File: Z.hs

package info (click to toggle)
haskell-zenc 0.1.2-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 84 kB
  • sloc: haskell: 143; makefile: 6
file content (214 lines) | stat: -rw-r--r-- 7,208 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
{-# LANGUAGE Safe #-}
{- | The Z-encoding

This is the main name-encoding and decoding function.  It encodes any
string into a string that is acceptable as a C name.  This is code was
originally part of GHC and used right before emitting a symbol name
into the compiled C or asm code. This library was created as this
encoding is useful when working with GHC compiled code or generally
when C-compatible name mangling is desired.

-}
module Text.Encoding.Z (
  zEncodeString,
  zDecodeString,
  UserString,
  EncodedString
) where

import Data.Char
import Numeric

type UserString = String        -- ^ As the user typed it
type EncodedString = String     -- ^ Encoded form

-- | The basic encoding scheme is this:
--
--   * Tuples (,,,) are coded as Z3T
--
--   * Alphabetic characters (upper and lower) and digits
--         all translate to themselves;
--         except 'Z', which translates to 'ZZ'
--         and    'z', which translates to 'zz'
--   We need both so that we can preserve the variable/tycon distinction
--
--   * Most other printable characters translate to 'zx' or 'Zx' for some
--         alphabetic character x
--
--   * The others translate as 'znnnU' where 'nnn' is the decimal number
--         of the character
--
-- @
--         Before          After
--         --------------------------
--         Trak            Trak
--         foo_wib         foozuwib
--         \>               zg
--         \>1              zg1
--         foo\#            foozh
--         foo\#\#           foozhzh
--         foo\#\#1          foozhzh1
--         fooZ            fooZZ
--         :+              ZCzp
--         ()              Z0T     0-tuple
--         (,,,,)          Z5T     5-tuple
--         (\# \#)           Z1H     unboxed 1-tuple (note the space)
--         (\#,,,,\#)        Z5H     unboxed 5-tuple
--                 (NB: There is no Z1T nor Z0H.)
-- @
zEncodeString :: UserString -> EncodedString
zEncodeString cs = case maybe_tuple cs of
                Just n  -> n            -- Tuples go to Z2T etc
                Nothing -> go cs
          where
                go []     = []
                go (c:cs) = encode_digit_ch c ++ go' cs
                go' []     = []
                go' (c:cs) = encode_ch c ++ go' cs

unencodedChar :: Char -> Bool   -- True for chars that don't need encoding
unencodedChar 'Z' = False
unencodedChar 'z' = False
unencodedChar c   =  c >= 'a' && c <= 'z'
                  || c >= 'A' && c <= 'Z'
                  || c >= '0' && c <= '9'

-- If a digit is at the start of a symbol then we need to encode it.
-- Otherwise package names like 9pH-0.1 give linker errors.
encode_digit_ch :: Char -> EncodedString
encode_digit_ch c | c >= '0' && c <= '9' = encode_as_unicode_char c
encode_digit_ch c | otherwise            = encode_ch c

encode_ch :: Char -> EncodedString
encode_ch c | unencodedChar c = [c]     -- Common case first

-- Constructors
encode_ch '('  = "ZL"   -- Needed for things like (,), and (->)
encode_ch ')'  = "ZR"   -- For symmetry with (
encode_ch '['  = "ZM"
encode_ch ']'  = "ZN"
encode_ch ':'  = "ZC"
encode_ch 'Z'  = "ZZ"

-- Variables
encode_ch 'z'  = "zz"
encode_ch '&'  = "za"
encode_ch '|'  = "zb"
encode_ch '^'  = "zc"
encode_ch '$'  = "zd"
encode_ch '='  = "ze"
encode_ch '>'  = "zg"
encode_ch '#'  = "zh"
encode_ch '.'  = "zi"
encode_ch '<'  = "zl"
encode_ch '-'  = "zm"
encode_ch '!'  = "zn"
encode_ch '+'  = "zp"
encode_ch '\'' = "zq"
encode_ch '\\' = "zr"
encode_ch '/'  = "zs"
encode_ch '*'  = "zt"
encode_ch '_'  = "zu"
encode_ch '%'  = "zv"
encode_ch c    = encode_as_unicode_char c

encode_as_unicode_char :: Char -> EncodedString
encode_as_unicode_char c = 'z' : if isDigit (head hex_str) then hex_str
                                                           else '0':hex_str
  where hex_str = showHex (ord c) "U"
  -- ToDo: we could improve the encoding here in various ways.
  -- eg. strings of unicode characters come out as 'z1234Uz5678U', we
  -- could remove the 'U' in the middle (the 'z' works as a separator).

