File: Parser.hs

package info (click to toggle)
haskell-weighted-regexp 0.3.1.1-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 220 kB
  • sloc: haskell: 1,016; yacc: 113; makefile: 2
file content (553 lines) | stat: -rw-r--r-- 17,465 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
{-# OPTIONS_GHC -fno-warn-overlapping-patterns #-}
{-# OPTIONS -fglasgow-exts -cpp #-}
{-# LANGUAGE NoMonomorphismRestriction  #-}
{-# OPTIONS -fno-warn-incomplete-patterns -fno-warn-missing-signatures #-}

module Text.RegExp.Parser ( parse ) where

import Text.RegExp.Data
  ( eps, char, psym, anySym, alt, seq_, rep, rep1, opt, brep )

import Data.Char ( isSpace, toLower, isAlphaNum, isDigit )
import qualified Data.Array as Happy_Data_Array
import qualified GHC.Exts as Happy_GHC_Exts

-- parser produced by Happy Version 1.18.5

newtype HappyAbsSyn t4 = HappyAbsSyn HappyAny
#if __GLASGOW_HASKELL__ >= 607
type HappyAny = Happy_GHC_Exts.Any
#else
type HappyAny = forall a . a
#endif
happyIn4 :: t4 -> (HappyAbsSyn t4)
happyIn4 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn4 #-}
happyOut4 :: (HappyAbsSyn t4) -> t4
happyOut4 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut4 #-}
happyInTok :: (Token) -> (HappyAbsSyn t4)
happyInTok x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyInTok #-}
happyOutTok :: (HappyAbsSyn t4) -> (Token)
happyOutTok x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOutTok #-}


happyActOffsets :: HappyAddr
happyActOffsets = HappyA# "\x04\x00\x00\x00\xff\xff\x00\x00\x04\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x04\x00\x04\x00\x00\x00\x00\x00\x00\x00\x16\x00\x19\x00\x00\x00\x00\x00"#

happyGotoOffsets :: HappyAddr
happyGotoOffsets = HappyA# "\x13\x00\x00\x00\x00\x00\x00\x00\x0d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

happyDefActions :: HappyAddr
happyDefActions = HappyA# "\xfe\xff\x00\x00\x00\x00\xfd\xff\xfe\xff\xf5\xff\xf4\xff\x00\x00\xfc\xff\xfe\xff\xfe\xff\xf8\xff\xf7\xff\xf6\xff\xfa\xff\xfb\xff\xf9\xff"#

happyCheck :: HappyAddr
happyCheck = HappyA# "\xff\xff\x02\x00\x03\x00\x04\x00\xff\xff\x01\x00\x07\x00\x08\x00\x09\x00\x05\x00\x00\x00\x0c\x00\x00\x00\x00\x00\x0a\x00\x0b\x00\x02\x00\x03\x00\x04\x00\x00\x00\x06\x00\x07\x00\x08\x00\x09\x00\x02\x00\x03\x00\x04\x00\x02\x00\x03\x00\x07\x00\x08\x00\x09\x00\x07\x00\x08\x00\x09\x00\xff\xff\xff\xff\xff\xff"#

happyTable :: HappyAddr
happyTable = HappyA# "\x00\x00\x09\x00\x0a\x00\x0b\x00\x00\x00\x04\x00\x0c\x00\x0d\x00\x0e\x00\x05\x00\x0e\x00\xff\xff\x0f\x00\x07\x00\x06\x00\x07\x00\x09\x00\x0a\x00\x0b\x00\x02\x00\x11\x00\x0c\x00\x0d\x00\x0e\x00\x09\x00\x0a\x00\x0b\x00\x09\x00\x0a\x00\x0c\x00\x0d\x00\x0e\x00\x0c\x00\x0d\x00\x0e\x00\x00\x00\x00\x00\x00\x00"#

