1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
|
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE ExplicitForAll #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeApplications #-}
{-# OPTIONS_GHC -fno-warn-orphans #-} -- for TestShow instance
import ProbeSolvers
import Test.Tasty
import Test.Tasty.Checklist as TC
import Test.Tasty.ExpectedFailure
import Test.Tasty.Hedgehog.Alt
import Test.Tasty.HUnit
import Control.Exception (bracket, try, finally, SomeException)
import Control.Monad (void)
import Control.Monad.IO.Class (MonadIO(..))
import qualified Data.BitVector.Sized as BV
import Data.Foldable
import qualified Data.Map as Map
import Data.Maybe ( fromMaybe )
import Data.Parameterized.Context ( pattern Empty, pattern (:>) )
import qualified Data.Text as Text
import qualified Hedgehog as H
import qualified Hedgehog.Gen as HGen
import qualified Hedgehog.Range as HRange
import qualified Prettyprinter as PP
import System.Environment ( lookupEnv )
import qualified Data.Parameterized.Context as Ctx
import Data.Parameterized.Nonce
import Data.Parameterized.Some
import System.IO
import LibBF
import What4.BaseTypes
import What4.Config
import What4.Expr
import What4.Interface
import What4.InterpretedFloatingPoint
import What4.Protocol.Online
import What4.Protocol.SMTLib2
import What4.SatResult
import What4.Solver.Adapter
import qualified What4.Solver.CVC4 as CVC4
import qualified What4.Solver.Z3 as Z3
import qualified What4.Solver.Yices as Yices
import qualified What4.Utils.BVDomain as WUB
import qualified What4.Utils.BVDomain.Arith as WUBA
import qualified What4.Utils.ResolveBounds.BV as WURB
import What4.Utils.StringLiteral
import What4.Utils.Versions (ver, SolverBounds(..), emptySolverBounds)
data SomePred = forall t . SomePred (BoolExpr t)
deriving instance Show SomePred
type SimpleExprBuilder t fs = ExprBuilder t EmptyExprBuilderState fs
instance TestShow Text.Text where testShow = show
instance TestShow (StringLiteral Unicode) where testShow = show
debugOutputFiles :: Bool
debugOutputFiles = False
--debugOutputFiles = True
maybeClose :: Maybe Handle -> IO ()
maybeClose Nothing = return ()
maybeClose (Just h) = hClose h
userSymbol' :: String -> SolverSymbol
userSymbol' s = case userSymbol s of
Left e -> error $ show e
Right symbol -> symbol
withSym :: FloatModeRepr fm -> (forall t . SimpleExprBuilder t (Flags fm) -> IO a) -> IO a
withSym floatMode pred_gen = withIONonceGenerator $ \gen ->
pred_gen =<< newExprBuilder floatMode EmptyExprBuilderState gen
withYices :: (forall t. SimpleExprBuilder t (Flags FloatReal) -> SolverProcess t Yices.Connection -> IO a) -> IO a
withYices action = withSym FloatRealRepr $ \sym ->
do extendConfig Yices.yicesOptions (getConfiguration sym)
bracket
(do h <- if debugOutputFiles then Just <$> openFile "yices.out" WriteMode else return Nothing
s <- startSolverProcess Yices.yicesDefaultFeatures h sym
return (h,s))
(\(h,s) -> void $ try @SomeException (shutdownSolverProcess s `finally` maybeClose h))
(\(_,s) -> action sym s)
withZ3 :: (forall t . SimpleExprBuilder t (Flags FloatIEEE) -> Session t Z3.Z3 -> IO ()) -> IO ()
withZ3 action = withIONonceGenerator $ \nonce_gen -> do
sym <- newExprBuilder FloatIEEERepr EmptyExprBuilderState nonce_gen
extendConfig Z3.z3Options (getConfiguration sym)
Z3.withZ3 sym "z3" defaultLogData { logCallbackVerbose = (\_ -> putStrLn) } (action sym)
withOnlineZ3
:: (forall t . SimpleExprBuilder t (Flags FloatIEEE) -> SolverProcess t (Writer Z3.Z3) -> IO a)
-> IO a
withOnlineZ3 action = withSym FloatIEEERepr $ \sym -> do
extendConfig Z3.z3Options (getConfiguration sym)
bracket
(do h <- if debugOutputFiles then Just <$> openFile "z3.out" WriteMode else return Nothing
s <- startSolverProcess (defaultFeatures Z3.Z3) h sym
return (h,s))
(\(h,s) -> void $ try @SomeException (shutdownSolverProcess s `finally` maybeClose h))
(\(_,s) -> action sym s)
withCVC4
:: (forall t . SimpleExprBuilder t (Flags FloatReal) -> SolverProcess t (Writer CVC4.CVC4) -> IO a)
-> IO a
withCVC4 action = withSym FloatRealRepr $ \sym -> do
extendConfig CVC4.cvc4Options (getConfiguration sym)
bracket
(do h <- if debugOutputFiles then Just <$> openFile "cvc4.out" WriteMode else return Nothing
s <- startSolverProcess (defaultFeatures CVC4.CVC4) h sym
return (h,s))
(\(h,s) -> void $ try @SomeException (shutdownSolverProcess s `finally` maybeClose h))
(\(_,s) -> action sym s)
withModel
:: Session t Z3.Z3
-> BoolExpr t
-> ((forall tp . What4.Expr.Expr t tp -> IO (GroundValue tp)) -> IO ())
-> IO ()
withModel s p action = do
assume (sessionWriter s) p
runCheckSat s $ \case
Sat (GroundEvalFn {..}, _) -> action groundEval
Unsat _ -> "unsat" @?= ("sat" :: String)
Unknown -> "unknown" @?= ("sat" :: String)
-- exists y . (x + 2.0) + (x + 2.0) < y
iFloatTestPred
:: ( forall t
. (IsInterpretedFloatExprBuilder (SimpleExprBuilder t fs))
=> SimpleExprBuilder t fs
-> IO SomePred
)
iFloatTestPred sym = do
x <- freshFloatConstant sym (userSymbol' "x") SingleFloatRepr
e0 <- iFloatLitSingle sym 2.0
e1 <- iFloatAdd @_ @SingleFloat sym RNE x e0
e2 <- iFloatAdd @_ @SingleFloat sym RTZ e1 e1
y <- freshFloatBoundVar sym (userSymbol' "y") SingleFloatRepr
e3 <- iFloatLt @_ @SingleFloat sym e2 $ varExpr sym y
SomePred <$> existsPred sym y e3
floatSinglePrecision :: FloatPrecisionRepr Prec32
