1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
|
{-# LANGUAGE CPP, RankNTypes, BangPatterns #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE Trustworthy #-}
-----------------------------------------------------------------------------
-- |
-- Copyright : (c) 2006-2015 Duncan Coutts
-- License : BSD-style
--
-- Maintainer : duncan@community.haskell.org
--
-- Pure and IO stream based interfaces to lower level zlib wrapper
--
-----------------------------------------------------------------------------
module Codec.Compression.Zlib.Internal (
-- * Pure interface
compress,
decompress,
-- * Monadic incremental interface
-- $incremental-compression
-- ** Using incremental compression
-- $using-incremental-compression
CompressStream(..),
compressST,
compressIO,
foldCompressStream,
foldCompressStreamWithInput,
-- ** Using incremental decompression
-- $using-incremental-decompression
DecompressStream(..),
DecompressError(..),
decompressST,
decompressIO,
foldDecompressStream,
foldDecompressStreamWithInput,
-- * The compression parameter types
CompressParams(..),
defaultCompressParams,
DecompressParams(..),
defaultDecompressParams,
Stream.Format,
Stream.gzipFormat,
Stream.zlibFormat,
Stream.rawFormat,
Stream.gzipOrZlibFormat,
Stream.CompressionLevel(..),
Stream.defaultCompression,
Stream.noCompression,
Stream.bestSpeed,
Stream.bestCompression,
Stream.compressionLevel,
Stream.Method,
Stream.deflateMethod,
Stream.WindowBits(..),
Stream.defaultWindowBits,
Stream.windowBits,
Stream.MemoryLevel(..),
Stream.defaultMemoryLevel,
Stream.minMemoryLevel,
Stream.maxMemoryLevel,
Stream.memoryLevel,
Stream.CompressionStrategy,
Stream.defaultStrategy,
Stream.filteredStrategy,
Stream.huffmanOnlyStrategy,
Stream.rleStrategy,
Stream.fixedStrategy,
) where
import Prelude hiding (length)
import Control.Monad (when)
import Control.Exception (Exception, throw, assert)
import Control.Monad.ST.Lazy hiding (stToIO)
import Control.Monad.ST.Strict (stToIO)
import qualified Control.Monad.ST.Unsafe as Unsafe (unsafeIOToST)
import GHC.Generics (Generic)
import Data.Bits (toIntegralSized)
import qualified Data.ByteString.Lazy as L
import qualified Data.ByteString.Lazy.Internal as L
import qualified Data.ByteString as S
import qualified Data.ByteString.Internal as S
import Data.Maybe (fromMaybe)
import Data.Word (Word8)
import Foreign.C (CUInt)
import GHC.IO (noDuplicate)
import qualified Codec.Compression.Zlib.Stream as Stream
import Codec.Compression.Zlib.ByteStringCompat (mkBS, withBS)
import Codec.Compression.Zlib.Stream (Stream)
-- | The full set of parameters for compression. The defaults are
-- 'defaultCompressParams'.
--
-- The 'compressBufferSize' is the size of the first output buffer containing
-- the compressed data. If you know an approximate upper bound on the size of
-- the compressed data then setting this parameter can save memory. The default
-- compression output buffer size is @16k@. If your estimate is wrong it does
-- not matter too much, the default buffer size will be used for the remaining
-- chunks.
--
data CompressParams = CompressParams {
compressLevel :: !Stream.CompressionLevel,
compressMethod :: !Stream.Method,
compressWindowBits :: !Stream.WindowBits,
compressMemoryLevel :: !Stream.MemoryLevel,
compressStrategy :: !Stream.CompressionStrategy,
compressBufferSize :: !Int,
compressDictionary :: Maybe S.ByteString
} deriving
( Eq -- ^ @since 0.7.0.0
, Ord -- ^ @since 0.7.0.0
, Show
, Generic -- ^ @since 0.7.0.0
)
-- | The full set of parameters for decompression. The defaults are
-- 'defaultDecompressParams'.
--
-- The 'decompressBufferSize' is the size of the first output buffer,
-- containing the uncompressed data. If you know an exact or approximate upper
-- bound on the size of the decompressed data then setting this parameter can
-- save memory. The default decompression output buffer size is @32k@. If your
-- estimate is wrong it does not matter too much, the default buffer size will
-- be used for the remaining chunks.