happyReduceArr = Happy_Data_Array.array (1, 11) [
	(1 , happyReduce_1),
	(2 , happyReduce_2),
	(3 , happyReduce_3),
	(4 , happyReduce_4),
	(5 , happyReduce_5),
	(6 , happyReduce_6),
	(7 , happyReduce_7),
	(8 , happyReduce_8),
	(9 , happyReduce_9),
	(10 , happyReduce_10),
	(11 , happyReduce_11)
	]

happy_n_terms = 13 :: Int
happy_n_nonterms = 1 :: Int

happyReduce_1 = happySpecReduce_0  0# happyReduction_1
happyReduction_1  =  happyIn4
		 (eps
	)

happyReduce_2 = happySpecReduce_1  0# happyReduction_2
happyReduction_2 happy_x_1
	 =  case happyOutTok happy_x_1 of { (Sym happy_var_1) -> 
	happyIn4
		 (char happy_var_1
	)}

happyReduce_3 = happySpecReduce_2  0# happyReduction_3
happyReduction_3 happy_x_2
	happy_x_1
	 =  case happyOut4 happy_x_1 of { happy_var_1 -> 
	happyIn4
		 (rep happy_var_1
	)}

happyReduce_4 = happySpecReduce_3  0# happyReduction_4
happyReduction_4 happy_x_3
	happy_x_2
	happy_x_1
	 =  case happyOut4 happy_x_1 of { happy_var_1 -> 
	case happyOut4 happy_x_3 of { happy_var_3 -> 
	happyIn4
		 (seq_ happy_var_1 happy_var_3
	)}}

happyReduce_5 = happySpecReduce_3  0# happyReduction_5
happyReduction_5 happy_x_3
	happy_x_2
	happy_x_1
	 =  case happyOut4 happy_x_1 of { happy_var_1 -> 
	case happyOut4 happy_x_3 of { happy_var_3 -> 
	happyIn4
		 (alt happy_var_1 happy_var_3
	)}}

happyReduce_6 = happySpecReduce_3  0# happyReduction_6
happyReduction_6 happy_x_3
	happy_x_2
	happy_x_1
	 =  case happyOut4 happy_x_2 of { happy_var_2 -> 
	happyIn4
		 (happy_var_2
	)}

happyReduce_7 = happySpecReduce_2  0# happyReduction_7
happyReduction_7 happy_x_2
	happy_x_1
	 =  case happyOut4 happy_x_1 of { happy_var_1 -> 
	happyIn4
		 (rep1 happy_var_1
	)}

happyReduce_8 = happySpecReduce_2  0# happyReduction_8
happyReduction_8 happy_x_2
	happy_x_1
	 =  case happyOut4 happy_x_1 of { happy_var_1 -> 
	happyIn4
		 (opt happy_var_1
	)}

happyReduce_9 = happySpecReduce_2  0# happyReduction_9
happyReduction_9 happy_x_2
	happy_x_1
	 =  case happyOut4 happy_x_1 of { happy_var_1 -> 
	case happyOutTok happy_x_2 of { (Bnd happy_var_2) -> 
	happyIn4
		 (brep happy_var_2 happy_var_1
	)}}

happyReduce_10 = happySpecReduce_1  0# happyReduction_10
happyReduction_10 happy_x_1
	 =  case happyOutTok happy_x_1 of { (Cls happy_var_1) -> 
	happyIn4
		 (uncurry psym happy_var_1
	)}

happyReduce_11 = happySpecReduce_1  0# happyReduction_11
happyReduction_11 happy_x_1
	 =  happyIn4
		 (anySym
	)

happyNewToken action sts stk [] =
	happyDoAction 12# notHappyAtAll action sts stk []

happyNewToken action sts stk (tk:tks) =
	let cont i = happyDoAction i tk action sts stk tks in
	case tk of {
	Sym happy_dollar_dollar -> cont 1#;
	Ast -> cont 2#;
	Seq -> cont 3#;
	Bar -> cont 4#;
	L -> cont 5#;
	R -> cont 6#;
	Pls -> cont 7#;
	Que -> cont 8#;
	Bnd happy_dollar_dollar -> cont 9#;
	Cls happy_dollar_dollar -> cont 10#;
	Dot -> cont 11#;
	_ -> happyError' (tk:tks)
	}