floatSinglePrecision = knownRepr
floatDoublePrecision :: FloatPrecisionRepr Prec64
floatDoublePrecision = knownRepr
floatSingleType :: BaseTypeRepr (BaseFloatType Prec32)
floatSingleType = BaseFloatRepr floatSinglePrecision
floatDoubleType :: BaseTypeRepr (BaseFloatType Prec64)
floatDoubleType = BaseFloatRepr floatDoublePrecision
testInterpretedFloatReal :: TestTree
testInterpretedFloatReal = testCase "Float interpreted as real" $ do
actual <- withSym FloatRealRepr iFloatTestPred
expected <- withSym FloatRealRepr $ \sym -> do
x <- freshConstant sym (userSymbol' "x") knownRepr
e0 <- realLit sym 2.0
e1 <- realAdd sym x e0
e2 <- realAdd sym e1 e1
y <- freshBoundVar sym (userSymbol' "y") knownRepr
e3 <- realLt sym e2 $ varExpr sym y
SomePred <$> existsPred sym y e3
show actual @?= show expected
testFloatUninterpreted :: TestTree
testFloatUninterpreted = testCase "Float uninterpreted" $ do
actual <- withSym FloatUninterpretedRepr iFloatTestPred
expected <- withSym FloatUninterpretedRepr $ \sym -> do
let bvtp = BaseBVRepr $ knownNat @32
rne_rm <- intLit sym $ toInteger $ fromEnum RNE
rtz_rm <- intLit sym $ toInteger $ fromEnum RTZ
x <- freshConstant sym (userSymbol' "x") knownRepr
-- Floating point literal: 2.0
e1 <- bvLit sym knownRepr (BV.mkBV knownRepr (bfToBits (float32 NearEven) (bfFromInt 2)))
add_fn <- freshTotalUninterpFn
sym
(userSymbol' "uninterpreted_float_add")
(Ctx.empty Ctx.:> BaseIntegerRepr Ctx.:> bvtp Ctx.:> bvtp)
bvtp
e2 <- applySymFn sym add_fn $ Ctx.empty Ctx.:> rne_rm Ctx.:> x Ctx.:> e1
e3 <- applySymFn sym add_fn $ Ctx.empty Ctx.:> rtz_rm Ctx.:> e2 Ctx.:> e2
y <- freshBoundVar sym (userSymbol' "y") knownRepr
lt_fn <- freshTotalUninterpFn sym
(userSymbol' "uninterpreted_float_lt")
(Ctx.empty Ctx.:> bvtp Ctx.:> bvtp)
BaseBoolRepr
e4 <- applySymFn sym lt_fn $ Ctx.empty Ctx.:> e3 Ctx.:> varExpr sym y
SomePred <$> existsPred sym y e4
show actual @?= show expected
testInterpretedFloatIEEE :: TestTree
testInterpretedFloatIEEE = testCase "Float interpreted as IEEE float" $ do
actual <- withSym FloatIEEERepr iFloatTestPred
expected <- withSym FloatIEEERepr $ \sym -> do
x <- freshConstant sym (userSymbol' "x") knownRepr
e0 <- floatLitRational sym floatSinglePrecision 2.0
e1 <- floatAdd sym RNE x e0
e2 <- floatAdd sym RTZ e1 e1
y <- freshBoundVar sym (userSymbol' "y") knownRepr
e3 <- floatLt sym e2 $ varExpr sym y
SomePred <$> existsPred sym y e3
show actual @?= show expected
-- x <= 0.5 && x >= 1.5
testFloatUnsat0 :: TestTree
testFloatUnsat0 = testCase "Unsat float formula" $ withZ3 $ \sym s -> do
x <- freshConstant sym (userSymbol' "x") knownRepr
e0 <- floatLitRational sym floatSinglePrecision 0.5
e1 <- floatLitRational sym knownRepr 1.5
p0 <- floatLe sym x e0
p1 <- floatGe sym x e1
assume (sessionWriter s) p0
assume (sessionWriter s) p1
runCheckSat s $ \res -> isUnsat res @? "unsat"
-- x * x < 0
testFloatUnsat1 :: TestTree
testFloatUnsat1 = testCase "Unsat float formula" $ withZ3 $ \sym s -> do
x <- freshConstant sym (userSymbol' "x") floatSingleType
e0 <- floatMul sym RNE x x
p0 <- floatIsNeg sym e0
assume (sessionWriter s) p0
runCheckSat s $ \res -> isUnsat res @? "unsat"
-- x + y >= x && x != infinity && y > 0 with rounding to +infinity
testFloatUnsat2 :: TestTree
testFloatUnsat2 = testCase "Sat float formula" $ withZ3 $ \sym s -> do
x <- freshConstant sym (userSymbol' "x") floatSingleType
y <- freshConstant sym (userSymbol' "y") knownRepr
p0 <- notPred sym =<< floatIsInf sym x
p1 <- floatIsPos sym y
p2 <- notPred sym =<< floatIsZero sym y
e0 <- floatAdd sym RTP x y
p3 <- floatGe sym x e0
p4 <- foldlM (andPred sym) (truePred sym) [p1, p2, p3]
assume (sessionWriter s) p4
runCheckSat s $ \res -> isSat res @? "sat"
assume (sessionWriter s) p0
runCheckSat s $ \res -> isUnsat res @? "unsat"
-- x == 2.5 && y == +infinity
testFloatSat0 :: TestTree
testFloatSat0 = testCase "Sat float formula" $ withZ3 $ \sym s -> do
x <- freshConstant sym (userSymbol' "x") knownRepr
e0 <- floatLitRational sym floatSinglePrecision 2.5
p0 <- floatEq sym x e0
y <- freshConstant sym (userSymbol' "y") knownRepr
e1 <- floatPInf sym floatSinglePrecision
p1 <- floatEq sym y e1
p2 <- andPred sym p0 p1
withModel s p2 $ \groundEval -> do
(@?=) (bfFromDouble 2.5) =<< groundEval x
y_val <- groundEval y
assertBool ("expected y = +infinity, actual y = " ++ show y_val) $
bfIsInf y_val && bfIsPos y_val
-- x >= 0.5 && x <= 1.5
testFloatSat1 :: TestTree
testFloatSat1 = testCase "Sat float formula" $ withZ3 $ \sym s -> do
x <- freshConstant sym (userSymbol' "x") knownRepr
e0 <- floatLitRational sym floatSinglePrecision 0.5
e1 <- floatLitRational sym knownRepr 1.5
p0 <- floatGe sym x e0
p1 <- floatLe sym x e1
p2 <- andPred sym p0 p1
withModel s p2 $ \groundEval -> do
x_val <- groundEval x
assertBool ("expected x in [0.5, 1.5], actual x = " ++ show x_val) $
bfFromDouble 0.5 <= x_val && x_val <= bfFromDouble 1.5
testFloatToBinary :: TestTree
testFloatToBinary = testCase "float to binary" $ withZ3 $ \sym s -> do
x <- freshConstant sym (userSymbol' "x") knownRepr
y <- freshConstant sym (userSymbol' "y") knownRepr
e0 <- floatToBinary sym x
e1 <- bvAdd sym e0 y
e2 <- floatFromBinary sym floatSinglePrecision e1
p0 <- floatNe sym x e2
assume (sessionWriter s) p0
runCheckSat s $ \res -> isSat res @? "sat"
p1 <- notPred sym =<< bvIsNonzero sym y
