1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
/*
This file contains a Cryptol implementation of the bitwise
bitvector abstract domain operations from What4.Utils.BVDomain
In addition to the algorithms themselves, this file also contains
specifications of correctness for each of the operations. All of the
correctness properties can be formally proven (each at some specific
bit width) by loading this file in cryptol and entering ":prove".
*/
module bitsdomain where
// This type represents _bitwise_ bounds as opposed to the
// arithmetic bounds described by BVDom. Note that
// this representation allows the empty set if
// lomask is not bitwise below himask. However, all
// the operations (other than intersection) preserve the property
// of being nonempty (implied by their various soundness properties).
type Dom n = { lomask : [n] , himask : [n] }
/** Membership predicate that defines the set of concrete values
represented by a bitwise abstract domain element. */
mem : {n} (fin n) => Dom n -> [n] -> Bit
mem a x = bitle a.lomask x /\ bitle x a.himask
bitle : {n} (fin n) => [n] -> [n] -> Bit
bitle x y = x || y == y
nonempty : {n} (fin n) => Dom n -> Bit
nonempty b = bitle b.lomask b.himask
singleton : {n} (fin n) => [n] -> Dom n
singleton x = { lomask = x, himask = x }
isSingleton : {n} (fin n) => Dom n -> Bit
isSingleton a = a.lomask == a.himask
top : {n} (fin n) => Dom n
top = { lomask = 0, himask = ~0 }
overlap : {n} (fin n) => Dom n -> Dom n -> Bit
overlap a b = nonempty (intersection a b)
intersection : {n} (fin n) => Dom n -> Dom n -> Dom n
intersection a b = { lomask = a.lomask || b.lomask, himask = a.himask && b.himask }
union : {n} (fin n) => Dom n -> Dom n -> Dom n
union a b = { lomask = a.lomask && b.lomask, himask = a.himask || b.himask }
zero_ext : {m, n} (fin m, m >= n) => Dom n -> Dom m
zero_ext a = { lomask = zext a.lomask, himask = zext a.himask }
sign_ext : {m, n} (fin m, m >= n, n >= 1) => Dom n -> Dom m
sign_ext a = { lomask = sext a.lomask, himask = sext a.himask }
concat : {m, n} (fin m, fin n) => Dom m -> Dom n -> Dom (m + n)
concat a b = { lomask = a.lomask # b.lomask, himask = a.himask # b.himask }
shrink : {m, n} (fin m, fin n) => Dom (m + n) -> Dom m
shrink a = { lomask = take`{m} a.lomask, himask = take`{m} a.himask }
trunc : {m, n} (fin m, fin n) => Dom (m + n) -> Dom n
trunc a = { lomask = drop`{m} a.lomask, himask = drop`{m} a.himask }
bnot : {n} (fin n) => Dom n -> Dom n
bnot b = { lomask = ~b.himask, himask = ~b.lomask }
band : {n} (fin n) => Dom n -> Dom n -> Dom n
band a b = { lomask = a.lomask && b.lomask, himask = a.himask && b.himask }
bor : {n} (fin n) => Dom n -> Dom n -> Dom n
bor a b = { lomask = a.lomask || b.lomask, himask = a.himask || b.himask }
// Note, this requires quite a few more operations than AND and OR.
// See "xordomain.cry" for a domain optimized for XOR and AND operations.