--
-- One particular use case for setting the 'decompressBufferSize' is if you
-- know the exact size of the decompressed data and want to produce a strict
-- 'Data.ByteString.ByteString'. The compression and decompression functions
-- use lazy 'Data.ByteString.Lazy.ByteString's but if you set the
-- 'decompressBufferSize' correctly then you can generate a lazy
-- 'Data.ByteString.Lazy.ByteString' with exactly one chunk, which can be
-- converted to a strict 'Data.ByteString.ByteString' in @O(1)@ time using
-- @'Data.ByteString.concat' . 'Data.ByteString.Lazy.toChunks'@.
--
data DecompressParams = DecompressParams {
decompressWindowBits :: !Stream.WindowBits,
decompressBufferSize :: !Int,
decompressDictionary :: Maybe S.ByteString,
decompressAllMembers :: Bool
} deriving
( Eq -- ^ @since 0.7.0.0
, Ord -- ^ @since 0.7.0.0
, Show
, Generic -- ^ @since 0.7.0.0
)
-- | The default set of parameters for compression. This is typically used with
-- 'Codec.Compression.GZip.compressWith' or 'Codec.Compression.Zlib.compressWith'
-- with specific parameters overridden.
--
defaultCompressParams :: CompressParams
defaultCompressParams = CompressParams {
compressLevel = Stream.defaultCompression,
compressMethod = Stream.deflateMethod,
compressWindowBits = Stream.defaultWindowBits,
compressMemoryLevel = Stream.defaultMemoryLevel,
compressStrategy = Stream.defaultStrategy,
compressBufferSize = cuint2int defaultCompressBufferSize,
compressDictionary = Nothing
}
-- | The default set of parameters for decompression. This is typically used with
-- 'Codec.Compression.GZip.decompressWith' or 'Codec.Compression.Zlib.decompressWith'
-- with specific parameters overridden.
--
defaultDecompressParams :: DecompressParams
defaultDecompressParams = DecompressParams {
decompressWindowBits = Stream.defaultWindowBits,
decompressBufferSize = cuint2int defaultDecompressBufferSize,
decompressDictionary = Nothing,
decompressAllMembers = True
}
-- | The default chunk sizes for the output of compression and decompression
-- are 16k and 32k respectively (less a small accounting overhead).
--
defaultCompressBufferSize, defaultDecompressBufferSize :: CUInt
defaultCompressBufferSize = 16 * 1024 - int2cuint L.chunkOverhead
defaultDecompressBufferSize = 32 * 1024 - int2cuint L.chunkOverhead
-- | The unfolding of the decompression process, where you provide a sequence
-- of compressed data chunks as input and receive a sequence of uncompressed
-- data chunks as output. The process is incremental, in that the demand for
-- input and provision of output are interleaved.
--
-- To indicate the end of the input supply an empty input chunk. Note that
-- for 'Stream.gzipFormat' with the default 'decompressAllMembers' @True@ you will
-- have to do this, as the decompressor will look for any following members.
-- With 'decompressAllMembers' @False@ the decompressor knows when the data
-- ends and will produce 'DecompressStreamEnd' without you having to supply an
-- empty chunk to indicate the end of the input.
--
data DecompressStream m =
DecompressInputRequired {
decompressSupplyInput :: S.ByteString -> m (DecompressStream m)
}
| DecompressOutputAvailable {
decompressOutput :: !S.ByteString,
decompressNext :: m (DecompressStream m)
}
-- | Includes any trailing unconsumed /input/ data.
| DecompressStreamEnd {
decompressUnconsumedInput :: S.ByteString
}
-- | An error code
| DecompressStreamError {
decompressStreamError :: DecompressError
}
-- | The possible error cases when decompressing a stream.
--
-- This can be 'show'n to give a human readable error message.
--
data DecompressError =
-- | The compressed data stream ended prematurely. This may happen if the
-- input data stream was truncated.
