1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE ExplicitForAll #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeOperators #-}
{-# OPTIONS_GHC -fno-warn-orphans #-} -- for TestShow instance
import Control.Concurrent ( threadDelay )
import Control.Concurrent.Async ( race )
import Control.Lens (folded)
import Control.Monad ( forM )
import Control.Monad.Catch ( MonadMask )
import Control.Monad.IO.Class ( MonadIO )
import Data.Either ( isLeft, isRight )
import qualified Data.List as L
import Data.Maybe ( fromMaybe )
import Data.Metrology ( (%), (#), (|<=|), (|*), (|<|), (|+|), qApprox )
import Data.Metrology.SI ( Time, milli, micro, nano, Second(..) )
import Data.Metrology.Show ()
import Data.Proxy
import qualified Prettyprinter as PP
import System.Clock
import System.Environment ( lookupEnv )
import ProbeSolvers
import Test.Tasty
import qualified Test.Tasty.Checklist as TCL
import Test.Tasty.ExpectedFailure
import Test.Tasty.HUnit
import qualified Data.BitVector.Sized as BV
import Data.Parameterized.Nonce
import What4.Config
import What4.Interface
import What4.Expr
import What4.ProblemFeatures
import What4.Solver
import What4.Protocol.Online
import What4.Protocol.SMTWriter
import qualified What4.Protocol.SMTLib2 as SMT2
import qualified What4.Solver.Yices as Yices
type SolverTestData = (SolverName, AnOnlineSolver, ProblemFeatures, [ConfigDesc], Maybe (ConfigOption BaseIntegerType))
allOnlineSolvers :: [SolverTestData]
allOnlineSolvers =
[ (SolverName "Z3"
, AnOnlineSolver @(SMT2.Writer Z3) Proxy, z3Features, z3Options, Just z3Timeout)
, (SolverName "CVC4"
, AnOnlineSolver @(SMT2.Writer CVC4) Proxy, cvc4Features, cvc4Options, Just cvc4Timeout)
, (SolverName "CVC5"
, AnOnlineSolver @(SMT2.Writer CVC5) Proxy, cvc5Features, cvc5Options, Just cvc5Timeout)
, (SolverName "Yices"
, AnOnlineSolver @Yices.Connection Proxy, yicesDefaultFeatures, yicesOptions, Just yicesGoalTimeout)
, (SolverName "Boolector"
, AnOnlineSolver @(SMT2.Writer Boolector) Proxy, boolectorFeatures, boolectorOptions, Just boolectorTimeout)
#ifdef TEST_STP
, (SolverName "STP"
, AnOnlineSolver @(SMT2.Writer STP) Proxy, stpFeatures, stpOptions, Just stpTimeout)
#endif
]
testSolverName :: SolverTestData -> SolverName
testSolverName (nm,_,_,_,_) = nm
instance TCL.TestShow [PP.Doc ann] where
testShow = L.intercalate ", " . fmap show
-- The smoke test is a simple test to ensure that the solver can be
-- queried for a computable result and that the result can be obtained
-- in a reasonably quick amount of time with no cancel or timeouts
-- considerations.
mkSmokeTest :: (SolverTestData, SolverVersion) -> TestTree
mkSmokeTest ((SolverName nm, AnOnlineSolver (_ :: Proxy s), features, opts, _), _) =
testCase nm $ withIONonceGenerator $ \gen ->
do sym <- newExprBuilder FloatUninterpretedRepr EmptyExprBuilderState gen
extendConfig opts (getConfiguration sym)
proc <- startSolverProcess @s features Nothing sym
let conn = solverConn proc
inNewFrame proc $
do assume conn (falsePred sym)
check proc "smoke test" >>= \case
Unknown -> fail "Solver returned UNKNOWN"
Sat _ -> fail "Should be UNSAT"
Unsat _ -> return ()
----------------------------------------------------------------------
mkFormula1 :: IsSymExprBuilder sym
=> sym
-> IO ( SymExpr sym BaseBoolType
, SymExpr sym BaseBoolType
, SymExpr sym BaseBoolType
, SymExpr sym BaseBoolType
)
mkFormula1 sym = do
-- Let's determine if the following formula is satisfiable:
-- f(p, q, r) = (p | !q) & (q | r) & (!p | !r) & (!p | !q | r)
-- First, declare fresh constants for each of the three variables p, q, r.
