1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
|
% A wreq tutorial
% Learn how to write web clients. We start easy, then ramp up the power.
# Installation
To use the `wreq` package, simply use `cabal`, the standard Haskell
package management command.
~~~~
cabal update
cabal install -j --disable-tests wreq
~~~~
Depending on how many prerequisites you already have installed, and
what your Cabal configuration looks like, the build may take a few
minutes: a few seconds for `wreq`, and the rest for its dependencies.
# Interactive usage
We'll run our examples interactively via the `ghci` shell.
~~~~
$ ghci
~~~~
To start using `wreq`, we import the
[`Network.Wreq`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq.html)
module.
~~~~ {.haskell}
ghci> import Network.Wreq
ghci> r <- get "http://httpbin.org/get"
ghci> :type r
r :: Response ByteString
~~~~
The variable `r` above is the
[`Response`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq.html#t:Response)
from the server.
## Working with string-like types
Complex Haskell libraries and applications have to deal fluently with
Haskell's three main string types: `String` ("legacy"), `Text`, and
`ByteString` (mostly used for binary data, sometimes ASCII).
To write string literals without having to always provide a conversion
function, we use the `OverloadedStrings` language extension.
Throughout the rest of this tutorial, we'll assume that you have
enabled `OverloadedStrings` in `ghci`:
~~~~ {.haskell}
ghci> :set -XOverloadedStrings
~~~~
If you're using `wreq` from a Haskell source file, put a pragma at the
top of your file:
~~~~ {.haskell}
{-# LANGUAGE OverloadedStrings #-}
~~~~
# A quick lens backgrounder
The `wreq` package makes heavy use of Edward Kmett's
[`lens`](https://lens.github.io/) package to provide a clean,
consistent API.
~~~~ {.haskell}
ghci> import Control.Lens
~~~~
While `lens` has a vast surface area, the portion that you must
understand in order to productively use `wreq` is tiny.
A lens provides a way to focus on a portion of a Haskell value. For
example, the `Response` type has a
[`responseStatus`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq.html#v:responseStatus)
lens, which focuses on the status information returned by the server.
~~~~ {.haskell}
ghci> r ^. responseStatus
Status {statusCode = 200, statusMessage = "OK"}
~~~~
The
[`^.`](http://hackage.haskell.org/package/lens/docs/Control-Lens-Getter.html#v:-94-.)
operator takes a value as its first argument, a lens as its second,
and returns the portion of the value focused on by the lens.
We compose lenses using function composition, which allows us to
easily focus on part of a deeply nested structure.
~~~~ {.haskell}
ghci> r ^. responseStatus . statusCode
200
~~~~
We'll have more to say about lenses as this tutorial proceeds.
# Changing default behaviours
While
[`get`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq.html#v:get)
is convenient and easy to use, there's a lot more power
available to us.
For example, if we want to add parameters to the query string of a
URL, we will use the
[`getWith`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq.html#v:getWith)
function. The `*With` family of functions all accept an
[`Options`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq.html#t:Options)
parameter that allow changes from the library's default behaviours.
~~~~ {.haskell}
ghci> import Data.Aeson.Lens (_String, key)
ghci> let opts = defaults & param "foo" .~ ["bar", "quux"]
ghci> r <- getWith opts "http://httpbin.org/get"
ghci> r ^. responseBody . key "url" . _String
"http://httpbin.org/get?foo=bar&foo=quux"
~~~~
(We'll talk more about `key` and `_String` below.)
The default parameters for all queries is represented by the variable
[`defaults`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq.html#v:defaults).
(In fact, `get` is defined simply as `getWith defaults`.)
Here's where we get to learn a little more about lenses.
In addition to *getting* a value from a nested structure, we can also
*set* (edit) a value within a nested structure, which makes an
identical copy of the structure except for the portion we want to
modify.
The `&` operator is just function application with its operands
reversed, so the function is on the right and its parameter is on the
left.