TruncatedInput
-- | It is possible to do zlib compression with a custom dictionary. This
-- allows slightly higher compression ratios for short files. However such
-- compressed streams require the same dictionary when decompressing. This
-- error is for when we encounter a compressed stream that needs a
-- dictionary, and it's not provided.
| DictionaryRequired
-- | If the stream requires a dictionary and you provide one with the
-- wrong 'Stream.DictionaryHash' then you will get this error.
| DictionaryMismatch
-- | If the compressed data stream is corrupted in any way then you will
-- get this error, for example if the input data just isn't a compressed
-- zlib data stream. In particular if the data checksum turns out to be
-- wrong then you will get all the decompressed data but this error at the
-- end, instead of the normal successful 'Stream.StreamEnd'.
| DataFormatError String
deriving
( Eq
, Ord -- ^ @since 0.7.0.0
, Generic -- ^ @since 0.7.0.0
)
instance Show DecompressError where
show TruncatedInput = modprefix "premature end of compressed data stream"
show DictionaryRequired = modprefix "compressed data stream requires custom dictionary"
show DictionaryMismatch = modprefix "given dictionary does not match the expected one"
show (DataFormatError detail) = modprefix ("compressed data stream format error (" ++ detail ++ ")")
modprefix :: ShowS
modprefix = ("Codec.Compression.Zlib: " ++)
instance Exception DecompressError
-- | A fold over the 'DecompressStream' in the given monad.
--
-- One way to look at this is that it runs the stream, using callback functions
-- for the four stream events.
--
foldDecompressStream :: Monad m
=> ((S.ByteString -> m a) -> m a)
-> (S.ByteString -> m a -> m a)
-> (S.ByteString -> m a)
-> (DecompressError -> m a)
-> DecompressStream m -> m a
foldDecompressStream input output end err = fold
where
fold (DecompressInputRequired next) =
input (\x -> next x >>= fold)
fold (DecompressOutputAvailable outchunk next) =
output outchunk (next >>= fold)
fold (DecompressStreamEnd inchunk) = end inchunk
fold (DecompressStreamError derr) = err derr
-- | A variant on 'foldCompressStream' that is pure rather than operating in a
-- monad and where the input is provided by a lazy 'L.ByteString'. So we only
-- have to deal with the output, end and error parts, making it like a foldr on
-- a list of output chunks.
--
-- For example:
--
-- > toChunks = foldDecompressStreamWithInput (:) [] throw
--
foldDecompressStreamWithInput :: (S.ByteString -> a -> a)
-> (L.ByteString -> a)
-> (DecompressError -> a)
-> (forall s. DecompressStream (ST s))
-> L.ByteString
-> a
foldDecompressStreamWithInput chunk end err = \s lbs ->
runST (fold s (toLimitedChunks lbs))
where
fold (DecompressInputRequired next) [] =
next S.empty >>= \strm -> fold strm []
fold (DecompressInputRequired next) (inchunk:inchunks) =
next inchunk >>= \s -> fold s inchunks
fold (DecompressOutputAvailable outchunk next) inchunks = do
r <- next >>= \s -> fold s inchunks
return $ chunk outchunk r
fold (DecompressStreamEnd inchunk) inchunks =
return $ end (L.fromChunks (inchunk:inchunks))
fold (DecompressStreamError derr) _ =
return $ err derr
-- $incremental-compression
-- The pure 'Codec.Compression.Zlib.Internal.compress' and
-- 'Codec.Compression.Zlib.Internal.decompress' functions are streaming in the sense
-- that they can produce output without demanding all input, however they need
-- the input data stream as a lazy 'L.ByteString'. Having the input data
-- stream as a lazy 'L.ByteString' often requires using lazy I\/O which is not
-- appropriate in all circumstances.
--
-- For these cases an incremental interface is more appropriate. This interface
-- allows both incremental input and output. Chunks of input data are supplied
-- one by one (e.g. as they are obtained from an input source like a file or
-- network source). Output is also produced chunk by chunk.
--
-- The incremental input and output is managed via the 'CompressStream' and
-- 'DecompressStream' types. They represents the unfolding of the process of
-- compressing and decompressing. They operates in either the 'ST' or 'IO'
-- monads. They can be lifted into other incremental abstractions like pipes or
-- conduits, or they can be used directly in the following style.
-- $using-incremental-compression
--
-- In a loop:
--
-- * Inspect the status of the stream
--
-- * When it is 'CompressInputRequired' then you should call the action,
-- passing a chunk of input (or 'BS.empty' when no more input is available)
-- to get the next state of the stream and continue the loop.
--
-- * When it is 'CompressOutputAvailable' then do something with the given
-- chunk of output, and call the action to get the next state of the stream
-- and continue the loop.
