1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
|
/*
This file contains a Cryptol implementation of the arithmetic
bitvector abstract domain operations from module What4.Utils.Domain in what4.
In addition to the algorithms themselves, this file also contains
specifications of correctness for each of the operations. All of the
correctness properties can be formally proven (each at some specific
bit width) by loading this file in cryptol and entering ":prove".
*/
module arithdomain where
////////////////////////////////////////////////////////////
// Library
bit : {i, n} (fin n, n > i) => [n]
bit = 1 # (0 : [i])
mask : {i, n} (fin n, n >= i) => [n]
mask = 0 # (~ 0 : [i])
/** Checked unsigned addition, asserted not to overflow. */
infixl 80 .+.
(.+.) : {n} (fin n) => [n] -> [n] -> [n]
x .+. y = if carry x y then error "overflow" else x + y
/** Checked unsigned subtraction, asserted not to underflow. */
infixl 80 .-.
(.-.) : {n} (fin n) => [n] -> [n] -> [n]
x .-. y = if x < y then error "underflow" else x - y
/** Minimum of two signed values. */
smin : {a} (SignedCmp a) => a -> a -> a
smin x y = if x <$ y then x else y
/** Maximum of two signed values. */
smax : {a} (SignedCmp a) => a -> a -> a
smax x y = if x >$ y then x else y
////////////////////////////////////////////////////////////
type Dom n = { lo : [n], sz : [n] }
interval : {n} (fin n) => [n] -> [n] -> Dom n
interval l s = { lo = l, sz = s }
range : {n} (fin n) => [n] -> [n] -> Dom n
range lo hi = interval lo (hi - lo)
/** Membership predicate that defines the set of concrete values
represented by an abstract domain element. */
mem : {n} (fin n) => Dom n -> [n] -> Bit
mem a x = x - a.lo <= a.sz
umem : {n} (fin n) => ([n], [n]) -> [n] -> Bit
umem (lo, hi) x = lo <= x /\ x <= hi
smem : {n} (fin n, n >= 1) => ([n], [n]) -> [n] -> Bit
smem (lo, hi) x = lo <=$ x /\ x <=$ hi
top : {n} (fin n) => Dom n
top = interval 0 (~ 0)
singleton : {n} (fin n) => [n] -> Dom n
singleton x = interval x 0
isSingleton : {n} (fin n) => Dom n -> Bit
isSingleton a = a.sz == 0
ubounds : {n} (fin n) => Dom n -> ([n], [n])
ubounds a =
if carry a.lo a.sz then (0, ~0) else (a.lo, a.lo + a.sz)
sbounds : {n} (fin n, n >= 1) => Dom n -> ([n], [n])
sbounds a = (lo - delta, hi - delta)
where
delta = reverse 1
(lo, hi) = ubounds (interval (a.lo + delta) a.sz)
/** Nonzero signed values in a domain with the least and greatest
reciprocals. Note that this coincides with the greatest and least
nonzero values using the unsigned ordering. */
rbounds : {n} (fin n, n >= 1) => Dom n -> ([n], [n])
rbounds a =
if a.lo == 0 then (a_hi, 1) else
if a_hi == 0 then (-1, a.lo) else
if a_hi < a.lo then (-1, 1) else
(a_hi, a.lo)
where a_hi = a.lo + a.sz
overlap : {n} (fin n) => Dom n -> Dom n -> Bit
overlap a b = diff <= b.sz \/ carry diff a.sz
where diff = a.lo - b.lo
// To compute the union of two intervals, we choose representatives of
// the endpoints modulo 2^n such that their midpoints are no more than
// 2^(n-1) apart. In the code below, am and bm are equal to twice the
// midpoints of intervals a and b, respectively.