~~~~ {.haskell}
parameter & functionToApply
~~~~
The
[`.~`](http://hackage.haskell.org/package/lens/docs/Control-Lens-Setter.html#v:.-126-)
operator turns a lens into a setter function, with the lens
on the left and the new value on the right.
~~~~ {.haskell}
param "foo" .~ ["bar", "quux"]
~~~~
<a id="param">The
[`param`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq.html#v:param)
lens</a> focuses on the values associated with the given key in the
query string.
~~~~ {.haskell}
param :: Text -> Lens' Options [Text]
~~~~
The reason we allow for a list of values instead of just a single
value is simply that this is completely legitimate. For instance, in
our example above we generate the query string `foo=bar&foo=quux`.
If you use non-ASCII characters in a `param` key or value, they will
be encoded as UTF-8 before being URL-encoded, so that they can be
safely transmitted over the wire.
# Accessing the body of a response
The
[`responseBody`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq.html#v:responseBody)
lens gives us access to the body of a response.
~~~~ {.haskell}
ghci> r <- get "http://httpbin.org/get"
ghci> r ^. responseBody
"{\n \"headers\": {\n \"Accept-Encoding\": \"gzip"{-...-}
~~~~
The response body is a raw lazy
[`ByteString`](http://hackage.haskell.org/package/bytestring/docs/Data-ByteString-Lazy.html#t:ByteString).
## JSON responses
We can use the
[`asJSON`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq.html#v:asJSON)
function to convert a response body to a Haskell value that implements
the
[`FromJSON`](http://hackage.haskell.org/package/aeson/docs/Data-Aeson-Types.html#t:FromJSON)
class.
~~~~ {.haskell}
ghci> import Data.Map as Map
ghci> import Data.Aeson (Value)
ghci> type Resp = Response (Map String Value)
ghci> r <- asJSON =<< get "http://httpbin.org/get" :: IO Resp
ghci> Map.size (r ^. responseBody)
4
~~~~
<div class="alert alert-info">
In this example, we have to tell `ghci` exactly what target type we
are expecting. In a real Haskell program, the correct return type will
usually be inferred automatically, making an explicit type signature
unnecessary in most cases.
</div>
If the response is not `application/json`, or we try to convert to an
incompatible Haskell type, a
[`JSONError`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq.html#t:JSONError)
exception will be thrown.
~~~~ {.haskell}
ghci> type Resp = Response [Int]
ghci> r <- asJSON =<< get "http://httpbin.org/get" :: IO Resp
*** Exception: JSONError "when expecting a [a], encountered Object instead"
~~~~
## Convenient JSON traversal
The `lens` package provides some extremely useful functions for
traversing JSON structures without having to either build a
corresponding Haskell type or traverse a `Value` by hand.
The first of these is
[`key`](http://hackage.haskell.org/package/lens/docs/Data-Aeson-Lens.html#v:key),
which traverses to the named key in a JSON object.
~~~~ {.haskell}
ghci> import Data.Aeson.Lens (key)
ghci> r <- get "http://httpbin.org/get"
ghci> r ^? responseBody . key "url"
Just (String "http://httpbin.org/get")
~~~~
<div class="alert alert-info">
Notice our use of the
[`^?`](http://hackage.haskell.org/package/lens-4.1.2/docs/Control-Lens-Fold.html#v:-94--63-)
operator here. This is like `^.`, but it allows for the possibility
that an access might fail---and of course there may not be a key named
`"url"` in our object.
</div>
That said, our result above has the type `Maybe Value`, so it's quite
annoying to work with. This is where the `_String` lens comes in.
~~~~ {.haskell}
ghci> import Data.Aeson.Lens (_String, key)
ghci> r <- get "http://httpbin.org/get"
ghci> r ^. responseBody . key "url" . _String
"http://httpbin.org/get"
~~~~
If the key exists, and is a `Value` with a `String` constructor,
`_String` gives us back a regular `Text` value with all the wrappers
removed; otherwise it gives an empty value. Notice what happens as we
switch between `^?` and `^.` in these examples.