happyError_ tk tks = happyError' (tk:tks)

newtype HappyIdentity a = HappyIdentity a
happyIdentity = HappyIdentity
happyRunIdentity (HappyIdentity a) = a

instance Monad HappyIdentity where
    return = HappyIdentity
    (HappyIdentity p) >>= q = q p

happyThen :: () => HappyIdentity a -> (a -> HappyIdentity b) -> HappyIdentity b
happyThen = (>>=)
happyReturn :: () => a -> HappyIdentity a
happyReturn = (return)
happyThen1 m k tks = (>>=) m (\a -> k a tks)
happyReturn1 :: () => a -> b -> HappyIdentity a
happyReturn1 = \a tks -> (return) a
happyError' :: () => [(Token)] -> HappyIdentity a
happyError' = HappyIdentity . parseError

parseTokens tks = happyRunIdentity happySomeParser where
  happySomeParser = happyThen (happyParse 0# tks) (\x -> happyReturn (happyOut4 x))

happySeq = happyDontSeq


parse = parseTokens . scan

data Token = Seq | Sym Char | Ast | Bar | L | R
           | Pls | Que | Bnd (Int,Int)
           | Cls (String,Char -> Bool) | Dot


token :: Char -> Token
token '*'  = Ast
token '|'  = Bar
token '('  = L
token ')'  = R
token '?'  = Que
token '+'  = Pls
token '.'  = Dot
token c    = Sym c

scan :: String -> [Token]
scan = insertSeqs . process

insertSeqs :: [Token] -> [Token]
insertSeqs []           = []
insertSeqs [t]          = [t]
insertSeqs (a:ts@(b:_))
  | lseq a && rseq b    = a : Seq : insertSeqs ts
  | otherwise           = a : insertSeqs ts

lseq :: Token -> Bool
lseq Bar = False
lseq L   = False
lseq _   = True

rseq :: Token -> Bool
rseq (Sym _) = True
rseq L       = True
rseq (Cls _) = True
rseq Dot     = True
rseq _       = False

process :: String -> [Token]
process []            = []

process ('\\':c:cs)   = Cls (['\\',c],symClassPred c) : process cs

process ('{':cs)      = case reads cs of
                          (n,'}':s1) : _ -> Bnd (n,n) : process s1
                          (n,',':s1) : _ ->
                              case reads s1 of
                                (m,'}':s2) : _ -> Bnd (n,m) : process s2
                                _              -> token '{' : process cs
                          _              -> token '{' : process cs

process ('[':'^':cs)  = Cls (('[':'^':s),not.p) : process xs
 where (s,p,xs) = processCls cs

process ('['    :cs)  = Cls ('[':s,p) : process xs
 where (s,p,xs) = processCls cs

process (c:cs)        = token c : process cs

processCls :: String -> (String, Char -> Bool, String)

processCls []           = parseError []

processCls (']':cs)     = ("]", const False, cs)

processCls ('\\':c:cs)
  | isSymClassChar c    = ('\\':c:s, \x -> symClassPred c x || p x, xs)
 where (s,p,xs) = processCls cs

processCls ('\\':c:cs)  = ('\\':c:s, \x -> x==c || p x, xs)
 where (s,p,xs) = processCls cs

processCls (c:'-':e:cs) | e /= ']'
                        = (c:'-':e:s, \d -> (c<=d && d<=e) || p d, xs)
 where (s,p,xs) = processCls cs

processCls (c:cs)       = (c:s, \b -> b==c || p b, xs)
 where (s,p,xs) = processCls cs

isSymClassChar :: Char -> Bool
isSymClassChar = (`elem`"wWdDsS")