union : {n} (fin n) => Dom n -> Dom n -> Dom n
union a b =
if cw >= size then top else interval (drop`{2} cl) (drop`{2} cw)
where
size : [n+2]
size = bit`{n}
am = 2 * zext a.lo .+. zext a.sz
bm = 2 * zext b.lo .+. zext b.sz
al' = if am .+. size < bm then zext a.lo .+. size else zext a.lo
bl' = if bm .+. size < am then zext b.lo .+. size else zext b.lo
ah' = al' .+. zext a.sz
bh' = bl' .+. zext b.sz
cl = min al' bl'
ch = max ah' bh'
cw = ch .-. cl
////////////////////////////////////////////////////////////
zero_ext : {m, n} (fin m, m >= n) => Dom n -> Dom m
zero_ext a = interval (zext lo) (zext (hi .-. lo))
where (lo, hi) = ubounds a
sign_ext : {m, n} (fin m, m >= n, n >= 1) => Dom n -> Dom m
sign_ext a = interval (sext lo) (zext (hi - lo))
where (lo, hi) = sbounds a
concat : {m, n} (fin m, fin n) => Dom m -> Dom n -> Dom (m + n)
concat a b = interval (a.lo # lo) (a.sz # sz)
where
(lo, hi) = ubounds b
sz = hi .-. lo
shrink : {m, n} (fin m, fin n) => Dom (m + n) -> Dom m
shrink a =
if b_sz >= size then top
else interval (tail b_lo) (tail b_sz)
where
size : [1 + m]
size = bit`{m}
b_lo, b_hi, b_sz : [1 + m]
b_lo = take`{back=n} (zext a.lo)
b_hi = take`{back=n} (zext a.lo .+. zext a.sz)
b_sz = b_hi .-. b_lo
trunc : {m, n} (fin m, fin n) => Dom (m + n) -> Dom n
trunc a =
if a.sz > mask`{n} then top
else interval (drop`{m} a.lo) (drop`{m} a.sz)
////////////////////////////////////////////////////////////
// Arithmetic operations
add : {n} (fin n) => Dom n -> Dom n -> Dom n
add a b =
if carry a.sz b.sz then top
else interval (a.lo + b.lo) (a.sz .+. b.sz)
neg : {n} (fin n) => Dom n -> Dom n
neg a = interval (- (a.lo + a.sz)) a.sz
// Turns out, bitwise complement is easy to specify
// in this domain also
bnot : {n} (fin n) => Dom n -> Dom n
bnot a = interval (~ ah) a.sz
where ah = a.lo + a.sz
mul : {n} (fin n) => Dom n -> Dom n -> Dom n
mul a b =
if sz >= bit`{n} then top
else interval (drop lo) (drop sz)
where
(lo, hi) = mulRange (zbounds a) (zbounds b)
sz = hi - lo
zbounds : {n} (fin n) => Dom n -> ([1 + n], [1 + n])
zbounds a = (lo', lo' + zext a.sz)
where
size : [2 + n]
size = bit`{n}
lo' = if 2 * zext a.lo .+. zext a.sz >= size then 0b1 # a.lo else 0b0 # a.lo
mulRange : {m, n} (fin m, fin n, m >= 1, n >= 1) => ([m], [m]) -> ([n], [n]) -> ([m+n], [m+n])
mulRange (xl, xh) (yl, yh) = (zl, zh)
where
(xlyl, xlyh) = scaleRange xl (yl, yh)
(xhyl, xhyh) = scaleRange xh (yl, yh)
zl = smin xlyl xhyl
zh = smax xlyh xhyh
scaleRange : {m, n} (fin m, fin n, m >= 1, n >= 1) => [m] -> ([n], [n]) -> ([m+n], [m+n])
scaleRange k (lo, hi) = if k <$ 0 then (hi', lo') else (lo', hi')
where
lo' = sext k * sext lo
hi' = sext k * sext hi
udiv : {n} (fin n, n >= 1) => Dom n -> Dom n -> Dom n
udiv a b = range cl ch
where
(al, ah) = ubounds a
(bl, bh) = ubounds b
bl' = max 1 bl // assume that division by 0 does not happen
bh' = max 1 bh // assume that division by 0 does not happen
cl = al / bh'
ch = ah / bl'
urem : {n} (fin n, n >= 1) => Dom n -> Dom n -> Dom n
urem a b =
if ql == qh then range rl rh
else interval 0 (bh - 1)
where
(al, ah) = ubounds a
(bl, bh) = ubounds b
bl' = max 1 bl // assume that division by 0 does not happen
bh' = max 1 bh
(ql, rl) = (al / bh', al % bh')
(qh, rh) = (ah / bl', ah % bl')
// The first argument is an ordinary signed interval, but the second
// argument is a reciaprocal interval: The arguments should satisfy 'al
// <=$ ah' (signed) and '1/bl <= 1/bh' (signed), or equivalently, 'bh
// <= bl' (unsigned).