bxor : {n} (fin n) => Dom n -> Dom n -> Dom n
bxor a b = { lomask = lo, himask = hi }
where
ua = a.lomask ^ a.himask
ub = b.lomask ^ b.himask
c = a.lomask ^ b.lomask
u = ua || ub
hi = c || u
lo = hi ^ u
// Note: shift and rotate operations in this domain only apply
// when the shift amount is known
shl : {n} (fin n) => Dom n -> [n] -> Dom n
shl a x = { lomask = a.lomask << x', himask = a.himask << x' }
where x' = if x < `n then x else `n
lshr : {n} (fin n) => Dom n -> [n] -> Dom n
lshr a x = { lomask = a.lomask >> x', himask = a.himask >> x' }
where x' = if x < `n then x else `n
ashr : {n} (fin n, n >= 1) => Dom n -> [n] -> Dom n
ashr a x = { lomask = a.lomask >>$ x', himask = a.himask >>$ x' }
where x' = if x < `n then x else `n
rol : {n} (fin n) => Dom n -> [n] -> Dom n
rol a x = { lomask = a.lomask <<< x, himask = a.himask <<< x }
ror : {n} (fin n) => Dom n -> [n] -> Dom n
ror a x = { lomask = a.lomask >>> x, himask = a.himask >>> x }
////////////////////////////////////////////////////////////
// Soundness properties
correct_top : {n} (fin n) => [n] -> Bit
correct_top x = mem top x
correct_singleton : {n} (fin n) => [n] -> [n] -> Bit
correct_singleton x y = mem (singleton x) y == (x == y)
correct_overlap : {n} (fin n) => Dom n -> Dom n -> [n] -> Bit
correct_overlap a b x =
mem a x ==> mem b x ==> overlap a b
correct_overlap_inv : {n} (fin n) => Dom n -> Dom n -> Bit
correct_overlap_inv a b =
overlap a b ==> (mem a (a.lomask || b.lomask) /\ mem b (a.lomask || b.lomask))
correct_union : {n} (fin n) => Dom n -> Dom n -> [n] -> Bit
correct_union a b x =
(mem a x \/ mem b x) ==> mem (union a b) x
correct_intersection : {n} (fin n) => Dom n -> Dom n -> [n] -> Bit
correct_intersection a b x =
(mem a x /\ mem b x) == mem (intersection a b) x
correct_zero_ext : {m, n} (fin m, m >= n) => Dom n -> [n] -> Bit
correct_zero_ext a x =
mem a x ==> mem (zero_ext`{m} a) (zext`{m} x)
correct_sign_ext : {m, n} (fin m, m >= n, n >= 1) => Dom n -> [n] -> Bit
correct_sign_ext a x =
mem a x ==> mem (sign_ext`{m} a) (sext`{m} x)
correct_concat : {m, n} (fin m, fin n) => Dom m -> Dom n -> [m] -> [n] -> Bit
correct_concat a b x y =
mem a x ==> mem b y ==> mem (concat a b) (x # y)
correct_shrink : {m, n} (fin m, fin n) => Dom (m + n) -> [m+n] -> Bit
correct_shrink a x =
mem a x ==> mem (shrink`{m} a) (take`{m} x)
correct_trunc : {m, n} (fin m, fin n) => Dom (m + n) -> [m+n] -> Bit
correct_trunc a x =
mem a x ==> mem (trunc`{m} a) (drop`{m} x)
correct_isSingleton : {n} (fin n) => Dom n -> Bit
correct_isSingleton a =
isSingleton a ==> a == singleton a.lomask
correct_bnot : {n} (fin n) => Dom n -> [n] -> Bit
correct_bnot a x =
mem a x == mem (bnot a) (~ x)
correct_band : {n} (fin n) => Dom n -> Dom n -> [n] -> [n] -> Bit
correct_band a b x y =
mem a x ==> mem b y ==> mem (band a b) (x && y)
correct_bor : {n} (fin n) => Dom n -> Dom n -> [n] -> [n] -> Bit
correct_bor a b x y =
mem a x ==> mem b y ==> mem (bor a b) (x || y)
correct_bxor : {n} (fin n) => Dom n -> Dom n -> [n] -> [n] -> Bit
correct_bxor a b x y =
mem a x ==> mem b y ==> mem (bxor a b) (x ^ y)
correct_shl : {n} (fin n) => Dom n -> [n] -> [n] -> Bit
correct_shl a x y =
mem a x ==> mem (shl a y) (x << y)
correct_lshr : {n} (fin n) => Dom n -> [n] -> [n] -> Bit
correct_lshr a x y =
mem a x ==> mem (lshr a y) (x >> y)