symClassPred :: Char -> Char -> Bool
symClassPred 'w' = isWordChar
symClassPred 'd' = isDigit
symClassPred 's' = isSpace
symClassPred 'W' = not . isWordChar
symClassPred 'D' = not . isDigit
symClassPred 'S' = not . isSpace
symClassPred  c  = (c==)

isWordChar :: Char -> Bool
isWordChar c = c == '_' || isAlphaNum c

parseError :: [Token] -> a
parseError _ = error "cannot parse regular expression"
{-# LINE 1 "templates/GenericTemplate.hs" #-}
{-# LINE 1 "templates/GenericTemplate.hs" #-}
{-# LINE 1 "<built-in>" #-}
{-# LINE 1 "<command-line>" #-}
{-# LINE 1 "templates/GenericTemplate.hs" #-}
-- Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp 

{-# LINE 30 "templates/GenericTemplate.hs" #-}


data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList





{-# LINE 51 "templates/GenericTemplate.hs" #-}

{-# LINE 61 "templates/GenericTemplate.hs" #-}

{-# LINE 70 "templates/GenericTemplate.hs" #-}

infixr 9 `HappyStk`
data HappyStk a = HappyStk a (HappyStk a)

-----------------------------------------------------------------------------
-- starting the parse

happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll

-----------------------------------------------------------------------------
-- Accepting the parse

-- If the current token is 0#, it means we've just accepted a partial
-- parse (a %partial parser).  We must ignore the saved token on the top of
-- the stack in this case.
happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) =
	happyReturn1 ans
happyAccept j tk st sts (HappyStk ans _) = 
	(happyTcHack j (happyTcHack st)) (happyReturn1 ans)

-----------------------------------------------------------------------------
-- Arrays only: do the next action



happyDoAction i tk st
	= {- nothing -}


	  case action of
		0#		  -> {- nothing -}
				     happyFail i tk st
		-1# 	  -> {- nothing -}
				     happyAccept i tk st
		n | (n Happy_GHC_Exts.<# (0# :: Happy_GHC_Exts.Int#)) -> {- nothing -}

				     (happyReduceArr Happy_Data_Array.! rule) i tk st
				     where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#))))))
		n		  -> {- nothing -}


				     happyShift new_state i tk st
				     where !(new_state) = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#))
   where !(off)    = indexShortOffAddr happyActOffsets st
         !(off_i)  = (off Happy_GHC_Exts.+# i)
	 check  = if (off_i Happy_GHC_Exts.>=# (0# :: Happy_GHC_Exts.Int#))
			then (indexShortOffAddr happyCheck off_i Happy_GHC_Exts.==#  i)
			else False
         !(action)
          | check     = indexShortOffAddr happyTable off_i
          | otherwise = indexShortOffAddr happyDefActions st

{-# LINE 130 "templates/GenericTemplate.hs" #-}


indexShortOffAddr (HappyA# arr) off =
	Happy_GHC_Exts.narrow16Int# i
  where
	!i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low)
	!high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#)))
	!low  = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off'))
	!off' = off Happy_GHC_Exts.*# 2#





data HappyAddr = HappyA# Happy_GHC_Exts.Addr#




-----------------------------------------------------------------------------
-- HappyState data type (not arrays)

{-# LINE 163 "templates/GenericTemplate.hs" #-}

-----------------------------------------------------------------------------
-- Shifting a token

happyShift new_state 0# tk st sts stk@(x `HappyStk` _) =
     let !(i) = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
--     trace "shifting the error token" $
     happyDoAction i tk new_state (HappyCons (st) (sts)) (stk)

happyShift new_state i tk st sts stk =
     happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk)

-- happyReduce is specialised for the common cases.