sdivRange : {n} (fin n, n >= 1) => ([n], [n]) -> ([n], [n]) -> ([1+n], [1+n])
sdivRange (al, ah) (bl, bh) = (ql, qh)
where
(ql1, qh1) = shrinkRange (al, ah) bh
(ql2, qh2) = shrinkRange (al, ah) bl
ql = smin ql1 ql2
qh = smax qh1 qh2
// Extra bit of output is to handle the 'INTMIN / -1' overflow case.
shrinkRange : {n} (fin n, n >= 1) => ([n], [n]) -> [n] -> ([1+n], [1+n])
shrinkRange (lo, hi) k =
if k >$ 0 then (lo ./. k, hi ./. k) else
if k <$ 0 then (hi ./. k, lo ./. k) else (sext lo, sext hi)
where
x ./. y = sext x /$ sext y
sdiv : {n} (fin n, n >= 1) => Dom n -> Dom n -> Dom n
sdiv a b =
if sz >= bit`{n} then top
else interval (drop lo) (drop sz)
where
(lo, hi) = sdivRange (sbounds a) (rbounds b)
sz = hi - lo
srem : {n} (fin n, n >= 1) => Dom n -> Dom n -> Dom n
srem a b =
if ql == qh then
(if ql <$ 0
then range (al - drop ql * bl) (ah - drop ql * bh)
else range (al - drop ql * bh) (ah - drop ql * bl))
else range rl rh
where
(al, ah) = sbounds a
(bl, bh) = sbounds b
(ql, qh) = sdivRange (al, ah) (rbounds b)
rl = if al <$ 0 then smin (bl+1) (-bh+1) else 0
rh = if ah >$ 0 then smax (-bl-1) (bh-1) else 0
////////////////////////////////////////////////////////////
// Shifts
shl : {n} (fin n) => Dom n -> Dom n -> Dom n
shl a b =
if sz > mask`{n} then top
else interval (drop lo) (drop sz)
where
al, ah : [n + 1]
(al, ah) = zbounds a
bl, bh : [n]
(bl, bh) = ubounds b
// [n + 2] is enough to avoid signed overflow in shift
cl, ch : [n + 2]
cl = if bl < `n then 1 << bl else bit`{n}
ch = if bh < `n then 1 << bh else bit`{n}
(lo, hi) = mulRange (al, ah) (cl, ch)
sz = hi - lo
lshr : {n} (fin n) => Dom n -> Dom n -> Dom n
lshr a b = interval cl (ch - cl)
where
(al, ah) = ubounds a
(bl, bh) = ubounds b
cl = al >> bh
ch = ah >> bl
ashr : {n} (fin n, n >= 1) => Dom n -> Dom n -> Dom n
ashr a b = interval cl (ch - cl)
where
(al, ah) = sbounds a
(bl, bh) = ubounds b
cl = al >>$ (if al <$ 0 then bl else bh)
ch = ah >>$ (if ah <$ 0 then bh else bl)
////////////////////////////////////////////////////////////
// Comparisons
ult : {n} (fin n) => Dom n -> Dom n -> Bit
ult a b = (ubounds a).1 < (ubounds b).0
ule : {n} (fin n) => Dom n -> Dom n -> Bit
ule a b = (ubounds a).1 <= (ubounds b).0
slt : {n} (fin n, n >= 1) => Dom n -> Dom n -> Bit
slt a b = (sbounds a).1 <$ (sbounds b).0
sle : {n} (fin n, n >= 1) => Dom n -> Dom n -> Bit
sle a b = (sbounds a).1 <=$ (sbounds b).0
ult_sum_common_equiv : {n} (fin n) => Dom n -> Dom n -> Dom n -> Bit
ult_sum_common_equiv a b c =
if al == ah /\ bl == bh /\ al == bl
then True
else if ~(carry cl c.sz)
then check_same_wrap_interval cl ch
else check_same_wrap_interval cl mask`{n} /\ check_same_wrap_interval 0 ch
where
(cl, ch) = (c.lo, c.lo + c.sz)
(al, ah) = ubounds a
(bl, bh) = ubounds b
check_same_wrap_interval lo hi =
~(carry ah hi) /\ ~(carry bh hi) \/ carry al lo /\ carry bl lo
// A bitmask indicating which bits cannot be determined
// given the interval information in the given domain
unknowns : {n} (fin n, n >= 1) => Dom n -> [n]
unknowns a = if carry a.lo a.sz then ~0 else bits
where
bits = fillright diff
diff = a.lo ^ (a.lo + a.sz)