-- | The inverse of 'zEncodeString'
zDecodeString :: EncodedString -> UserString
zDecodeString [] = []
zDecodeString ('Z' : d : rest)
  | isDigit d = decode_tuple   d rest
  | otherwise = decode_upper   d : zDecodeString rest
zDecodeString ('z' : d : rest)
  | isDigit d = decode_num_esc d rest
  | otherwise = decode_lower   d : zDecodeString rest
zDecodeString (c   : rest) = c : zDecodeString rest

decode_upper, decode_lower :: Char -> Char

decode_upper 'L' = '('
decode_upper 'R' = ')'
decode_upper 'M' = '['
decode_upper 'N' = ']'
decode_upper 'C' = ':'
decode_upper 'Z' = 'Z'
decode_upper ch  = {-pprTrace "decode_upper" (char ch)-} ch

decode_lower 'z' = 'z'
decode_lower 'a' = '&'
decode_lower 'b' = '|'
decode_lower 'c' = '^'
decode_lower 'd' = '$'
decode_lower 'e' = '='
decode_lower 'g' = '>'
decode_lower 'h' = '#'
decode_lower 'i' = '.'
decode_lower 'l' = '<'
decode_lower 'm' = '-'
decode_lower 'n' = '!'
decode_lower 'p' = '+'
decode_lower 'q' = '\''
decode_lower 'r' = '\\'
decode_lower 's' = '/'
decode_lower 't' = '*'
decode_lower 'u' = '_'
decode_lower 'v' = '%'
decode_lower ch  = {-pprTrace "decode_lower" (char ch)-} ch

-- Characters not having a specific code are coded as z224U (in hex)
decode_num_esc :: Char -> EncodedString -> UserString
decode_num_esc d rest
  = go (digitToInt d) rest
  where
    go n (c : rest) | isHexDigit c = go (16*n + digitToInt c) rest
    go n ('U' : rest)           = chr n : zDecodeString rest
    go n other = error ("decode_num_esc: " ++ show n ++  ' ':other)

decode_tuple :: Char -> EncodedString -> UserString
decode_tuple d rest
  = go (digitToInt d) rest
  where
        -- NB. recurse back to zDecodeString after decoding the tuple, because
        -- the tuple might be embedded in a longer name.
    go n (c : rest) | isDigit c = go (10*n + digitToInt c) rest
    go 0 ('T':rest)     = "()" ++ zDecodeString rest
    go n ('T':rest)     = '(' : replicate (n-1) ',' ++ ")" ++ zDecodeString rest
    go 1 ('H':rest)     = "(# #)" ++ zDecodeString rest
    go n ('H':rest)     = '(' : '#' : replicate (n-1) ',' ++ "#)" ++ zDecodeString rest
    go n other = error ("decode_tuple: " ++ show n ++ ' ':other)

{-
Tuples are encoded as
        Z3T or Z3H
for 3-tuples or unboxed 3-tuples respectively.  No other encoding starts
        Z<digit>

* "(# #)" is the tycon for an unboxed 1-tuple (not 0-tuple)
  There are no unboxed 0-tuples.

* "()" is the tycon for a boxed 0-tuple.
  There are no boxed 1-tuples.
-}

maybe_tuple :: UserString -> Maybe EncodedString

maybe_tuple "(# #)" = Just("Z1H")
maybe_tuple ('(' : '#' : cs) = case count_commas (0::Int) cs of
                                 (n, '#' : ')' : _) -> Just ('Z' : shows (n+1) "H")
                                 _                  -> Nothing
maybe_tuple "()" = Just("Z0T")
maybe_tuple ('(' : cs)       = case count_commas (0::Int) cs of
                                 (n, ')' : _) -> Just ('Z' : shows (n+1) "T")
                                 _            -> Nothing
maybe_tuple _                = Nothing

count_commas :: Int -> String -> (Int, String)
count_commas n (',' : cs) = count_commas (n+1) cs
count_commas n cs         = (n,cs)