~~~~ {.haskell}
ghci> r ^. responseBody . key "fnord" . _String
""
ghci> r ^? responseBody . key "fnord" . _String
Nothing
ghci> r ^? responseBody . key "url" . _String
Just "http://httpbin.org/get"
~~~~
# Working with headers
To add headers to a request, we use the
[`header`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq.html#v:header)
lens.
~~~~ {.haskell}
ghci> let opts = defaults & header "Accept" .~ ["application/json"]
ghci> getWith opts "http://httpbin.org/get"
~~~~
As with the [`param`](#param) lens, if we provide more than one value to go
with a single key, this will expand to several headers.
~~~~ {.haskell}
header :: HeaderName -> Lens' Options [ByteString]
~~~~
When we want to inspect the headers of a response, we use the
[`responseHeader`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq.html#v:responseHeader)
lens.
~~~~ {.haskell}
ghci> r <- get "http://httpbin.org/get"
ghci> r ^. responseHeader "content-type"
"application/json"
~~~~
<div class="alert alert-info">
Header names are case insensitive.
</div>
If a header is not present in a response, then `^.` will give an empty
string, while `^?` will give `Nothing`.
~~~~ {.haskell}
ghci> r ^. responseHeader "X-Nonesuch"
""
ghci> r ^? responseHeader "X-Nonesuch"
Nothing
~~~~
# Uploading data via POST
We use the [`post`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq.html#v:post)
and
[`postWith`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq.html#v:postWith)
functions to issue POST requests.
~~~~ {.haskell}
ghci> r <- post "http://httpbin.org/post" ["num" := 3, "str" := "wat"]
ghci> r ^? responseBody . key "form"
Just (Object fromList [("num",String "3"),("str",String "wat")])
~~~~
The [httpbin.org](http://httpbin.org/) server conveniently echoes our
request headers back at us, so we can see what kind of body we POSTed.
~~~~ {.haskell}
ghci> r ^. responseBody . key "headers" . key "Content-Type" . _String
"application/x-www-form-urlencoded"
~~~~
The
[`:=`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq.html#v::-61-)
operator is the constructor for the
[`FormParam`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq.html#t:FormParam)
type, which `wreq` uses as a key/value pair to generate an
`application/x-www-form-urlencoded` form body to upload.
A class named
[`FormValue`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq.html#t:FormValue)
determines how the operand on the right-hand side of `:=` is encoded,
with sensible default behaviours for strings and numbers.
The slightly more modern way to upload POST data is via a
`multipart/form-data` payload, for which `wreq` provides the
[`Part`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq.html#t:Part)
type.
~~~~ {.haskell}
ghci> r <- post "http://httpbin.org/post" [partText "button" "o hai"]
ghci> r ^. responseBody . key "headers" . key "Content-Type" . _String
"multipart/form-data; boundary=----WebKitFormBoundaryJsEZfuj89uj"
~~~~
The first argument to these `part*` functions is the label of the
`<input>` element in the form being uploaded.
Let's inspect httpbin.org's response to see what we uploaded. When we
think there could be more than one value associated with a lens, we
use the
[`^..`](http://hackage.haskell.org/package/lens-4.1.2/docs/Control-Lens-Fold.html#v:-94-..)
operator, which returns a list.
~~~~ {.haskell}
ghci> r ^.. responseBody . key "form"
[Object fromList [("button",String "o hai")]]
~~~~
## Uploading file contents
To upload a file as part of a `multipart/form-data` POST, we use
[`partFile`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq.html#t:partFile),
or if the file is large enough that we want to stream its contents,
[`partFileSource`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq.html#t:partFileSource).
~~~~ {.haskell}
ghci> import Data.Aeson.Lens (members)
ghci> r <- post "http://httpbin.org/post" (partFile "file" "hello.hs")
ghci> r ^.. responseBody . key "files" . members . _String
["main = putStrLn \"hello\"\n"]
~~~~
Both `partFile` and `partFileSource` will set the filename of a part
to whatever name they are given, and guess its content-type based on
the file name extension. Here's an example of how we can upload a
file without revealing its name.