assume (sessionWriter s) p1
runCheckSat s $ \res -> isUnsat res @? "unsat"
testFloatFromBinary :: TestTree
testFloatFromBinary = testCase "float from binary" $ withZ3 $ \sym s -> do
x <- freshConstant sym (userSymbol' "x") knownRepr
e0 <- floatFromBinary sym floatSinglePrecision x
e1 <- floatToBinary sym e0
p0 <- bvNe sym x e1
assume (sessionWriter s) p0
runCheckSat s $ \res -> isSat res @? "sat"
p1 <- notPred sym =<< floatIsNaN sym e0
assume (sessionWriter s) p1
runCheckSat s $ \res -> isUnsat res @? "unsat"
testFloatBinarySimplification :: TestTree
testFloatBinarySimplification = testCase "float binary simplification" $
withSym FloatIEEERepr $ \sym -> do
x <- freshConstant sym (userSymbol' "x") knownRepr
e0 <- floatToBinary sym x
e1 <- floatFromBinary sym floatSinglePrecision e0
e1 @?= x
testRealFloatBinarySimplification :: TestTree
testRealFloatBinarySimplification =
testCase "real float binary simplification" $
withSym FloatRealRepr $ \sym -> do
x <- freshFloatConstant sym (userSymbol' "x") SingleFloatRepr
e0 <- iFloatToBinary sym SingleFloatRepr x
e1 <- iFloatFromBinary sym SingleFloatRepr e0
e1 @?= x
testFloatCastSimplification :: TestTree
testFloatCastSimplification = testCase "float cast simplification" $
withSym FloatIEEERepr $ \sym -> do
x <- freshConstant sym (userSymbol' "x") floatSingleType
e0 <- floatCast sym floatDoublePrecision RNE x
e1 <- floatCast sym floatSinglePrecision RNE e0
e1 @?= x
testFloatCastNoSimplification :: TestTree
testFloatCastNoSimplification = testCase "float cast no simplification" $
withSym FloatIEEERepr $ \sym -> do
x <- freshConstant sym (userSymbol' "x") floatDoubleType
e0 <- floatCast sym floatSinglePrecision RNE x
e1 <- floatCast sym floatDoublePrecision RNE e0
e1 /= x @? ""
testBVSelectShl :: TestTree
testBVSelectShl = testCase "select shl simplification" $
withSym FloatIEEERepr $ \sym -> do
x <- freshConstant sym (userSymbol' "x") knownRepr
e0 <- bvLit sym (knownNat @64) (BV.zero knownNat)
e1 <- bvConcat sym e0 x
e2 <- bvShl sym e1 =<< bvLit sym knownRepr (BV.mkBV knownNat 64)
e3 <- bvSelect sym (knownNat @64) (knownNat @64) e2
e3 @?= x
testBVSelectLshr :: TestTree
testBVSelectLshr = testCase "select lshr simplification" $
withSym FloatIEEERepr $ \sym -> do
x <- freshConstant sym (userSymbol' "x") knownRepr
e0 <- bvConcat sym x =<< bvLit sym (knownNat @64) (BV.zero knownNat)
e1 <- bvLshr sym e0 =<< bvLit sym knownRepr (BV.mkBV knownNat 64)
e2 <- bvSelect sym (knownNat @0) (knownNat @64) e1
e2 @?= x
testBVOrShlZext :: TestTree
testBVOrShlZext = testCase "bv or-shl-zext -> concat simplification" $
withSym FloatIEEERepr $ \sym -> do
x <- freshConstant sym (userSymbol' "x") (BaseBVRepr $ knownNat @8)
y <- freshConstant sym (userSymbol' "y") (BaseBVRepr $ knownNat @8)
e0 <- bvZext sym (knownNat @16) x
e1 <- bvShl sym e0 =<< bvLit sym knownRepr (BV.mkBV knownNat 8)
e2 <- bvZext sym (knownNat @16) y
e3 <- bvOrBits sym e1 e2
show e3 @?= "bvConcat cx@0:bv cy@1:bv"
e4 <- bvOrBits sym e2 e1
show e4 @?= show e3
arrayCopyTest :: TestTree
arrayCopyTest = testCase "arrayCopy" $ withZ3 $ \sym s -> do
a <- freshConstant sym (userSymbol' "a") (BaseArrayRepr (Ctx.singleton (BaseBVRepr $ knownNat @64)) (BaseBVRepr $ knownNat @8))
b <- freshConstant sym (userSymbol' "b") knownRepr
i <- freshConstant sym (userSymbol' "i") (BaseBVRepr $ knownNat @64)
j <- freshConstant sym (userSymbol' "j") knownRepr
k <- freshConstant sym (userSymbol' "k") knownRepr
n <- freshConstant sym (userSymbol' "n") knownRepr
copy_a_i_b_j_n <- arrayCopy sym a i b j n
add_i_k <- bvAdd sym i k
copy_a_i_b_j_n_at_add_i_k <- arrayLookup sym copy_a_i_b_j_n (Ctx.singleton add_i_k)
add_j_k <- bvAdd sym j k
b_at_add_j_k <- arrayLookup sym b (Ctx.singleton add_j_k)
assume (sessionWriter s) =<< bvUle sym i =<< bvLit sym knownRepr (BV.mkBV knownNat 1024)
assume (sessionWriter s) =<< bvUle sym j =<< bvLit sym knownRepr (BV.mkBV knownNat 1024)
assume (sessionWriter s) =<< bvUle sym n =<< bvLit sym knownRepr (BV.mkBV knownNat 1024)
assume (sessionWriter s) =<< bvNe sym copy_a_i_b_j_n_at_add_i_k b_at_add_j_k
runCheckSat s $ \res -> isSat res @? "sat"
assume (sessionWriter s) =<< bvUlt sym k n
runCheckSat s $ \res -> isUnsat res @? "unsat"
arraySetTest :: TestTree
arraySetTest = testCase "arraySet" $ withZ3 $ \sym s -> do
a <- freshConstant sym (userSymbol' "a") knownRepr
i <- freshConstant sym (userSymbol' "i") (BaseBVRepr $ knownNat @64)
j <- freshConstant sym (userSymbol' "j") knownRepr
n <- freshConstant sym (userSymbol' "n") knownRepr
v <- freshConstant sym (userSymbol' "v") (BaseBVRepr $ knownNat @8)
set_a_i_v_n <- arraySet sym a i v n
add_i_j <- bvAdd sym i j
set_a_i_v_n_at_add_i_j <- arrayLookup sym set_a_i_v_n (Ctx.singleton add_i_j)
assume (sessionWriter s) =<< bvUle sym i =<< bvLit sym knownRepr (BV.mkBV knownNat 1024)
assume (sessionWriter s) =<< bvUle sym n =<< bvLit sym knownRepr (BV.mkBV knownNat 1024)
assume (sessionWriter s) =<< bvNe sym v set_a_i_v_n_at_add_i_j
runCheckSat s $ \res -> isSat res @? "sat"
assume (sessionWriter s) =<< bvUlt sym j n
runCheckSat s $ \res -> isUnsat res @? "unsat"
arrayCopySetTest :: TestTree
arrayCopySetTest = testCase "arrayCopy/arraySet" $ withZ3 $ \sym s -> do
a <- freshConstant sym (userSymbol' "a") knownRepr
i <- freshConstant sym (userSymbol' "i") (BaseBVRepr $ knownNat @64)