p <- freshConstant sym (safeSymbol "p") BaseBoolRepr
q <- freshConstant sym (safeSymbol "q") BaseBoolRepr
r <- freshConstant sym (safeSymbol "r") BaseBoolRepr
-- Next, create terms for the negation of p, q, and r.
not_p <- notPred sym p
not_q <- notPred sym q
not_r <- notPred sym r
-- Next, build up each clause of f individually.
clause1 <- orPred sym p not_q
clause2 <- orPred sym q r
clause3 <- orPred sym not_p not_r
clause4 <- orPred sym not_p =<< orPred sym not_q r
-- Finally, create f out of the conjunction of all four clauses.
f <- andPred sym clause1 =<<
andPred sym clause2 =<<
andPred sym clause3 clause4
return (p,q,r,f)
-- Checks that the only valid model for Formula1 was found, and then
-- returns an expression that (as an assumption) disallows that model.
checkFormula1Model :: (IsExprBuilder sym, SymExpr sym ~ Expr t)
=> sym
-> Expr t BaseBoolType
-> Expr t BaseBoolType
-> Expr t BaseBoolType
-> GroundEvalFn t
-> IO (SymExpr sym BaseBoolType)
checkFormula1Model sym p q r eval =
do p' <- groundEval eval p
q' <- groundEval eval q
r' <- groundEval eval r
-- This is the unique satisfiable model
p' == False @? "p value"
q' == False @? "q value"
r' == True @? "r value"
-- Return an assumption that blocks this model
bs <- forM [(p,p'),(q,q'),(r,r')] $ \(x,v) -> eqPred sym x (backendPred sym v)
block <- notPred sym =<< andAllOf sym folded bs
return block
-- Solve (the relatively simple) Formula1 using either frames
-- (push/pop) for each of the good and bad cases or else no frames and
-- resetting the solver between cases
quickstartTest :: Bool -> (SolverTestData,SolverVersion) -> TestTree
quickstartTest useFrames ((SolverName nm, AnOnlineSolver (Proxy :: Proxy s), features, opts, _timeoutOpt), SolverVersion sver) =
let wrap = if nm == "STP"
then ignoreTestBecause "STP cannot generate the model"
else if nm == "CVC4" && any ("1.7" ==) (words sver)
then ignoreTestBecause "CVC4 1.7 non-framed mode fails"
else id
in wrap $
testCaseSteps nm $ \step ->
withIONonceGenerator $ \gen ->
do sym <- newExprBuilder FloatUninterpretedRepr EmptyExprBuilderState gen
extendConfig opts (getConfiguration sym)
(p,q,r,f) <- mkFormula1 sym
step "Start Solver"
proc <- startSolverProcess @s features Nothing sym
let conn = solverConn proc
-- helpers for operating framed v.s. non-framed testing
let startOnlineCheck :: (MonadMask m, MonadIO m, SMTReadWriter solver) => SolverProcess scope solver -> m b -> m b
startOnlineCheck = if useFrames then inNewFrame else passThru
resetOnlineCheck = if useFrames then doNothing else reset
doNothing = const $ return ()
passThru _ op = op
checkType = if useFrames then "framed" else "direct"
-- Check that formula f is satisfiable, and get the values from
-- the model that satisifies it
step "Check Satisfiability"
block <- startOnlineCheck proc $
do assume conn f
res <- check proc $ checkType <> " formula1 satisfiable"
case res of
Unsat _ -> fail "Unsatisfiable"
Unknown -> fail "Solver returned UNKNOWN"
Sat _ -> checkFormula1Model sym p q r =<< getModel proc
-- Now check that the formula is unsatisfiable when the blocking
-- predicate is added. Re-use the existing solver connection
resetOnlineCheck proc
step "Check Unsatisfiable"
startOnlineCheck proc $
do assume conn f
assume conn block
res <- check proc $ checkType <> " formula1 unsatisfiable"
case res of
Unsat _ -> return ()
Unknown -> fail "Solver returned UNKNOWN"
Sat _ -> fail "Should be a unique model!"