--
-- * When it is 'CompressStreamEnd' then terminate the loop.
--
-- Note that you cannot stop as soon as you have no more input, you need to
-- carry on until all the output has been collected, i.e. until you get to
-- 'CompressStreamEnd'.
--
-- Here is an example where we get input from one file handle and send the
-- compressed output to another file handle.
--
-- > go :: Handle -> Handle -> CompressStream IO -> IO ()
-- > go inh outh (CompressInputRequired next) = do
-- > inchunk <- BS.hGet inh 4096
-- > go inh outh =<< next inchunk
-- > go inh outh (CompressOutputAvailable outchunk next) =
-- > BS.hPut outh outchunk
-- > go inh outh =<< next
-- > go _ _ CompressStreamEnd = return ()
--
-- The same can be achieved with 'foldCompressStream':
--
-- > foldCompressStream
-- > (\next -> do inchunk <- BS.hGet inh 4096; next inchunk)
-- > (\outchunk next -> do BS.hPut outh outchunk; next)
-- > (return ())
-- $using-incremental-decompression
--
-- The use of 'DecompressStream' is very similar to 'CompressStream' but with
-- a few differences:
--
-- * There is the extra possibility of a 'DecompressStreamError'
--
-- * There can be extra trailing data after a compressed stream, and the
-- 'DecompressStreamEnd' includes that.
--
-- Otherwise the same loop style applies, and there are fold functions.
-- | The unfolding of the compression process, where you provide a sequence
-- of uncompressed data chunks as input and receive a sequence of compressed
-- data chunks as output. The process is incremental, in that the demand for
-- input and provision of output are interleaved.
--
data CompressStream m =
CompressInputRequired {
compressSupplyInput :: S.ByteString -> m (CompressStream m)
}
| CompressOutputAvailable {
compressOutput :: !S.ByteString,
compressNext :: m (CompressStream m)
}
| CompressStreamEnd
-- | A fold over the 'CompressStream' in the given monad.
--
-- One way to look at this is that it runs the stream, using callback functions
-- for the three stream events.
--
foldCompressStream :: Monad m
=> ((S.ByteString -> m a) -> m a)
-> (S.ByteString -> m a -> m a)
-> m a
-> CompressStream m -> m a
foldCompressStream input output end = fold
where
fold (CompressInputRequired next) =
input (\x -> next x >>= fold)
fold (CompressOutputAvailable outchunk next) =
output outchunk (next >>= fold)
fold CompressStreamEnd =
end
-- | A variant on 'foldCompressStream' that is pure rather than operating in a
-- monad and where the input is provided by a lazy 'L.ByteString'. So we only
-- have to deal with the output and end parts, making it just like a foldr on a
-- list of output chunks.
--
-- For example:
--
-- > toChunks = foldCompressStreamWithInput (:) []
--
foldCompressStreamWithInput :: (S.ByteString -> a -> a)
-> a
-> (forall s. CompressStream (ST s))
-> L.ByteString
-> a
foldCompressStreamWithInput chunk end = \s lbs ->
runST (fold s (toLimitedChunks lbs))
where
fold (CompressInputRequired next) [] =
next S.empty >>= \strm -> fold strm []
fold (CompressInputRequired next) (inchunk:inchunks) =
next inchunk >>= \s -> fold s inchunks
fold (CompressOutputAvailable outchunk next) inchunks = do
r <- next >>= \s -> fold s inchunks
return $ chunk outchunk r
fold CompressStreamEnd _inchunks =
return end
-- | Compress a data stream provided as a lazy 'L.ByteString'.
--
-- There are no expected error conditions. All input data streams are valid. It
-- is possible for unexpected errors to occur, such as running out of memory,
-- or finding the wrong version of the zlib C library, these are thrown as
-- exceptions.
--
compress :: Stream.Format -> CompressParams -> L.ByteString -> L.ByteString
-- | Incremental compression in the 'ST' monad. Using 'ST' makes it possible
-- to write pure /lazy/ functions while making use of incremental compression.
--
-- Chunk size must fit into t'CUInt'.
compressST :: Stream.Format -> CompressParams -> CompressStream (ST s)
-- | Incremental compression in the 'IO' monad.