n <- freshConstant sym (userSymbol' "n") knownRepr
v <- freshConstant sym (userSymbol' "v") (BaseBVRepr $ knownNat @8)
const_v <- constantArray sym (Ctx.singleton (BaseBVRepr $ knownNat @64)) v
z <- bvLit sym knownRepr $ BV.mkBV knownNat 0
copy_a_i_v_n <- arrayCopy sym a i const_v z n
set_a_i_v_n <- arraySet sym a i v n
assume (sessionWriter s) =<< bvUle sym i =<< bvLit sym knownRepr (BV.mkBV knownNat 1024)
assume (sessionWriter s) =<< bvUle sym n =<< bvLit sym knownRepr (BV.mkBV knownNat 1024)
p <- notPred sym =<< arrayEq sym copy_a_i_v_n set_a_i_v_n
assume (sessionWriter s) p
runCheckSat s $ \res -> isUnsat res @? "unsat"
testUninterpretedFunctionScope :: TestTree
testUninterpretedFunctionScope = testCase "uninterpreted function scope" $
withOnlineZ3 $ \sym s -> do
fn <- freshTotalUninterpFn sym (userSymbol' "f") knownRepr BaseIntegerRepr
x <- freshConstant sym (userSymbol' "x") BaseIntegerRepr
y <- freshConstant sym (userSymbol' "y") BaseIntegerRepr
e0 <- applySymFn sym fn (Ctx.empty Ctx.:> x)
e1 <- applySymFn sym fn (Ctx.empty Ctx.:> y)
p0 <- intEq sym x y
p1 <- notPred sym =<< intEq sym e0 e1
p2 <- andPred sym p0 p1
res1 <- checkSatisfiable s "test" p2
isUnsat res1 @? "unsat"
res2 <- checkSatisfiable s "test" p2
isUnsat res2 @? "unsat"
testBVIteNesting :: TestTree
testBVIteNesting = testCase "nested bitvector ites" $ withZ3 $ \sym s -> do
bv0 <- bvLit sym (knownNat @32) (BV.zero knownNat)
let setSymBit bv idx = do
c1 <- freshConstant sym (userSymbol' ("c1_" ++ show idx)) knownRepr
c2 <- freshConstant sym (userSymbol' ("c2_" ++ show idx)) knownRepr
c3 <- freshConstant sym (userSymbol' ("c3_" ++ show idx)) knownRepr
tt1 <- freshConstant sym (userSymbol' ("tt1_" ++ show idx)) knownRepr
tt2 <- freshConstant sym (userSymbol' ("tt2_" ++ show idx)) knownRepr
tt3 <- freshConstant sym (userSymbol' ("tt3_" ++ show idx)) knownRepr
tt4 <- freshConstant sym (userSymbol' ("tt4_" ++ show idx)) knownRepr
ite1 <- itePred sym c1 tt1 tt2
ite2 <- itePred sym c2 tt3 tt4
ite3 <- itePred sym c3 ite1 ite2
bvSet sym bv idx ite3
bv1 <- foldlM setSymBit bv0 [0..31]
p <- testBitBV sym 0 bv1
assume (sessionWriter s) p
runCheckSat s $ \res -> isSat res @? "sat"
testRotate1 :: TestTree
testRotate1 = testCase "rotate test1" $ withOnlineZ3 $ \sym s -> do
bv <- freshConstant sym (userSymbol' "bv") (BaseBVRepr (knownNat @32))
bv1 <- bvRol sym bv =<< bvLit sym knownNat (BV.mkBV knownNat 8)
bv2 <- bvRol sym bv1 =<< bvLit sym knownNat (BV.mkBV knownNat 16)
bv3 <- bvRol sym bv2 =<< bvLit sym knownNat (BV.mkBV knownNat 8)
bv4 <- bvRor sym bv2 =<< bvLit sym knownNat (BV.mkBV knownNat 24)
bv5 <- bvRor sym bv2 =<< bvLit sym knownNat (BV.mkBV knownNat 28)
res <- checkSatisfiable s "test" =<< notPred sym =<< bvEq sym bv bv3
isUnsat res @? "unsat1"
res1 <- checkSatisfiable s "test" =<< notPred sym =<< bvEq sym bv bv4
isUnsat res1 @? "unsat2"
res2 <- checkSatisfiable s "test" =<< notPred sym =<< bvEq sym bv bv5
isSat res2 @? "sat"
testRotate2 :: TestTree
testRotate2 = testCase "rotate test2" $ withOnlineZ3 $ \sym s -> do
bv <- freshConstant sym (userSymbol' "bv") (BaseBVRepr (knownNat @32))
amt <- freshConstant sym (userSymbol' "amt") (BaseBVRepr (knownNat @32))
bv1 <- bvRol sym bv amt
bv2 <- bvRor sym bv1 amt
bv3 <- bvRol sym bv =<< bvLit sym knownNat (BV.mkBV knownNat 20)
bv == bv2 @? "syntactic equality"
res1 <- checkSatisfiable s "test" =<< notPred sym =<< bvEq sym bv bv2
isUnsat res1 @? "unsat"
res2 <- checkSatisfiable s "test" =<< notPred sym =<< bvEq sym bv bv3
isSat res2 @? "sat"
testRotate3 :: TestTree
testRotate3 = testCase "rotate test3" $ withOnlineZ3 $ \sym s -> do
bv <- freshConstant sym (userSymbol' "bv") (BaseBVRepr (knownNat @7))
amt <- freshConstant sym (userSymbol' "amt") (BaseBVRepr (knownNat @7))
bv1 <- bvRol sym bv amt
bv2 <- bvRor sym bv1 amt
bv3 <- bvRol sym bv =<< bvLit sym knownNat (BV.mkBV knownNat 3)
-- Note, because 7 is not a power of two, this simplification doesn't quite
-- work out... it would probably be significant work to make it do so.
-- bv == bv2 @? "syntactic equality"
res1 <- checkSatisfiable s "test" =<< notPred sym =<< bvEq sym bv bv2
isUnsat res1 @? "unsat"
res2 <- checkSatisfiable s "test" =<< notPred sym =<< bvEq sym bv bv3
isSat res2 @? "sat"
testSymbolPrimeCharZ3 :: TestTree
testSymbolPrimeCharZ3 = testCase "z3 symbol prime (') char" $
withZ3 $ \sym s -> do
x <- freshConstant sym (userSymbol' "x'") knownRepr
y <- freshConstant sym (userSymbol' "y'") knownRepr
p <- intLt sym x y
assume (sessionWriter s) p
runCheckSat s $ \res -> isSat res @? "sat"
expectFailure :: IO a -> IO ()
expectFailure f = try @SomeException f >>= \case
Left _ -> return ()
Right _ -> assertFailure "expectFailure"
testBoundVarAsFree :: TestTree
testBoundVarAsFree = testCase "boundvarasfree" $ withOnlineZ3 $ \sym s -> do
x <- freshBoundVar sym (userSymbol' "x") BaseBoolRepr
y <- freshBoundVar sym (userSymbol' "y") BaseBoolRepr
pz <- freshConstant sym (userSymbol' "pz") BaseBoolRepr
let px = varExpr sym x
let py = varExpr sym y
expectFailure $ checkSatisfiable s "test" px
expectFailure $ checkSatisfiable s "test" py
checkSatisfiable s "test" pz >>= \res -> isSat res @? "sat"
inNewFrameWithVars s [Some x] $ do
checkSatisfiable s "test" px >>= \res -> isSat res @? "sat"
expectFailure $ checkSatisfiable s "test" py
