zv d)
balanceR' l xk xv r = Node B l xk xv r
turnB :: MMap k v -> MMap k v
turnB Leaf = error "turnB"
turnB (Node _ l k v r) = Node B l k v r
----------------------------------------------------------------
-- | O(N log N)
fromList :: Ord k => [(k,v)] -> MMap k v
fromList = foldl' (\t (k,v) -> insert k v t) empty
-- | O(N)
toList :: MMap k v -> [(k,v)]
toList t = inorder t []
where
inorder Leaf xs = xs
inorder (Node _ l k v r) xs = inorder l (pairs k v ++ inorder r xs)
pairs k (One v) = [(k,v)]
pairs k (Tom v vs) = (k,v) : pairs k vs
----------------------------------------------------------------
-- | O(N)
-- "Constructing Red-Black Trees" by Ralf Hinze
fromSortedList :: Ord k => [(k,Some v)] -> MMap k v
fromSortedList = linkAll . foldr add []
data Digit k v = Uno k (Some v) (MMap k v)
| Due k (Some v) (MMap k v) k (Some v) (MMap k v)
deriving (Eq,Show)
incr :: Digit k v -> [Digit k v] -> [Digit k v]
incr (Uno k v t) [] = [Uno k v t]
incr (Uno k1 v1 t1) (Uno k2 v2 t2 : ps) = Due k1 v1 t1 k2 v2 t2 : ps
incr (Uno k1 v1 t1) (Due k2 v2 t2 k3 v3 t3 : ps) = Uno k1 v1 t1 : incr (Uno k2 v2 (Node B t2 k3 v3 t3)) ps
incr _ _ = error "incr"
add :: (k,Some v) -> [Digit k v] -> [Digit k v]
add (k,v) ps = incr (Uno k v Leaf) ps
linkAll :: [Digit k v] -> MMap k v
linkAll = foldl' link Leaf
link :: MMap k v -> Digit k v -> MMap k v
link l (Uno k v t) = Node B l k v t
--link l (Due k1 v1 t1 k2 v2 t2) = Node B (Node R l k1 v1 t1) k2 v2 t2
link l (Due k1 v1 t1 k2 v2 t2) = Node B l k1 v1 (Node R t1 k2 v2 t2)
----------------------------------------------------------------
-- | O(N)
toSortedList :: MMap k v -> [(k,Some v)]
toSortedList t = inorder t []
where
inorder Leaf xs = xs
inorder (Node _ l k v r) xs = inorder l ((k,v) : inorder r xs)
----------------------------------------------------------------
-- | O(N)
pruneWith :: Ord k =>
MMap k v
-> (k -> Some v -> IO [(k, Some v)])
-> IO (MMap k v)
pruneWith t run = fromSortedList <$> inorder t []
where
inorder Leaf xs = return xs
inorder (Node _ l k v r) xs = do
ys <- run k v
zs <- inorder r xs
inorder l (ys ++ zs)
----------------------------------------------------------------
-- O(N log N) where N is the size of the second argument
merge :: Ord k => MMap k v -> MMap k v -> MMap k v
merge base m = foldl' ins base xs
where
ins t (k,v) = insert k v t
xs = toList m
----------------------------------------------------------------
-- for testing
valid :: Ord k => MMap k v -> Bool
valid t = isBalanced t && isOrdered t
isBalanced :: MMap k v -> Bool
isBalanced t = isBlackSame t && isRedSeparate t
isBlackSame :: MMap k v -> Bool
isBlackSame t = all (n==) ns
where
n:ns = blacks t
blacks :: MMap k v -> [Int]
blacks = blacks' 0
where
blacks' n Leaf = [n+1]
blacks' n (Node R l _ _ r) = blacks' n l ++ blacks' n r
blacks' n (Node B l _ _ r) = blacks' n' l ++ blacks' n' r
where
n' = n + 1
isRedSeparate :: MMap k v -> Bool
isRedSeparate = reds B
reds :: Color -> MMap k v -> Bool
reds _ Leaf = True
reds R (Node R _ _ _ _) = False
reds _ (Node c l _ _ r) = reds c l && reds c r
isOrdered :: Ord k => MMap k v -> Bool
isOrdered t = ordered $ toSortedList t
where
ordered [] = True
ordered [_] = True
ordered (x:y:xys) = fst x <= fst y && ordered (y:xys)
|