--
-- Chunk size must fit into t'CUInt'.
compressIO :: Stream.Format -> CompressParams -> CompressStream IO
compress format params = foldCompressStreamWithInput
L.Chunk L.Empty
(compressStreamST format params)
compressST format params = compressStreamST format params
compressIO format params = compressStreamIO format params
-- | Chunk size must fit into t'CUInt'.
compressStream :: Stream.Format -> CompressParams -> S.ByteString
-> Stream (CompressStream Stream)
compressStream format (CompressParams compLevel method bits memLevel
strategy initChunkSize mdict) =
\chunk -> do
Stream.deflateInit format compLevel method bits memLevel strategy
setDictionary mdict
withBS chunk $ \inFPtr length ->
if length == 0
then fillBuffers 20 --gzip header is 20 bytes, others even smaller
else do
Stream.pushInputBuffer inFPtr 0 (int2cuint length)
fillBuffers (int2cuint_capped initChunkSize)
where
-- we flick between two states:
-- * where one or other buffer is empty
-- - in which case we refill one or both
-- * where both buffers are non-empty
-- - in which case we compress until a buffer is empty
fillBuffers :: CUInt -> Stream (CompressStream Stream)
fillBuffers outChunkSize = do
#ifdef DEBUG
Stream.consistencyCheck
#endif
-- in this state there are two possibilities:
-- * no output buffer space is available
-- - in which case we must make more available
-- * no input buffer is available
-- - in which case we must supply more
inputBufferEmpty <- Stream.inputBufferEmpty
outputBufferFull <- Stream.outputBufferFull
assert (inputBufferEmpty || outputBufferFull) $ return ()
when outputBufferFull $ do
outFPtr <- Stream.unsafeLiftIO (S.mallocByteString (cuint2int outChunkSize))
Stream.pushOutputBuffer outFPtr 0 outChunkSize
if inputBufferEmpty
then return $ CompressInputRequired $ flip withBS $ \inFPtr length ->
if length == 0
then drainBuffers True
else do
Stream.pushInputBuffer inFPtr 0 (int2cuint length)
drainBuffers False
else drainBuffers False
drainBuffers :: Bool -> Stream (CompressStream Stream)
drainBuffers lastChunk = do
inputBufferEmpty' <- Stream.inputBufferEmpty
outputBufferFull' <- Stream.outputBufferFull
assert(not outputBufferFull'
&& (lastChunk || not inputBufferEmpty')) $ return ()
-- this invariant guarantees we can always make forward progress
-- and that therefore a BufferError is impossible
let flush = if lastChunk then Stream.Finish else Stream.NoFlush
status <- Stream.deflate flush
case status of
Stream.Ok -> do
outputBufferFull <- Stream.outputBufferFull
if outputBufferFull
then do (outFPtr, offset, length) <- Stream.popOutputBuffer
let chunk = mkBS outFPtr offset length
return $ CompressOutputAvailable chunk $ do
fillBuffers defaultCompressBufferSize
else do fillBuffers defaultCompressBufferSize
Stream.StreamEnd -> do
inputBufferEmpty <- Stream.inputBufferEmpty
assert inputBufferEmpty $ return ()
outputBufferBytesAvailable <- Stream.outputBufferBytesAvailable
if outputBufferBytesAvailable > 0
then do (outFPtr, offset, length) <- Stream.popOutputBuffer
let chunk = mkBS outFPtr offset length
Stream.finalise
return $ CompressOutputAvailable chunk (return CompressStreamEnd)
else do Stream.finalise
return CompressStreamEnd
Stream.Error code msg -> case code of
Stream.BufferError -> fail "BufferError should be impossible!"
Stream.NeedDict _ -> fail "NeedDict is impossible!"
_ -> fail msg
-- Set the custom dictionary, if we were provided with one
-- and if the format supports it (zlib and raw, not gzip).
setDictionary :: Maybe S.ByteString -> Stream ()
setDictionary (Just dict)
| Stream.formatSupportsDictionary format = case int2cuint_safe (S.length dict) of
Nothing ->
fail "error when setting deflate dictionary, its length does not fit into CUInt"
Just{} -> do
status <- Stream.deflateSetDictionary dict
case status of
Stream.Ok -> return ()
Stream.Error _ msg -> fail msg
_ -> fail "error when setting deflate dictionary"
setDictionary _ = return ()
-- | Decompress a data stream provided as a lazy 'L.ByteString'.