----------------------------------------------------------------------
-- This constructs a What4 formula that takes the solvers a
-- non-trivial amount of time to find a solution for. This is used
-- for running tests that are expected to be interrupted by a timeout,
-- although this formula should run to completion if unrestricted.
mkFormula2 :: IsSymExprBuilder sym => sym -> IO (Pred sym)
mkFormula2 sym = do
p <- freshConstant sym (safeSymbol "p8") (BaseBVRepr (knownNat @8))
q <- freshConstant sym (safeSymbol "q8") (BaseBVRepr (knownNat @8))
r <- freshConstant sym (safeSymbol "r8") (BaseBVRepr (knownNat @8))
zeroBV <- bvLit sym (knownNat @8) (BV.zero (knownNat))
let bvGCD n a b = do
isZero <- bvEq sym zeroBV b
recurs <- if n == 0 then return a
else bvGCD (n-1) b =<< (bvUrem sym a b)
bvIte sym isZero a recurs
-- String together some symbolic GCD calculations to make
-- something that the solver takes a while to check. The goal
-- here is something long enough that we can test various
-- timeouts.
gcd1 <- bvGCD (256 :: Int) p r
gcd2 <- bvGCD (256 :: Int) q r
gcdRes <- bvGCD (256 :: Int) gcd1 gcd2
chk1 <- bvUle sym gcdRes p
chk2 <- bvUle sym gcdRes q
-- chk3 <- bvNe sym gcdRes zero
-- chk4 <- bvEq sym gcdRes zero
-- andPred sym chk1 =<< andPred sym chk2 chk3
andAllOf sym folded [chk1, chk2] -- , chk3, chk4]
-- Attempt to solve an extensive formula (using frames: push/pop) that
-- should exceed the solver goal-timeout. This can be used to verify
-- that the goal-timeout is realized and that the solver is useable
-- for a goal _after_ the goal-timeout was reached.
longTimeTest :: SolverTestData -> Maybe Time -> IO Bool
longTimeTest (SolverName nm, AnOnlineSolver (Proxy :: Proxy s), features, opts, mb'timeoutOpt) goal_tmo =
TCL.withChecklist "timer tests" $
withIONonceGenerator $ \gen ->
do sym <- newExprBuilder FloatUninterpretedRepr EmptyExprBuilderState gen
extendConfig opts (getConfiguration sym)
-- Configure a solver timeout in What4 if specified for this test.
case goal_tmo of
Nothing -> return ()
Just t -> case mb'timeoutOpt of
Nothing -> error $ "No goal timeout option for backend solver " <> nm
Just timeoutOpt -> do
tmOpt <- getOptionSetting timeoutOpt $ getConfiguration sym
warnings <- setOpt tmOpt $ floor (t # milli Second)
TCL.check "timer option set" null warnings
f <- mkFormula2 sym
proc <- startSolverProcess @s features Nothing sym
let conn = solverConn proc
-- Check that formula f is satisfiable, and get the values from
-- the model that satisifies it
do assume conn f
check proc "direct formula2 satisfiable" >>= \case
Unsat _ -> fail "Unsatisfiable"
Unknown -> return False -- how a solver indicates a timeout
Sat _ -> return True
-- checkFormula1Model sym p q r =<< getModel proc
----------------------------------------------------------------------
main :: IO ()
main = do
testLevel <- TestLevel . fromMaybe "0" <$> lookupEnv "CI_TEST_LEVEL"
versionedSolvers <- zip allOnlineSolvers
<$> mapM (getSolverVersion . testSolverName) allOnlineSolvers
solvers <- reportSolverVersions testLevel testSolverName versionedSolvers
defaultMain $
testGroup "OnlineSolverTests"
[
testGroup "SmokeTest" $ map mkSmokeTest solvers
, testGroup "QuickStart Framed" $ map (quickstartTest True) solvers
, testGroup "QuickStart Direct" $ map (quickstartTest False) solvers
, timeoutTests testLevel solvers
]
-- Test the effects of general timeouts on solver proofs
--
-- n.b. Approximate times obviously highly variant based on test
-- machine, etc. As long as they run consistently longer than the
-- useable threshold the tests should perform as expected.