fillright : {n} (fin n, n >= 1) => [n] -> [n]
fillright x = tail (scanl (||) False x)
fillright_alt : {n} (fin n, n >= 1) => [n] -> [n]
fillright_alt x = x || ((1 << lg2 x) - 1)
property fillright_equiv x = fillright`{16} x == fillright_alt x
////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////
// Correctness properties
infix 20 =@=
/** Equivalence of bitvector domains. */
(=@=) : {n} (fin n) => Dom n -> Dom n -> Bit
a =@= b = (a.sz == ~0 /\ b.sz == ~0) \/ (a == b)
infix 5 <==>
(<==>) : Bit -> Bit -> Bit
(<==>) = (==)
////////////////////////////////////////////////////////////
// Soundness properties
correct_top : {n} (fin n) => [n] -> Bit
correct_top x = mem top x
correct_ubounds : {n} (fin n) => Dom n -> [n] -> Bit
correct_ubounds a x =
mem a x ==> umem (ubounds a) x
correct_sbounds : {n} (fin n, n >= 1) => Dom n -> [n] -> Bit
correct_sbounds a x =
mem a x ==> smem (sbounds a) x
correct_singleton : {n} (fin n) => [n] -> [n] -> Bit
correct_singleton x y =
mem (singleton x) y <==> x == y
correct_overlap : {n} (fin n) => Dom n -> Dom n -> [n] -> Bit
correct_overlap a b x =
mem a x ==> mem b x ==> overlap a b
correct_overlap_inv : {n} (fin n) => Dom n -> Dom n -> Bit
correct_overlap_inv a b =
overlap a b ==> (mem a witness /\ mem b witness)
where
witness = if mem a b.lo then b.lo else a.lo
correct_union : {n} (fin n) => Dom n -> Dom n -> [n] -> Bit
correct_union a b x =
(mem a x \/ mem b x) ==> mem (union a b) x
correct_zero_ext : {m, n} (fin m, m >= n) => Dom n -> [n] -> Bit
correct_zero_ext a x =
mem a x ==> mem (zero_ext`{m} a) (zext`{m} x)
correct_sign_ext : {m, n} (fin m, m >= n, n >= 1) => Dom n -> [n] -> Bit
correct_sign_ext a x =
mem a x ==> mem (sign_ext`{m} a) (sext`{m} x)
correct_concat : {m, n} (fin m, fin n) => Dom m -> Dom n -> [m] -> [n] -> Bit
correct_concat a b x y =
mem a x ==> mem b y ==> mem (concat a b) (x # y)
correct_shrink : {m, n} (fin m, fin n) => Dom (m + n) -> [m + n] -> Bit
correct_shrink a x =
mem a x ==> mem (shrink`{m} a) (take`{m} x)
correct_trunc : {m, n} (fin m, fin n) => Dom (m + n) -> [m + n] -> Bit
correct_trunc a x =
mem a x ==> mem (trunc`{m} a) (drop`{m} x)
correct_add : {n} (fin n) => Dom n -> Dom n -> [n] -> [n] -> Bit
correct_add a b x y =
mem a x ==> mem b y ==> mem (add a b) (x + y)
correct_neg : {n} (fin n) => Dom n -> [n] -> Bit
correct_neg a x =
mem a x <==> mem (neg a) (- x)
correct_mul : {n} (fin n) => Dom n -> Dom n -> [n] -> [n] -> Bit
correct_mul a b x y =
mem a x ==> mem b y ==> mem (mul a b) (x * y)
correct_mulRange : {n} (fin n, n >= 1) => ([n], [n]) -> ([n], [n]) -> [n] -> [n] -> Bit
correct_mulRange a b x y =
smem a x ==> smem b y ==> smem (mulRange a b) (sext x * sext y)
correct_udiv : {n} (fin n, n >= 1) => Dom n -> Dom n -> [n] -> [n] -> Bit
correct_udiv a b x y =
mem a x ==> mem b y ==> y != 0 ==> mem (udiv a b) (x / y)
correct_urem : {n} (fin n, n >= 1) => Dom n -> Dom n -> [n] -> [n] -> Bit
correct_urem a b x y =
mem a x ==> mem b y ==> y != 0 ==> mem (urem a b) (x % y)
correct_sdivRange : {n} (fin n, n >= 1) => ([n], [n]) -> ([n], [n]) -> [n] -> [n] -> Bit
correct_sdivRange a b x y =