-- Outside the scope of inNewFrameWithVars we can no longer
-- use the bound variable as free
expectFailure $ checkSatisfiable s "test" px
expectFailure $ checkSatisfiable s "test" py
roundingTest ::
OnlineSolver solver =>
SimpleExprBuilder t fs ->
SolverProcess t solver ->
IO ()
roundingTest sym solver =
do r <- freshConstant sym (userSymbol' "r") BaseRealRepr
let runErrTest nm op errOp =
do diff <- realAbs sym =<< realSub sym r =<< integerToReal sym =<< op sym r
p' <- notPred sym =<< errOp diff
res <- checkSatisfiable solver nm p'
isUnsat res @? nm
runErrTest "floor" realFloor (\diff -> realLt sym diff =<< realLit sym 1)
runErrTest "ceiling" realCeil (\diff -> realLt sym diff =<< realLit sym 1)
runErrTest "trunc" realTrunc (\diff -> realLt sym diff =<< realLit sym 1)
runErrTest "rna" realRound (\diff -> realLe sym diff =<< realLit sym 0.5)
runErrTest "rne" realRoundEven (\diff -> realLe sym diff =<< realLit sym 0.5)
-- floor test
do ri <- integerToReal sym =<< realFloor sym r
p <- realLe sym ri r
res <- checkSatisfiable solver "floorTest" =<< notPred sym p
isUnsat res @? "floorTest"
-- ceiling test
do ri <- integerToReal sym =<< realCeil sym r
p <- realLe sym r ri
res <- checkSatisfiable solver "ceilingTest" =<< notPred sym p
isUnsat res @? "ceilingTest"
-- truncate test
do ri <- integerToReal sym =<< realTrunc sym r
rabs <- realAbs sym r
riabs <- realAbs sym ri
p <- realLe sym riabs rabs
res <- checkSatisfiable solver "truncateTest" =<< notPred sym p
isUnsat res @? "truncateTest"
-- round away test
do ri <- integerToReal sym =<< realRound sym r
diff <- realAbs sym =<< realSub sym r ri
ptie <- realEq sym diff =<< realLit sym 0.5
rabs <- realAbs sym r
iabs <- realAbs sym ri
plarge <- realGt sym iabs rabs
res <- checkSatisfiable solver "rnaTest" =<<
andPred sym ptie =<< notPred sym plarge
isUnsat res @? "rnaTest"
-- round-to-even test
do i <- realRoundEven sym r
ri <- integerToReal sym i
diff <- realAbs sym =<< realSub sym r ri
ptie <- realEq sym diff =<< realLit sym 0.5
ieven <- intDivisible sym i 2
res <- checkSatisfiable solver "rneTest" =<<
andPred sym ptie =<< notPred sym ieven
isUnsat res @? "rneTest"
zeroTupleTest ::
OnlineSolver solver =>
SimpleExprBuilder t fs ->
SolverProcess t solver ->
IO ()
zeroTupleTest sym solver =
do u <- freshConstant sym (userSymbol' "u") (BaseStructRepr Ctx.Empty)
s <- mkStruct sym Ctx.Empty
f <- freshTotalUninterpFn sym (userSymbol' "f")
(Ctx.Empty Ctx.:> BaseStructRepr Ctx.Empty)
BaseBoolRepr
fu <- applySymFn sym f (Ctx.Empty Ctx.:> u)
fs <- applySymFn sym f (Ctx.Empty Ctx.:> s)
p <- eqPred sym fu fs
res1 <- checkSatisfiable solver "test" p
isSat res1 @? "sat"
res2 <- checkSatisfiable solver "test" =<< notPred sym p
isUnsat res2 @? "unsat"
oneTupleTest ::
OnlineSolver solver =>
SimpleExprBuilder t fs ->
SolverProcess t solver ->
IO ()
oneTupleTest sym solver =
do u <- freshConstant sym (userSymbol' "u") (BaseStructRepr (Ctx.Empty Ctx.:> BaseBoolRepr))
s <- mkStruct sym (Ctx.Empty Ctx.:> backendPred sym False)
f <- freshTotalUninterpFn sym (userSymbol' "f")
(Ctx.Empty Ctx.:> BaseStructRepr (Ctx.Empty Ctx.:> BaseBoolRepr))
BaseBoolRepr
fu <- applySymFn sym f (Ctx.Empty Ctx.:> u)
fs <- applySymFn sym f (Ctx.Empty Ctx.:> s)
p <- eqPred sym fu fs
res1 <- checkSatisfiable solver "test" p
isSat res1 @? "sat"
res2 <- checkSatisfiable solver "test" =<< notPred sym p
isSat res2 @? "neg sat"
pairTest ::
OnlineSolver solver =>
SimpleExprBuilder t fs ->
SolverProcess t solver ->
IO ()
pairTest sym solver =
do u <- freshConstant sym (userSymbol' "u") (BaseStructRepr (Ctx.Empty Ctx.:> BaseBoolRepr Ctx.:> BaseRealRepr))
r <- realLit sym 42.0
s <- mkStruct sym (Ctx.Empty Ctx.:> backendPred sym True Ctx.:> r )
p <- structEq sym u s
res1 <- checkSatisfiable solver "test" p
isSat res1 @? "sat"
res2 <- checkSatisfiable solver "test" =<< notPred sym p
isSat res2 @? "neg sat"
stringTest1 ::
OnlineSolver solver =>
SimpleExprBuilder t fs ->
SolverProcess t solver ->
IO ()
stringTest1 sym solver = withChecklist "string1" $
do let bsx = "asdf\nasdf" -- length 9
let bsz = "qwe\x1c\&rty" -- length 7
let bsw = "QQ\"QQ" -- length 5
x <- stringLit sym (UnicodeLiteral bsx)
y <- freshConstant sym (userSymbol' "str") (BaseStringRepr UnicodeRepr)
z <- stringLit sym (UnicodeLiteral bsz)
w <- stringLit sym (UnicodeLiteral bsw)
s <- stringConcat sym x =<< stringConcat sym y z
s' <- stringConcat sym s w
l <- stringLength sym s'
n <- intLit sym 25
p <- intEq sym n l
checkSatisfiableWithModel solver "test" p $ \case
Sat fn ->
do UnicodeLiteral slit <- groundEval fn s'
llit <- groundEval fn n
slit `checkValues`
(Empty
:> Val "model string length" (fromIntegral . Text.length) llit
:> Got "expected prefix" (Text.isPrefixOf bsx)
:> Got "expected suffix" (Text.isSuffixOf (bsz <> bsw))
)
_ -> fail "expected satisfiable model"
p2 <- intEq sym l =<< intLit sym 20
checkSatisfiableWithModel solver "test" p2 $ \case
Unsat () -> return ()
_ -> fail "expected unsatifiable model"
stringTest2 ::
OnlineSolver solver =>
SimpleExprBuilder t fs ->
SolverProcess t solver ->
IO ()
stringTest2 sym solver = withChecklist "string2" $
do let bsx = "asdf\nasdf"
let bsz = "qwe\x1c\&rty"
let bsw = "QQ\"QQ"
q <- freshConstant sym (userSymbol' "q") BaseBoolRepr
x <- stringLit sym (UnicodeLiteral bsx)
z <- stringLit sym (UnicodeLiteral bsz)