--
-- It will throw an exception if any error is encountered in the input data.
-- If you need more control over error handling then use one the incremental
-- versions, 'decompressST' or 'decompressIO'.
--
decompress :: Stream.Format -> DecompressParams -> L.ByteString -> L.ByteString
-- | Incremental decompression in the 'ST' monad. Using 'ST' makes it possible
-- to write pure /lazy/ functions while making use of incremental decompression.
--
-- Chunk size must fit into t'CUInt'.
decompressST :: Stream.Format -> DecompressParams -> DecompressStream (ST s)
-- | Incremental decompression in the 'IO' monad.
--
-- Chunk size must fit into t'CUInt'.
decompressIO :: Stream.Format -> DecompressParams -> DecompressStream IO
decompress format params = foldDecompressStreamWithInput
L.Chunk (const L.Empty) throw
(decompressStreamST format params)
decompressST format params = decompressStreamST format params
decompressIO format params = decompressStreamIO format params
-- | Chunk size must fit into t'CUInt'.
decompressStream :: Stream.Format -> DecompressParams
-> Bool -> S.ByteString
-> Stream (DecompressStream Stream)
decompressStream format (DecompressParams bits initChunkSize mdict allMembers)
resume =
\chunk -> do
inputBufferEmpty <- Stream.inputBufferEmpty
outputBufferFull <- Stream.outputBufferFull
assert inputBufferEmpty $
if resume then assert (format == Stream.gzipFormat && allMembers) $
Stream.inflateReset
else assert outputBufferFull $
Stream.inflateInit format bits
withBS chunk $ \inFPtr length ->
if length == 0
then do
-- special case to avoid demanding more input again
-- always an error anyway
when outputBufferFull $ do
outFPtr <- Stream.unsafeLiftIO (S.mallocByteString 1)
Stream.pushOutputBuffer outFPtr 0 1
drainBuffers True
else do
Stream.pushInputBuffer inFPtr 0 (int2cuint length)
-- Normally we start with no output buffer (so counts as full) but
-- if we're resuming then we'll usually still have output buffer
-- space available
assert (if not resume then outputBufferFull else True) $ return ()
if outputBufferFull
then fillBuffers (int2cuint_capped initChunkSize)
else drainBuffers False
where
-- we flick between two states:
-- * where one or other buffer is empty
-- - in which case we refill one or both
-- * where both buffers are non-empty
-- - in which case we compress until a buffer is empty
fillBuffers :: CUInt
-> Stream (DecompressStream Stream)
fillBuffers outChunkSize = do
#ifdef DEBUG
Stream.consistencyCheck
#endif
-- in this state there are two possibilities:
-- * no output buffer space is available
-- - in which case we must make more available
-- * no input buffer is available
-- - in which case we must supply more
inputBufferEmpty <- Stream.inputBufferEmpty
outputBufferFull <- Stream.outputBufferFull
assert (inputBufferEmpty || outputBufferFull) $ return ()
when outputBufferFull $ do
outFPtr <- Stream.unsafeLiftIO (S.mallocByteString (cuint2int outChunkSize))
Stream.pushOutputBuffer outFPtr 0 outChunkSize
if inputBufferEmpty
then return $ DecompressInputRequired $ \chunk ->
withBS chunk $ \inFPtr length ->
if length == 0
then drainBuffers True
else do
Stream.pushInputBuffer inFPtr 0 (int2cuint length)
drainBuffers False
else drainBuffers False
drainBuffers :: Bool -> Stream (DecompressStream Stream)
drainBuffers lastChunk = do
inputBufferEmpty' <- Stream.inputBufferEmpty
outputBufferFull' <- Stream.outputBufferFull
assert(not outputBufferFull'
&& (lastChunk || not inputBufferEmpty')) $ return ()
-- this invariant guarantees we can always make forward progress or at
-- least if a BufferError does occur that it must be due to a premature EOF
status <- Stream.inflate Stream.NoFlush
case status of
Stream.Ok -> do
outputBufferFull <- Stream.outputBufferFull
if outputBufferFull
then do (outFPtr, offset, length) <- Stream.popOutputBuffer
let chunk = mkBS outFPtr offset length
return $ DecompressOutputAvailable chunk $ do
fillBuffers defaultDecompressBufferSize
else do fillBuffers defaultDecompressBufferSize
Stream.StreamEnd -> do
-- The decompressor tells us we're done.