smem a x ==> umem b y ==> y != 0 ==> smem (sdivRange a (b.1, b.0)) (sext x /$ sext y)
correct_shrinkRange : {n} (fin n, n >= 1) => ([n], [n]) -> [n] -> [n] -> Bit
correct_shrinkRange a x y =
smem a x ==> y != 0 ==> smem (shrinkRange a y) (sext x /$ sext y)
correct_sdiv : {n} (fin n, n >= 1) => Dom n -> Dom n -> [n] -> [n] -> Bit
correct_sdiv a b x y =
mem a x ==> mem b y ==> y != 0 ==> mem (sdiv a b) (x /$ y)
correct_srem : {n} (fin n, n >= 1) => Dom n -> Dom n -> [n] -> [n] -> Bit
correct_srem a b x y =
mem a x ==> mem b y ==> y != 0 ==> mem (srem a b) (x %$ y)
correct_shl : {n} (fin n) => Dom n -> Dom n -> [n] -> [n] -> Bit
correct_shl a b x y =
mem a x ==> mem b y ==> mem (shl a b) (x << y)
correct_lshr : {n} (fin n) => Dom n -> Dom n -> [n] -> [n] -> Bit
correct_lshr a b x y =
mem a x ==> mem b y ==> mem (lshr a b) (x >> y)
correct_ashr : {n} (fin n, n >= 1) => Dom n -> Dom n -> [n] -> [n] -> Bit
correct_ashr a b x y =
mem a x ==> mem b y ==> mem (ashr a b) (x >>$ y)
correct_slt : {n} (fin n, n >= 1) => Dom n -> Dom n -> [n] -> [n] -> Bit
correct_slt a b x y =
slt a b ==> mem a x ==> mem b y ==> x <$ y
correct_sle : {n} (fin n, n >= 1) => Dom n -> Dom n -> [n] -> [n] -> Bit
correct_sle a b x y =
sle a b ==> mem a x ==> mem b y ==> x <=$ y
correct_ult : {n} (fin n, n >= 1) => Dom n -> Dom n -> [n] -> [n] -> Bit
correct_ult a b x y =
ult a b ==> mem a x ==> mem b y ==> x < y
correct_ule : {n} (fin n, n >= 1) => Dom n -> Dom n -> [n] -> [n] -> Bit
correct_ule a b x y =
ule a b ==> mem a x ==> mem b y ==> x <= y
correct_ult_sum_common_equiv :
{n} (fin n, n >= 1) => Dom n -> Dom n -> Dom n -> [n] -> [n] -> [n] -> Bit
correct_ult_sum_common_equiv a b c x y z =
ult_sum_common_equiv a b c ==>
mem a x ==> mem b y ==> mem c z ==>
(x + z < y + z <==> x < y)
correct_bnot : {n} (fin n) => Dom n -> [n] -> Bit
correct_bnot a x =
mem a x <==> mem (bnot a) (~ x)
correct_isSingleton : {n} (fin n) => Dom n -> Bit
correct_isSingleton a =
isSingleton a ==> a == singleton a.lo
correct_unknowns : {n} (fin n, n >= 1) => Dom n -> [n] -> [n] -> Bit
correct_unknowns a x y =
mem a x ==> mem a y ==> (x || unknowns a) == (y || unknowns a)
property p1 = correct_top`{16}
property p2 = correct_ubounds`{16}
property p3 = correct_sbounds`{16}
property p4 = correct_singleton`{16}
property p5 = correct_overlap`{16}
property p5_inv = correct_overlap_inv`{16}
property p6 = correct_union`{8}
property p7 = correct_zero_ext`{32, 16}
property p8 = correct_sign_ext`{32, 16}
property p9 = correct_concat`{16, 16}
property p10 = correct_shrink`{8, 8}
property p11 = correct_trunc`{8, 8}
property p12 = correct_unknowns`{16}
property p13 = correct_isSingleton`{16}
property a1 = correct_add`{8}
property a2 = correct_neg`{16}
property a3 = correct_mul`{4}
property a4 = correct_udiv`{8}
property a5 = correct_urem`{6}
property a6 = correct_sdiv`{6}
property a7 = correct_srem`{6}
property a8 = correct_bnot`{16}
property a9 = correct_sdivRange`{6}
property s1 = correct_shl`{8}
property s2 = correct_lshr`{8}
property s3 = correct_ashr`{8}
property o1 = correct_slt`{16}
property o2 = correct_sle`{16}
property o3 = correct_ult`{16}
property o4 = correct_ule`{16}