timeoutTests :: TestLevel -> [(SolverTestData, SolverVersion)] -> TestTree
timeoutTests testLevel solvers =
let
-- Amount of time to use for timeouts in testing: can be edited
-- to adjust the timeout threshold needed. This should be large
-- enough to allow the solver to engage on the task, but smaller
-- than the expected completion time by enough that the timeout
-- will halt the test before it completes.
--
-- If the timeout is too short there is the risk that it's not a
-- valid timeout test because of:
--
-- 1. machine speed variance
-- 2. scheduling and solver startup variance
-- 3. timer resolution and timeout-driven scheduling
--
-- If the timeout value is too large, then the solver may
-- complete the proof more quickly than the timeout will fire.
-- Also, people get bored. But in practice, this will likely be
-- set to a number of seconds to allow complex solver solutions
-- to be obtained.
--
-- What4 also includes a deadman timeout on solver activity: the
-- testTimeout is passed to the solver for voluntary timeouts,
-- but if the solver does not honor this time specification,
-- what4 will terminated it via a longer deadman timeout (longer
-- to avoid triggering it unless needed because it's more
-- impactful due to killing the solver process itself).
--
-- This value should also be <= 60% of useableTimeThreshold to
-- ensure that the solver runs for a significantly longer
-- period than the test timeout will be set to.
--
-- This value can be adjusted by the developer as needed to
-- reasonably validate timeout testing subject to the above
-- considerations.
testTimeout = 250 % milli Second
-- Solvers must run for at least this amount of time to be
-- useable for timeout tests. The test timeout value is
-- determined by 'testTimeout', but if the solver does not run
-- for at least the 'useableTimeThreshold' then the test result
-- is likely to be indeterminate due to scheduling and timeout
-- handling variance.
--
-- This value is only used for validating individual tests and
-- does not control how long the actual tests run.
--
-- This value can be adjusted by the developer for cause.
useableTimeThreshold = testTimeout
|+| (500 % milli Second) -- What4 deadman timeout
|+| (650 % milli Second) -- plus some extra time
-- useableTimeThreshold = 4 % Second :: Time
-- This is empirical data from previous runs of the "Test itself
-- is valid and completes" test case; this data is used to guide
-- the current evaluation; times here will be compared to the
-- 'useableTimeThreshold' to verify that tests can be accurately
-- run. This table may need to be updated periodically by the
-- developer as solvers, What4 formulation, and machine speeds
-- evolve.
approxTestTimes :: [ (SolverName, Time) ]
approxTestTimes = [ (SolverName "Z3", 2.27 % Second) -- Z3 4.8.10. Z3 is good at self timeout.
, (SolverName "CVC4", 7.5 % Second) -- CVC4 1.8
, (SolverName "CVC5", 0.40 % Second) -- CVC5 1.0.0
, (SolverName "Yices", 2.9 % Second) -- Yices 2.6.1
, (SolverName "Boolector", 7.2 % Second) -- Boolector 3.2.1
, (SolverName "STP", 1.35 % Second) -- STP 2.3.3
]
-- This is the acceptable delta variation in time between the
-- times in the approxTestTimes above and the actual test times.
-- If difference between the two exceeds this amount then it
-- represents a significant variation that should be attended
-- to; either the values in the approxTestTimes needs to be
-- updated to account for evolved functionality or the test
-- formulas should be updated to ensure that reasonable timeout
-- testing can be performed (or there is a significant
-- performance regression or unexpected improvement in What4).
--
-- Note that when this test executable is run locally solo, a
-- delta value of ~ 0.5 Second is sufficient. This test is
-- disabled when run via CI (i.e. CI_TEST_LEVEL is not 0),
-- because *all* test executables are run in parallel via `cabal
-- test` on unpredictable VMs, so it's not possible to exert any
-- timing constraints in that situation.