w <- stringLit sym (UnicodeLiteral bsw)
a <- freshConstant sym (userSymbol' "stra") (BaseStringRepr UnicodeRepr)
b <- freshConstant sym (userSymbol' "strb") (BaseStringRepr UnicodeRepr)
ax <- stringConcat sym x a
zw <- stringIte sym q z w
bzw <- stringConcat sym b zw
l <- stringLength sym zw
n <- intLit sym 7
p1 <- stringEq sym ax bzw
p2 <- intLt sym l n
p <- andPred sym p1 p2
checkSatisfiableWithModel solver "test" p $ \case
Sat fn ->
do axlit <- groundEval fn ax
bzwlit <- groundEval fn bzw
qlit <- groundEval fn q
TC.check "correct ite" (False ==) qlit
TC.check "equal strings" (axlit ==) bzwlit
_ -> fail "expected satisfable model"
stringTest3 ::
(OnlineSolver solver) =>
SimpleExprBuilder t fs ->
SolverProcess t solver ->
IO ()
stringTest3 sym solver = withChecklist "string3" $
do let bsz = "qwe\x1c\&rtyQQ\"QQ"
z <- stringLit sym (UnicodeLiteral bsz)
a <- freshConstant sym (userSymbol' "stra") (BaseStringRepr UnicodeRepr)
b <- freshConstant sym (userSymbol' "strb") (BaseStringRepr UnicodeRepr)
c <- freshConstant sym (userSymbol' "strc") (BaseStringRepr UnicodeRepr)
pfx <- stringIsPrefixOf sym a z
sfx <- stringIsSuffixOf sym b z
cnt1 <- stringContains sym z c
cnt2 <- notPred sym =<< stringContains sym c =<< stringLit sym (UnicodeLiteral "Q")
cnt3 <- notPred sym =<< stringContains sym c =<< stringLit sym (UnicodeLiteral "q")
cnt <- andPred sym cnt1 =<< andPred sym cnt2 cnt3
lena <- stringLength sym a
lenb <- stringLength sym b
lenc <- stringLength sym c
n <- intLit sym 9
rnga <- intEq sym lena n
rngb <- intEq sym lenb n
rngc <- intEq sym lenc =<< intLit sym 6
rng <- andPred sym rnga =<< andPred sym rngb rngc
p <- andPred sym pfx =<<
andPred sym sfx =<<
andPred sym cnt rng
checkSatisfiableWithModel solver "test" p $ \case
Sat fn ->
do alit <- fromUnicodeLit <$> groundEval fn a
blit <- fromUnicodeLit <$> groundEval fn b
clit <- fromUnicodeLit <$> groundEval fn c
bsz `checkValues`
(Empty
:> Val "correct prefix" (Text.take 9) alit
:> Val "correct suffix" (Text.reverse . Text.take 9 . Text.reverse) blit
:> Val "correct middle" (Text.take 6 . Text.drop 1) clit
)
_ -> fail "expected satisfable model"
stringTest4 ::
OnlineSolver solver =>
SimpleExprBuilder t fs ->
SolverProcess t solver ->
IO ()
stringTest4 sym solver = withChecklist "string4" $
do let bsx = "str"
x <- stringLit sym (UnicodeLiteral bsx)
a <- freshConstant sym (userSymbol' "stra") (BaseStringRepr UnicodeRepr)
i <- stringIndexOf sym a x =<< intLit sym 5
zero <- intLit sym 0
p <- intLe sym zero i
checkSatisfiableWithModel solver "test" p $ \case
Sat fn ->
do alit <- fromUnicodeLit <$> groundEval fn a
ilit <- groundEval fn i
TC.check "correct index" (Text.isPrefixOf bsx) (Text.drop (fromIntegral ilit) alit)
TC.check "index large enough" (>= 5) ilit
_ -> fail "expected satisfable model"
np <- notPred sym p
lena <- stringLength sym a
fv <- intLit sym 10
plen <- intLe sym fv lena
q <- andPred sym np plen
checkSatisfiableWithModel solver "test" q $ \case
Sat fn ->
do alit <- fromUnicodeLit <$> groundEval fn a
ilit <- groundEval fn i
TC.check "substring not found" (not . Text.isInfixOf bsx) (Text.drop 5 alit)
TC.check "expected neg one index" (== (-1)) ilit
_ -> fail "expected satisfable model"
stringTest5 ::
OnlineSolver solver =>
SimpleExprBuilder t fs ->
SolverProcess t solver ->
IO ()
stringTest5 sym solver = withChecklist "string5" $
do a <- freshConstant sym (userSymbol' "a") (BaseStringRepr UnicodeRepr)
off <- freshConstant sym (userSymbol' "off") BaseIntegerRepr
len <- freshConstant sym (userSymbol' "len") BaseIntegerRepr
n5 <- intLit sym 5
n20 <- intLit sym 20
let qlit = "qwerty"
sub <- stringSubstring sym a off len
p1 <- stringEq sym sub =<< stringLit sym (UnicodeLiteral qlit)
p2 <- intLe sym n5 off
p3 <- intLe sym n20 =<< stringLength sym a
p <- andPred sym p1 =<< andPred sym p2 p3
checkSatisfiableWithModel solver "test" p $ \case
Sat fn ->
do alit <- fromUnicodeLit <$> groundEval fn a
offlit <- groundEval fn off
lenlit <- groundEval fn len
let q = Text.take (fromIntegral lenlit) (Text.drop (fromIntegral offlit) alit)
TC.check "correct substring" (qlit ==) q
_ -> fail "expected satisfable model"
-- This test verifies that we can correctly round-trip the
-- '\' character. It is a bit of a corner case, since it
-- is is involved in the codepoint escape sequences '\u{abcd}'.
stringTest6 ::
OnlineSolver solver =>
SimpleExprBuilder t fs ->
SolverProcess t solver ->
IO ()
stringTest6 sym solver = withChecklist "string6" $
do let conn = solverConn solver
x <- freshConstant sym (safeSymbol "x") (BaseStringRepr UnicodeRepr)
l <- stringLength sym x
intLit sym 1 >>= isEq sym l >>= assume conn
stringLit sym (UnicodeLiteral (Text.pack "\\")) >>= isEq sym x >>= assume conn
checkAndGetModel solver "test" >>= \case
Sat ge -> do
v <- groundEval ge x
TC.check "correct string" (v ==) (UnicodeLiteral (Text.pack "\\"))
_ -> fail "unsatisfiable"
-- This test asks the solver to produce a sequence of 200 unique characters
-- This helps to ensure that we can correclty recieve and send back to the
-- solver enough characters to exhaust the standard printable ASCII sequence,
-- which ensures that we are testing nontrivial escape sequences.
--
-- We don't verify that any particular string is returned because the solvers
-- make different choices about what characters to return.