property o5 = correct_ult_sum_common_equiv`{4}
////////////////////////////////////////////////////////////
// Operations preserve singletons
singleton_overlap : {n} (fin n) => [n] -> [n] -> Bit
singleton_overlap x y =
overlap (singleton x) (singleton y) == (x == y)
singleton_zero_ext : {m, n} (fin m, m >= n) => [n] -> Bit
singleton_zero_ext x =
zero_ext`{m} (singleton x) == singleton (zext`{m} x)
singleton_sign_ext : {m, n} (fin m, m >= n, n >= 1) => [n] -> Bit
singleton_sign_ext x =
sign_ext`{m} (singleton x) == singleton (sext`{m} x)
singleton_concat : {m, n} (fin m, fin n) => [m] -> [n] -> Bit
singleton_concat x y =
concat (singleton x) (singleton y) == singleton (x # y)
singleton_shrink : {m, n} (fin m, fin n) => [m + n] -> Bit
singleton_shrink x =
shrink`{m} (singleton x) == singleton (take`{m} x)
singleton_trunc : {m, n} (fin m, fin n) => [m + n] -> Bit
singleton_trunc x =
trunc`{m} (singleton x) == singleton (drop`{m} x)
singleton_add : {n} (fin n) => [n] -> [n] -> Bit
singleton_add x y =
add (singleton x) (singleton y) == singleton (x + y)
singleton_neg : {n} (fin n) => [n] -> Bit
singleton_neg x =
neg (singleton x) == singleton (- x)
singleton_mul : {n} (fin n) => [n] -> [n] -> Bit
singleton_mul x y =
mul (singleton x) (singleton y) == singleton (x * y)
singleton_mulRange : {n} (fin n, n >= 1) => [n] -> [n] -> Bit
singleton_mulRange x y =
mulRange (x, x) (y, y) == (sext x * sext y, sext x * sext y)
singleton_udiv : {n} (fin n, n >= 1) => [n] -> [n] -> Bit
singleton_udiv x y =
y != 0 ==> udiv (singleton x) (singleton y) == singleton (x / y)
singleton_urem : {n} (fin n, n >= 1) => [n] -> [n] -> Bit
singleton_urem x y =
y != 0 ==> urem (singleton x) (singleton y) == singleton (x % y)
singleton_sdiv : {n} (fin n, n >= 1) => [n] -> [n] -> Bit
singleton_sdiv x y =
y != 0 ==> sdiv (singleton x) (singleton y) == singleton (x /$ y)
singleton_srem : {n} (fin n, n >= 1) => [n] -> [n] -> Bit
singleton_srem x y =
y != 0 ==> srem (singleton x) (singleton y) == singleton (x %$ y)
singleton_shl : {n} (fin n) => [n] -> [n] -> Bit
singleton_shl x y =
shl (singleton x) (singleton y) == singleton (x << y)
singleton_lshr : {n} (fin n) => [n] -> [n] -> Bit
singleton_lshr x y =
lshr (singleton x) (singleton y) == singleton (x >> y)
singleton_ashr : {n} (fin n, n >= 1) => [n] -> [n] -> Bit
singleton_ashr x y =
ashr (singleton x) (singleton y) == singleton (x >>$ y)
singleton_slt : {n} (fin n, n >= 1) => [n] -> [n] -> Bit
singleton_slt x y =
slt (singleton x) (singleton y) == (x <$ y)
singleton_sle : {n} (fin n, n >= 1) => [n] -> [n] -> Bit
singleton_sle x y =
sle (singleton x) (singleton y) == (x <=$ y)
singleton_ult : {n} (fin n, n >= 1) => [n] -> [n] -> Bit
singleton_ult x y =
ult (singleton x) (singleton y) == (x < y)
singleton_ule : {n} (fin n, n >= 1) => [n] -> [n] -> Bit
singleton_ule x y =
ule (singleton x) (singleton y) == (x <= y)
property i01 = singleton_overlap`{16}
property i02 = singleton_zero_ext`{32, 16}
property i03 = singleton_sign_ext`{32, 16}
property i04 = singleton_concat`{16, 16}
property i05 = singleton_shrink`{8, 8}
property i06 = singleton_trunc`{8, 8}