--
-- Increase this as needed: it doesn't really have a negative
-- affect on the actual timing tests, but it does decrease
-- sensitivity in test timing changes.
acceptableTimeDelta = 55.0 -- percent variance allowed from expected
--------------------------------------------------
-- end of expected developer-adjustments above --
--------------------------------------------------
mkTimeoutTests (sti,sv) =
let historical = fromMaybe (0.0 % Second)
$ lookup (testSolverName sti) approxTestTimes
snamestr (SolverName sname) = sname
maybeSkipTest =
case (testSolverName sti, sv) of
-- CVC4 v1.7 generates a response _much_ too
-- quickly (~0.25s). This doesn't allow timeout
-- testing, and the speed suggests an improper
-- result as well.
(SolverName "CVC4", SolverVersion v) | "1.7" `elem` words v->
ignoreTestBecause "solver completes too quickly"
_ -> id
in maybeSkipTest $ testGroup (snamestr $ testSolverName sti)
[
testCase ("Test itself is valid and completes (" <> show historical <> ")") $ do
-- Verify that the solver will run to completion for
-- this test if there is no time limit, and also that
-- the approxTestTimes historical time is reasonably
-- close to the actual time taken for this test.
start <- getTime Monotonic
longTimeTest sti Nothing @? "valid test"
finish <- getTime Monotonic
let deltaT = (fromInteger $ toNanoSecs $ diffTimeSpec start finish) % nano Second :: Time
if testLevel == TestLevel "0"
then assertBool
("actual duration of " <> show deltaT
<> " is significantly different than expected"
<> " (will not cause CI failure)")
$ qApprox (historical |* (acceptableTimeDelta / 100.0)) deltaT historical
else return ()
, let maybeRunTest =
let tooFast = unwords
[ "solver runs test faster than reasonable"
, "timing threshold; skipping"
]
in if useableTimeThreshold |<| historical
then id
else ignoreTestBecause tooFast
in maybeRunTest $ testCase "Test runs past timeout" $ do
start <- getTime Monotonic
rslt <- race
(threadDelay (floor $ useableTimeThreshold # micro Second))
(longTimeTest sti Nothing)
finish <- getTime Monotonic
let deltaT = (fromInteger $ toNanoSecs $ diffTimeSpec start finish) % nano Second :: Time
isLeft rslt @? "solver is too fast for valid timeout testing"
assertBool
("Solver check query not interruptible (" <>
show deltaT <> " > expected " <> show useableTimeThreshold <> ")")
$ qApprox (useableTimeThreshold |* (acceptableTimeDelta / 100.0)) deltaT useableTimeThreshold
-- Verify that specifying a goal-timeout will stop once
-- that timeout is reached (i.e. before the race timeout here).
, let maybeRunTest =
case (testSolverName sti, sv) of
-- Z3 4.8.11 and 4.8.12 goal-timeouts don't
-- consistently work properly. Occasionally it
-- will abort but it generally seems to continue
-- running and cannot be aborted by signals from
-- the what4 parent process.
(SolverName "Z3", SolverVersion v)
| any (`elem` ["4.8.11", "4.8.12"]) (words v) ->
expectFailBecause "goal timeouts feature not effective"
_ -> id
in maybeRunTest $ testCase ("Test with goal timeout (" <> show testTimeout <> ")") $ do
rslt <- race
(threadDelay (floor $ useableTimeThreshold # micro Second))
(longTimeTest sti (Just testTimeout))
isRight rslt @? "solver goal timeout didn't occur"
assertEqual "solver didn't timeout on goal" (Right False) rslt
-- TODO: ensure that the solver process is no longer using CPU time.
]
in testGroup "Timeout Tests" $
[
testCase "valid test timeout" $
-- Verify that the user-defineable 'testTimeout' is a
-- reasonable value. If this fails, ignore all other test
-- results and modify the 'testTimeout'.
testTimeout |<=| useableTimeThreshold |* 0.60 @?
"test timeout too large"
] <> map mkTimeoutTests solvers
|