~~~~ {.haskell}
ghci> partFile "label" "foo.hs" & partFileName .~ Nothing
Part "label" Nothing (Just "text/plain") <m (RequestBody m)>
~~~~
# Cookies
To see how easily we can work with cookies, let's ask the
ever-valuable httpbin.org to set a cookie in a response.
~~~~ {.haskell}
ghci> r <- get "http://httpbin.org/cookies/set?foo=bar"
ghci> r ^. responseCookie "foo" . cookieValue
"bar"
~~~~
To make cookies even easier to deal with, we'll want to
[use the `Session` API](#session), but we'll come back to that later.
# Authentication
The `wreq` library supports both basic authentication and OAuth2
bearer authentication.
<div class="alert alert-danger">
**Note:** the security of these mechanisms is _absolutely dependent on
your use of TLS_, as the credentials can easily be stolen and reused
if transmitted unencrypted.
</div>
If we try to access a service that requires authentication, `wreq`
will throw a
[`HttpException`](http://hackage.haskell.org/package/http-client/docs/Network-HTTP-Client.html#t:HttpException).
~~~~ {.haskell}
ghci> r <- get "http://httpbin.org/basic-auth/user/pass"
*** Exception: HttpExceptionRequest Request { ... }
(StatusCodeException (Response {
responseStatus = Status {statusCode = 401, {-...-} }
, {- ... -}
}), "..." )
~~~~
If we then supply a username and password, our request will succeed.
(Notice that we follow our own advice: we switch to `https` for our
retry.)
~~~~ {.haskell}
ghci> let opts = defaults & auth ?~ basicAuth "user" "pass"
ghci> r <- getWith opts "https://httpbin.org/basic-auth/user/pass"
ghci> r ^. responseBody
"{\n \"authenticated\": true,\n \"user\": \"user\"\n}"
~~~~
<div class="alert alert-info">
We use the
[`?~`](http://hackage.haskell.org/package/lens/docs/Control-Lens-Setter.html#v:-63--126-)
operator to turn an [`Auth`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq.html#t:Auth)
into a `Maybe Auth` here, to make the type of value on the right hand
side compatible with the
[`auth`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq.html#v:auth)
lens.
</div>
For OAuth2 bearer authentication, `wreq` supports two flavours:
[`oauth2Bearer`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq.html#v:oauth2Bearer)
is the standard bearer token, while
[`oauth2Token`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq.html#v:oauth2Token)
is GitHub's variant. These tokens are equivalent in value to a
username and password.
## Amazon Web Services (AWS)
To authenticate to Amazon Web Services (AWS), we use
[`awsAuth`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq.html#v:awsAuth). In
this example, we set the `Accept` header to request JSON, as opposed
to XML output from AWS.