property i07 = singleton_add`{8}
property i08 = singleton_neg`{16}
property i09 = singleton_mul`{4}
property i10 = singleton_udiv`{8}
property i11 = singleton_urem`{8}
property i12 = singleton_sdiv`{8}
property i13 = singleton_srem`{8}
property i14 = singleton_shl`{8}
property i15 = singleton_lshr`{8}
property i16 = singleton_ashr`{8}
property i17 = singleton_slt`{16}
property i18 = singleton_sle`{16}
property i19 = singleton_ult`{16}
property i20 = singleton_ule`{16}
////////////////////////////////////////////////////////////
// Associativity/commutativity properties
comm_overlap : {n} (fin n) => Dom n -> Dom n -> Bit
comm_overlap a b = overlap a b <==> overlap b a
comm_add : {n} (fin n) => Dom n -> Dom n -> Bit
comm_add a b = add a b == add b a
assoc_add : {n} (fin n) => Dom n -> Dom n -> Dom n -> Bit
assoc_add a b c = add a (add b c) =@= add (add a b) c
comm_mul : {n} (fin n) => Dom n -> Dom n -> Bit
comm_mul a b = mul a b == mul b a
/* mul is not associative! */
assoc_mul : {n} (fin n) => Dom n -> Dom n -> Dom n -> Bit
assoc_mul a b c = mul a (mul b c) =@= mul (mul a b) c
comm_mulRange :
{i, j} (fin i, fin j, i >= 1, j >= 1) => ([i], [i]) -> ([j], [j]) -> Bit
comm_mulRange a b =
a.0 <=$ a.1 ==> b.0 <=$ b.1 ==> mulRange a b == mulRange b a
assoc_mulRange :
{i, j, k} (fin i, fin j, fin k, i >= 1, j >= 1, k >= 1) =>
([i], [i]) -> ([j], [j]) -> ([k], [k]) -> Bit
assoc_mulRange a b c =
a.0 <=$ a.1 ==>
b.0 <=$ b.1 ==>
c.0 <=$ c.1 ==>
mulRange a (mulRange b c) == mulRange (mulRange a b) c
property c1 = comm_overlap`{16}
property c2 = comm_add`{16}
property c3 = assoc_add`{16}
property c4 = comm_mul`{4}
property c5 = comm_mulRange`{4,4}
property c6 = assoc_mulRange`{3,3,3}
////////////////////////////////////////////////////////////
// Additional properties about union
comm_union : {n} (fin n) => Dom n -> Dom n -> Bit
comm_union a b = union a b == union b a
/* union is actually not associative! */
assoc_union : {n} (fin n) => Dom n -> Dom n -> Dom n -> Bit
assoc_union a b c = union a (union b c) == union (union a b) c
/* union always has a lower bound equal to one of the input lower bounds */
lo_union : {n} (fin n) => Dom n -> Dom n -> Bit
lo_union a b =
union a b == top \/ (union a b).lo == a.lo \/ (union a b).lo == b.lo
/* union always has an upper bound equal to one of the input upper bounds */
hi_union : {n} (fin n) => Dom n -> Dom n -> Bit
hi_union a b = c == top \/ c_hi == a_hi \/ c_hi == b_hi
where
c = union a b
a_hi = a.lo + a.sz
b_hi = b.lo + b.sz
c_hi = c.lo + c.sz
/* union doesn't return top unless necessary */
nontriv_union : {n} (fin n) => Dom n -> Dom n -> [n] -> Bit
nontriv_union a b x =
union a b =@= top ==> mem a x \/ mem b x
/* union of opposite intervals prefers to exclude zero */
nonzero_union : {n} (fin n, n >= 1) => [n] -> [n] -> Bit
nonzero_union lo sz =
mem (union a b) half /\
(~ mem a 0 ==> ~ mem b 0 ==> ~ mem (union a b) 0)
where
half : [n]
half = reverse 1
a = interval lo sz
b = interval (lo + half) sz
property u1 = comm_union`{16}
property u2 = lo_union`{16}
property u3 = hi_union`{16}
property u4 = nontriv_union`{8}
property u5 = nonzero_union`{16}
|