stringTest7 ::
OnlineSolver solver =>
SimpleExprBuilder t fs ->
SolverProcess t solver ->
IO ()
stringTest7 sym solver = withChecklist "string6" $
do chars <- getChars sym solver 200
TC.check "correct number of characters" (length chars ==) 200
getChars ::
OnlineSolver solver =>
SimpleExprBuilder t fs ->
SolverProcess t solver ->
Integer ->
IO [Char]
getChars sym solver bound = do
let conn = solverConn solver
-- Create string var and constrain its length to 1
x <- freshConstant sym (safeSymbol "x") (BaseStringRepr UnicodeRepr)
l <- stringLength sym x
intLit sym 1 >>= isEq sym l >>= assume conn
-- Recursively generate characters
let getModelsRecursive n
| n >= bound = return ""
| otherwise =
checkAndGetModel solver "test" >>= \case
Sat ge -> do
v <- groundEval ge x
-- Exclude value
stringLit sym v >>= isEq sym x >>= notPred sym >>= assume conn
let c = Text.head $ fromUnicodeLit v
cs <- getModelsRecursive (n+1)
return (c:cs)
_ -> return []
cs <- getModelsRecursive 0
return cs
multidimArrayTest ::
OnlineSolver solver =>
SimpleExprBuilder t fs ->
SolverProcess t solver ->
IO ()
multidimArrayTest sym solver =
do f <- freshConstant sym (userSymbol' "a") $
BaseArrayRepr (Ctx.empty Ctx.:> BaseBoolRepr Ctx.:> BaseBoolRepr) BaseBoolRepr
f' <- arrayUpdate sym f (Ctx.empty Ctx.:> falsePred sym Ctx.:> falsePred sym) (falsePred sym)
p <- arrayLookup sym f' (Ctx.empty Ctx.:> truePred sym Ctx.:> truePred sym)
checkSatisfiable solver "test" p >>= \case
Sat _ -> return ()
_ -> fail "expected satisfiable model"
forallTest ::
OnlineSolver solver =>
SimpleExprBuilder t fs ->
SolverProcess t solver ->
IO ()
forallTest sym solver =
do x <- freshConstant sym (userSymbol' "x") BaseBoolRepr
y <- freshBoundVar sym (userSymbol' "y") BaseBoolRepr
p <- forallPred sym y =<< orPred sym x (varExpr sym y)
np <- notPred sym p
checkSatisfiableWithModel solver "test" p $ \case
Sat fn ->
do b <- groundEval fn x
(b == True) @? "true result"
_ -> fail "expected satisfible model"
checkSatisfiableWithModel solver "test" np $ \case
Sat fn ->
do b <- groundEval fn x
(b == False) @? "false result"
_ -> fail "expected satisfible model"
binderTupleTest1 ::
OnlineSolver solver =>
SimpleExprBuilder t fs ->
SolverProcess t solver ->
IO ()
binderTupleTest1 sym solver =
do var <- freshBoundVar sym (safeSymbol "v")
(BaseStructRepr (Ctx.Empty Ctx.:> BaseBoolRepr))
p0 <- existsPred sym var (truePred sym)
res <- checkSatisfiable solver "test" p0
isSat res @? "sat"
binderTupleTest2 ::
OnlineSolver solver =>
SimpleExprBuilder t fs ->
SolverProcess t solver ->
IO ()
binderTupleTest2 sym solver =
do x <- freshBoundVar sym (userSymbol' "x")
(BaseStructRepr (Ctx.Empty Ctx.:> BaseIntegerRepr Ctx.:> BaseBoolRepr))
p <- forallPred sym x =<< structEq sym (varExpr sym x) (varExpr sym x)
np <- notPred sym p
checkSatisfiableWithModel solver "test" np $ \case
Unsat _ -> return ()
_ -> fail "expected UNSAT"
-- | A regression test for #182.
issue182Test ::
OnlineSolver solver =>
SimpleExprBuilder t fs ->
SolverProcess t solver ->
IO ()
issue182Test sym solver = do
let w = knownNat @64
arr <- freshConstant sym (safeSymbol "arr")
(BaseArrayRepr (Ctx.Empty Ctx.:> BaseIntegerRepr)
(BaseBVRepr w))
idxInt <- intLit sym 0
let idx = Ctx.Empty Ctx.:> idxInt
let arrLookup = arrayLookup sym arr idx
elt <- arrLookup
bvZero <- bvLit sym w (BV.zero w)
p <- bvEq sym elt bvZero
checkSatisfiableWithModel solver "test" p $ \case
Sat fn ->
do elt' <- arrLookup
eltEval <- groundEval fn elt'
(eltEval == BV.zero w) @? "non-zero result"
_ -> fail "expected satisfible model"
-- | These tests simply ensure that no exceptions are raised.
testSolverInfo :: TestTree
testSolverInfo = testGroup "solver info queries" $
[ testCase "test get solver version" $ withOnlineZ3 $ \_ proc -> do
let conn = solverConn proc
getVersion conn
_ <- versionResult conn
pure ()
, testCase "test get solver name" $ withOnlineZ3 $ \_ proc -> do
let conn = solverConn proc
getName conn
nm <- nameResult conn
nm @?= "Z3"
]
testSolverVersion :: TestTree
testSolverVersion = testCase "test solver version bounds" $
withOnlineZ3 $ \_ proc -> do
let bnd = emptySolverBounds{ lower = Just $(ver "0") }
checkSolverVersion' (Map.singleton "Z3" bnd) proc >> return ()
testBVDomainArithScale :: TestTree
testBVDomainArithScale = testCase "bv domain arith scale" $
withSym FloatIEEERepr $ \sym -> do
x <- freshConstant sym (userSymbol' "x") (BaseBVRepr $ knownNat @8)
e0 <- bvZext sym (knownNat @16) x
e1 <- bvNeg sym e0
e2 <- bvSub sym e1 =<< bvLit sym knownRepr (BV.mkBV knownNat 1)
e3 <- bvUgt sym e2 =<< bvLit sym knownRepr (BV.mkBV knownNat 256)
e3 @?= truePred sym
testBVSwap :: TestTree
testBVSwap = testCase "test bvSwap" $
withSym FloatIEEERepr $ \sym -> do
e0 <- bvSwap sym (knownNat @2) =<< bvLit sym knownRepr (BV.mkBV knownNat 1)
e1 <- bvLit sym knownRepr (BV.mkBV knownNat 256)
e0 @?= e1
testBVBitreverse :: TestTree
testBVBitreverse = testCase "test bvBitreverse" $
withSym FloatIEEERepr $ \sym -> do
e0 <- bvBitreverse sym =<< bvLit sym (knownNat @8) (BV.mkBV knownNat 1)
e1 <- bvLit sym knownRepr (BV.mkBV knownNat 128)
e0 @?= e1
-- Test unsafeSetAbstractValue on a simple symbolic expression
testUnsafeSetAbstractValue1 :: TestTree
testUnsafeSetAbstractValue1 = testCase "test unsafeSetAbstractValue1" $
withSym FloatIEEERepr $ \sym -> do
let w = knownNat @8
e1A <- freshConstant sym (userSymbol' "x1") (BaseBVRepr w)
let e1A' = unsafeSetAbstractValue (WUB.BVDArith (WUBA.range w 2 2)) e1A
unsignedBVBounds e1A' @?= Just (2, 2)
e1B <- bvAdd sym e1A' =<< bvLit sym w (BV.one w)
case asBV e1B of
Just bv -> bv @?= BV.mkBV w 3
Nothing -> assertFailure $ unlines
[ "unsafeSetAbstractValue doesn't work as expected for a"
, "simple symbolic expression"
]
-- Test unsafeSetAbstractValue on a compound symbolic expression
testUnsafeSetAbstractValue2 :: TestTree
testUnsafeSetAbstractValue2 = testCase "test unsafeSetAbstractValue2" $
withSym FloatIEEERepr $ \sym -> do