~~~~ {.haskell}
ghci> let opts = defaults & auth ?~ awsAuth AWSv4 "key" "secret"
& header "Accept" .~ ["application/json"]
ghci> r <- getWith opts "https://sqs.us-east-1.amazonaws.com/?Action=ListQueues"
ghci> r ^. responseBody
"{\"ListQueuesResponse\":{\"ListQueuesResult\":{\"queueUrls\": ... }"
~~~~
## Runscope support for Amazon Web Services (AWS) requests
To send requests to AWS through the [Runscope Inc.](https://www.runscope.com)
Traffic Inspector, convert the AWS service URL to a Runscope Bucket URL
using the "URL Helper" section in the Runscope dashboard (as you
would for other HTTP endpoints). Then invoke the AWS service as
before. For example, if your Runscope bucket key is
`7kh11example`, call AWS like so:
~~~~ {.haskell}
ghci> let opts = defaults & auth ?~ awsAuth AWSv4 "key" "secret"
& header "Accept" .~ ["application/json"]
ghci> r <- getWith opts "https://sqs-us--east--1-amazonaws-com-7kh11example.runscope.net/?Action=ListQueues"
ghci> r ^. responseBody
"{\"ListQueuesResponse\":{\"ListQueuesResult\":{\"queueUrls\": ... }"
~~~~
If you enabled "Require Authentication Token" in the "Bucket Settings"
of your Runscope dashboard, set the `Runscope-Bucket-Auth` header like so:
~~~~ {.haskell}
ghci> let opts = defaults & auth ?~ awsAuth AWSv4 "key" "secret"
& header "Accept" .~ ["application/json"]
& header "Runscope-Bucket-Auth" .~ ["1example-1111-4yyyy-zzzz-xxxxxxxx"]
ghci> r <- getWith opts "https://sqs-us--east--1-amazonaws-com-7kh11example.runscope.net/?Action=ListQueues"
ghci> r ^. responseBody
"{\"ListQueuesResponse\":{\"ListQueuesResult\":{\"queueUrls\": ... }"
~~~~
# Error handling
Most of the time when an error occurs or a request fails, `wreq` will
throw a `HttpException`.
~~~~ {.haskell}
h> r <- get "http://httpbin.org/wibblesticks"
*** Exception: HttpExceptionRequest Request { ... }
(StatusCodeException (Response {
responseStatus = Status {statusCode = 404, {-...-} }
, {- ... -}
}), "..." )
~~~~
Here's a simple example of how we can respond to one kind of error: a
`get`-like function that retries with authentication if an
unauthenticated request fails.
~~~~ {.haskell}
import Control.Exception as E
import Control.Lens
import Network.HTTP.Client (HttpException (HttpExceptionRequest),
HttpExceptionContent (StatusCodeException))
import Network.Wreq
getAuth url myauth = get url `E.catch` handler
where
handler e@(HttpExceptionRequest _ (StatusCodeException r _))
| r ^. responseStatus . statusCode == 401 = getWith authopts authurl
| otherwise = throwIO e
handler e = throwIO e
authopts = defaults & auth ?~ myauth
-- switch to TLS when we use auth
authurl = "https" ++ dropWhile (/=':') url
~~~~
(A "real world" version would remember which URLs required
authentication during a session, to avoid the need for an
unauthenticated failure followed by an authenticated success if we
visit the same endpoint repeatedly.)
# Handling multiple HTTP requests
<a id="session">For non-trivial applications</a>, we'll always want to
use a
[`Session`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq-Session.html#t:Session)
to efficiently and correctly handle multiple requests.
The `Session` API provides two important features:
* When we issue multiple HTTP requests to the same server, a `Session`
will reuse TCP and TLS connections for us. (The simpler API we've
discussed so far does not do this.) This greatly improves
efficiency.
* A `Session` transparently manages HTTP cookies. (We can manage them
by hand, but it's awkward and verbose, so we won't cover it in this
tutorial.)
Here's a complete example.
~~~~ {.haskell}
{-# LANGUAGE OverloadedStrings #-}
import Control.Lens
import Network.Wreq
import qualified Network.Wreq.Session as S
main :: IO ()
main = do
sess <- S.newSession
-- First request: tell the server to set a cookie
S.get sess "http://httpbin.org/cookies/set?name=hi"
-- Second request: the cookie should still be set afterwards.
r <- S.post sess "http://httpbin.org/post" ["a" := (3 :: Int)]
print $ r ^. responseCookie "name" . cookieValue
~~~~
The key differences from the basic API are as follows.
* We import the
[`Network.Wreq.Session`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq-Session.html)
module qualified, and we'll identify its functions by prefixing them
with "`S.`".
* To create a `Session`, we use `S.newSession`.
* Instead of `get` and `post`, we call the `Session`-specific
versions, [`S.get`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq-Session.html#v:get) and [`S.post`](http://hackage.haskell.org/package/wreq/docs/Network-Wreq-Session.html#v:post), and pass `sess` to each of them.
|