happySpecReduce_0 i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happySpecReduce_0 nt fn j tk st@((action)) sts stk
     = happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk)

happySpecReduce_1 i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk')
     = let r = fn v1 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happySpecReduce_2 i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk')
     = let r = fn v1 v2 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happySpecReduce_3 i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk')
     = let r = fn v1 v2 v3 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happyReduce k i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happyReduce k nt fn j tk st sts stk
     = case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of
	 sts1@((HappyCons (st1@(action)) (_))) ->
        	let r = fn stk in  -- it doesn't hurt to always seq here...
       		happyDoSeq r (happyGoto nt j tk st1 sts1 r)

happyMonadReduce k nt fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happyMonadReduce k nt fn j tk st sts stk =
        happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk))
       where !(sts1@((HappyCons (st1@(action)) (_)))) = happyDrop k (HappyCons (st) (sts))
             drop_stk = happyDropStk k stk

happyMonad2Reduce k nt fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happyMonad2Reduce k nt fn j tk st sts stk =
       happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk))
       where !(sts1@((HappyCons (st1@(action)) (_)))) = happyDrop k (HappyCons (st) (sts))
             drop_stk = happyDropStk k stk

             !(off) = indexShortOffAddr happyGotoOffsets st1
             !(off_i) = (off Happy_GHC_Exts.+# nt)
             !(new_state) = indexShortOffAddr happyTable off_i




happyDrop 0# l = l
happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t

happyDropStk 0# l = l
happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs

-----------------------------------------------------------------------------
-- Moving to a new state after a reduction


happyGoto nt j tk st = 
   {- nothing -}
   happyDoAction j tk new_state
   where !(off) = indexShortOffAddr happyGotoOffsets st
         !(off_i) = (off Happy_GHC_Exts.+# nt)
         !(new_state) = indexShortOffAddr happyTable off_i




-----------------------------------------------------------------------------
-- Error recovery (0# is the error token)

-- parse error if we are in recovery and we fail again
happyFail  0# tk old_st _ stk =
--	trace "failing" $ 
    	happyError_ tk

{-  We don't need state discarding for our restricted implementation of
    "error".  In fact, it can cause some bogus parses, so I've disabled it
    for now --SDM

-- discard a state
happyFail  0# tk old_st (HappyCons ((action)) (sts)) 
						(saved_tok `HappyStk` _ `HappyStk` stk) =
--	trace ("discarding state, depth " ++ show (length stk))  $
	happyDoAction 0# tk action sts ((saved_tok`HappyStk`stk))
-}

-- Enter error recovery: generate an error token,
--                       save the old token and carry on.
happyFail  i tk (action) sts stk =
--      trace "entering error recovery" $
	happyDoAction 0# tk action sts ( (Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk)

-- Internal happy errors:

notHappyAtAll = error "Internal Happy error\n"

-----------------------------------------------------------------------------
-- Hack to get the typechecker to accept our action functions


happyTcHack :: Happy_GHC_Exts.Int# -> a -> a
happyTcHack x y = y
{-# INLINE happyTcHack #-}


-----------------------------------------------------------------------------
-- Seq-ing.  If the --strict flag is given, then Happy emits 
--	happySeq = happyDoSeq
-- otherwise it emits
-- 	happySeq = happyDontSeq

happyDoSeq, happyDontSeq :: a -> b -> b
happyDoSeq   a b = a `seq` b
happyDontSeq a b = b

-----------------------------------------------------------------------------
-- Don't inline any functions from the template.  GHC has a nasty habit
-- of deciding to inline happyGoto everywhere, which increases the size of
-- the generated parser quite a bit.


{-# NOINLINE happyDoAction #-}
{-# NOINLINE happyTable #-}
{-# NOINLINE happyCheck #-}
{-# NOINLINE happyActOffsets #-}
{-# NOINLINE happyGotoOffsets #-}
{-# NOINLINE happyDefActions #-}

{-# NOINLINE happyShift #-}
{-# NOINLINE happySpecReduce_0 #-}
{-# NOINLINE happySpecReduce_1 #-}
{-# NOINLINE happySpecReduce_2 #-}
{-# NOINLINE happySpecReduce_3 #-}
{-# NOINLINE happyReduce #-}
{-# NOINLINE happyMonadReduce #-}
{-# NOINLINE happyGoto #-}
{-# NOINLINE happyFail #-}

-- end of Happy Template.