correct_ashr : {n} (fin n, n >= 1) => Dom n -> [n] -> [n] -> Bit
correct_ashr a x y =
mem a x ==> mem (ashr a y) (x >>$ y)
correct_rol : {n} (fin n) => Dom n -> [n] -> [n] -> Bit
correct_rol a x y =
mem a x ==> mem (rol a y) (x <<< y)
correct_ror : {n} (fin n) => Dom n -> [n] -> [n] -> Bit
correct_ror a x y =
mem a x ==> mem (ror a y) (x >>> y)
property b1 = correct_top`{16}
property b2 = correct_singleton`{16}
property b3 = correct_overlap`{16}
property b4 = correct_overlap_inv`{16}
property b5 = correct_union`{8}
property b6 = correct_intersection`{8}
property b7 = correct_zero_ext`{32, 16}
property b8 = correct_sign_ext`{32, 16}
property b9 = correct_concat`{16, 16}
property b10 = correct_shrink`{8, 8}
property b11 = correct_trunc`{8, 8}
property b12 = correct_isSingleton`{16}
property l1 = correct_bnot`{16}
property l2 = correct_band`{16}
property l3 = correct_bor`{16}
property l4 = correct_bxor`{16}
property s1 = correct_shl`{16}
property s2 = correct_lshr`{16}
property s3 = correct_ashr`{16}
property s4 = correct_rol`{16}
property s5 = correct_ror`{16}
////////////////////////////////////////////////////////////
// Operations preserve singletons
singleton_overlap : {n} (fin n) => [n] -> [n] -> Bit
singleton_overlap x y =
overlap (singleton x) (singleton y) == (x == y)
singleton_zero_ext : {m, n} (fin m, m >= n) => [n] -> Bit
singleton_zero_ext x =
zero_ext`{m} (singleton x) == singleton (zext`{m} x)
singleton_sign_ext : {m, n} (fin m, m >= n, n >= 1) => [n] -> Bit
singleton_sign_ext x =
sign_ext`{m} (singleton x) == singleton (sext`{m} x)
singleton_concat : {m, n} (fin m, fin n) => [m] -> [n] -> Bit
singleton_concat x y =
concat (singleton x) (singleton y) == singleton (x # y)
singleton_shrink : {m, n} (fin m, fin n) => [m + n] -> Bit
singleton_shrink x =
shrink`{m} (singleton x) == singleton (take`{m} x)
singleton_trunc : {m, n} (fin m, fin n) => [m + n] -> Bit
singleton_trunc x =
trunc`{m} (singleton x) == singleton (drop`{m} x)
singleton_bnot : {n} (fin n) => [n] -> Bit
singleton_bnot x =
bnot (singleton x) == singleton (~ x)
singleton_band : {n} (fin n) => [n] -> [n] -> Bit
singleton_band x y =
band (singleton x) (singleton y) == singleton (x && y)
singleton_bor : {n} (fin n) => [n] -> [n] -> Bit
singleton_bor x y =
bor (singleton x) (singleton y) == singleton (x || y)
singleton_bxor : {n} (fin n) => [n] -> [n] -> Bit
singleton_bxor x y =
bxor (singleton x) (singleton y) == singleton (x ^ y)
singleton_shl : {n} (fin n) => [n] -> [n] -> Bit
singleton_shl x y =
shl (singleton x) y == singleton (x << y)
singleton_lshr : {n} (fin n) => [n] -> [n] -> Bit
singleton_lshr x y =
lshr (singleton x) y == singleton (x >> y)
singleton_ashr : {n} (fin n, n >= 1) => [n] -> [n] -> Bit
singleton_ashr x y =
ashr (singleton x) y == singleton (x >>$ y)
property i01 = singleton_overlap`{16}
property i02 = singleton_zero_ext`{32, 16}
property i03 = singleton_sign_ext`{32, 16}
property i04 = singleton_concat`{16, 16}
property i05 = singleton_shrink`{8, 8}
property i06 = singleton_trunc`{8, 8}
property i07 = singleton_band`{16}
property i08 = singleton_bor`{16}
property i09 = singleton_bxor`{16}
property i10 = singleton_bnot`{16}
property i11 = singleton_shl`{8}
property i12 = singleton_lshr`{8}
property i13 = singleton_ashr`{8}
|