let w = knownNat @8
e2A <- freshConstant sym (userSymbol' "x2A") (BaseBVRepr w)
e2B <- freshConstant sym (userSymbol' "x2B") (BaseBVRepr w)
e2C <- bvAdd sym e2A e2B
(_, e2C') <- annotateTerm sym $ unsafeSetAbstractValue (WUB.BVDArith (WUBA.range w 2 2)) e2C
unsignedBVBounds e2C' @?= Just (2, 2)
e2D <- bvAdd sym e2C' =<< bvLit sym w (BV.one w)
case asBV e2D of
Just bv -> bv @?= BV.mkBV w 3
Nothing -> assertFailure $ unlines
[ "unsafeSetAbstractValue doesn't work as expected for a"
, "compound symbolic expression"
]
testResolveSymBV :: WURB.SearchStrategy -> TestTree
testResolveSymBV searchStrat =
testProperty ("test resolveSymBV (" ++ show (PP.pretty searchStrat) ++ ")") $
H.property $ do
let w = knownNat @8
lb <- H.forAll $ HGen.word8 $ HRange.constant 0 maxBound
ub <- H.forAll $ HGen.word8 $ HRange.constant lb maxBound
rbv <- liftIO $ withYices $ \sym proc -> do
bv <- freshConstant sym (safeSymbol "bv") knownRepr
p1 <- bvUge sym bv =<< bvLit sym w (BV.mkBV w (toInteger lb))
p2 <- bvUle sym bv =<< bvLit sym w (BV.mkBV w (toInteger ub))
p3 <- andPred sym p1 p2
assume (solverConn proc) p3
WURB.resolveSymBV sym searchStrat w proc bv
case rbv of
WURB.BVConcrete bv -> do
let bv' = fromInteger $ BV.asUnsigned bv
lb H.=== bv'
ub H.=== bv'
WURB.BVSymbolic bounds -> do
let (lb', ub') = WUBA.ubounds bounds
lb H.=== fromInteger lb'
ub H.=== fromInteger ub'
----------------------------------------------------------------------
main :: IO ()
main = do
testLevel <- TestLevel . fromMaybe "0" <$> lookupEnv "CI_TEST_LEVEL"
let solverNames = SolverName <$> [ "cvc4", "cvc5", "yices", "z3" ]
solvers <- reportSolverVersions testLevel id
=<< (zip solverNames <$> mapM getSolverVersion solverNames)
let z3Tests =
let skipPre4_8_11 why =
let shouldSkip = case lookup (SolverName "z3") solvers of
Just (SolverVersion v) -> any (`elem` [ "4.8.8", "4.8.9", "4.8.10" ]) $ words v
Nothing -> True
in if shouldSkip then expectFailBecause why else id
incompatZ3Strings = "unicode and string escaping not supported for older Z3 versions; upgrade to at least 4.8.11"
in
[
testUninterpretedFunctionScope
, testRotate1
, testRotate2
, testRotate3
, testBoundVarAsFree
, testSolverInfo
, testSolverVersion
, testFloatUnsat0
, testFloatUnsat1
, testFloatUnsat2
, testFloatSat0
, testFloatSat1
, testFloatToBinary
, testFloatFromBinary
, testBVIteNesting
, testSymbolPrimeCharZ3
, testCase "Z3 0-tuple" $ withOnlineZ3 zeroTupleTest
, testCase "Z3 1-tuple" $ withOnlineZ3 oneTupleTest
, testCase "Z3 pair" $ withOnlineZ3 pairTest
, testCase "Z3 forall binder" $ withOnlineZ3 forallTest
, skipPre4_8_11 incompatZ3Strings $ testCase "Z3 string1" $ withOnlineZ3 stringTest1
, testCase "Z3 string2" $ withOnlineZ3 stringTest2
, skipPre4_8_11 incompatZ3Strings $ testCase "Z3 string3" $ withOnlineZ3 stringTest3
, skipPre4_8_11 incompatZ3Strings $ testCase "Z3 string4" $ withOnlineZ3 stringTest4
, skipPre4_8_11 incompatZ3Strings $ testCase "Z3 string5" $ withOnlineZ3 stringTest5
, skipPre4_8_11 incompatZ3Strings $ testCase "Z3 string6" $ withOnlineZ3 stringTest6
-- this test apparently passes on older Z3 despite the escaping changes...
, testCase "Z3 string7" $ withOnlineZ3 stringTest7
, testCase "Z3 binder tuple1" $ withOnlineZ3 binderTupleTest1
, testCase "Z3 binder tuple2" $ withOnlineZ3 binderTupleTest2
, testCase "Z3 rounding" $ withOnlineZ3 roundingTest
, testCase "Z3 multidim array"$ withOnlineZ3 multidimArrayTest
, testCase "Z3 #182 test case" $ withOnlineZ3 issue182Test
, arrayCopyTest
, arraySetTest
, arrayCopySetTest
]
let cvc4Tests =
let skipPre1_8 why =
let shouldSkip = case lookup (SolverName "cvc4") solvers of
Just (SolverVersion v) -> any (`elem` [ "1.7" ]) $ words v
Nothing -> True
in if shouldSkip then expectFailBecause why else id
unsuppStrings = "unicode and string escaping not supported for older CVC4 versions; upgrade to at least 1.8"
in
[
ignoreTestBecause "This test stalls the solver for some reason; line-buffering issue?" $
testCase "CVC4 0-tuple" $ withCVC4 zeroTupleTest
, testCase "CVC4 1-tuple" $ withCVC4 oneTupleTest
, testCase "CVC4 pair" $ withCVC4 pairTest
, testCase "CVC4 forall binder" $ withCVC4 forallTest
, testCase "CVC4 string1" $ withCVC4 stringTest1
, testCase "CVC4 string2" $ withCVC4 stringTest2
, skipPre1_8 unsuppStrings $ testCase "CVC4 string3" $ withCVC4 stringTest3
, testCase "CVC4 string4" $ withCVC4 stringTest4
, testCase "CVC4 string5" $ withCVC4 stringTest5
, skipPre1_8 unsuppStrings $ testCase "CVC4 string6" $ withCVC4 stringTest6
, testCase "CVC4 string7" $ withCVC4 stringTest7
, testCase "CVC4 binder tuple1" $ withCVC4 binderTupleTest1
, testCase "CVC4 binder tuple2" $ withCVC4 binderTupleTest2
, testCase "CVC4 rounding" $ withCVC4 roundingTest
, testCase "CVC4 multidim array"$ withCVC4 multidimArrayTest
, testCase "CVC4 #182 test case" $ withCVC4 issue182Test
]
let yicesTests =
[
testResolveSymBV WURB.ExponentialSearch
, testResolveSymBV WURB.BinarySearch
, testCase "Yices 0-tuple" $ withYices zeroTupleTest
, testCase "Yices 1-tuple" $ withYices oneTupleTest
, testCase "Yices pair" $ withYices pairTest
, testCase "Yices rounding" $ withYices roundingTest
, testCase "Yices #182 test case" $ withYices issue182Test
]
let cvc5Tests = cvc4Tests
let skipIfNotPresent nm = if SolverName nm `elem` (fst <$> solvers) then id
else fmap (ignoreTestBecause (nm <> " not present"))
defaultMain $ testGroup "Tests" $
[ testInterpretedFloatReal
, testFloatUninterpreted
, testInterpretedFloatIEEE
, testFloatBinarySimplification
, testRealFloatBinarySimplification
, testFloatCastSimplification
, testFloatCastNoSimplification
, testBVSelectShl
, testBVSelectLshr
, testBVOrShlZext
, testBVDomainArithScale
, testBVSwap
, testBVBitreverse
, testUnsafeSetAbstractValue1
, testUnsafeSetAbstractValue2
]
<> (skipIfNotPresent "cvc4" cvc4Tests)
<> (skipIfNotPresent "cvc5" cvc5Tests)
<> (skipIfNotPresent "yices" yicesTests)
<> (skipIfNotPresent "z3" z3Tests)
|