-- Note that there may be input bytes still available if the stream is
-- embedded in some other data stream, so we return any trailing data.
inputBufferEmpty <- Stream.inputBufferEmpty
if inputBufferEmpty
then do finish (DecompressStreamEnd S.empty)
else do (inFPtr, offset, length) <- Stream.popRemainingInputBuffer
let inchunk = mkBS inFPtr offset length
finish (DecompressStreamEnd inchunk)
Stream.Error code msg -> case code of
Stream.BufferError -> finish (DecompressStreamError TruncatedInput)
Stream.NeedDict adler -> do
err <- setDictionary adler mdict
case err of
Just streamErr -> finish streamErr
Nothing -> drainBuffers lastChunk
Stream.DataError -> finish (DecompressStreamError (DataFormatError msg))
_ -> fail msg
-- Note even if we end with an error we still try to flush the last chunk if
-- there is one. The user just has to decide what they want to trust.
finish end = do
outputBufferBytesAvailable <- Stream.outputBufferBytesAvailable
if outputBufferBytesAvailable > 0
then do (outFPtr, offset, length) <- Stream.popOutputBuffer
return (DecompressOutputAvailable (mkBS outFPtr offset length) (return end))
else return end
setDictionary :: Stream.DictionaryHash -> Maybe S.ByteString
-> Stream (Maybe (DecompressStream Stream))
setDictionary _adler Nothing =
return $ Just (DecompressStreamError DictionaryRequired)
setDictionary _adler (Just dict) = case int2cuint_safe (S.length dict) of
Nothing ->
fail "error when setting inflate dictionary, its length does not fit into CUInt"
Just{} -> do
status <- Stream.inflateSetDictionary dict
case status of
Stream.Ok -> return Nothing
Stream.Error Stream.DataError _ ->
return $ Just (DecompressStreamError DictionaryMismatch)
_ -> fail "error when setting inflate dictionary"
------------------------------------------------------------------------------
mkStateST :: ST s (Stream.State s)
mkStateIO :: IO (Stream.State RealWorld)
mkStateST = strictToLazyST Stream.mkState
mkStateIO = stToIO Stream.mkState
runStreamST :: Stream a -> Stream.State s -> ST s (a, Stream.State s)
runStreamIO :: Stream a -> Stream.State RealWorld -> IO (a, Stream.State RealWorld)
runStreamST strm zstate = strictToLazyST (Unsafe.unsafeIOToST noDuplicate >> Stream.runStream strm zstate)
runStreamIO strm zstate = stToIO (Stream.runStream strm zstate)
-- | Chunk size must fit into t'CUInt'.
compressStreamIO :: Stream.Format -> CompressParams -> CompressStream IO
compressStreamIO format params =
CompressInputRequired {
compressSupplyInput = \chunk -> do
zstate <- mkStateIO
let next = compressStream format params
(strm', zstate') <- runStreamIO (next chunk) zstate
return (go strm' zstate')
}
where
go :: CompressStream Stream -> Stream.State RealWorld -> CompressStream IO
go (CompressInputRequired next) zstate =
CompressInputRequired {
compressSupplyInput = \chunk -> do
(strm', zstate') <- runStreamIO (next chunk) zstate
return (go strm' zstate')
}
go (CompressOutputAvailable chunk next) zstate =
CompressOutputAvailable chunk $ do
(strm', zstate') <- runStreamIO next zstate
return (go strm' zstate')
go CompressStreamEnd _ = CompressStreamEnd
-- | Chunk size must fit into t'CUInt'.
compressStreamST :: Stream.Format -> CompressParams -> CompressStream (ST s)
compressStreamST format params =
CompressInputRequired {
compressSupplyInput = \chunk -> do
zstate <- mkStateST
let next = compressStream format params
(strm', zstate') <- runStreamST (next chunk) zstate
return (go strm' zstate')
}
where
go :: CompressStream Stream -> Stream.State s -> CompressStream (ST s)
go (CompressInputRequired next) zstate =
CompressInputRequired {
compressSupplyInput = \chunk -> do
(strm', zstate') <- runStreamST (next chunk) zstate
return (go strm' zstate')
}
go (CompressOutputAvailable chunk next) zstate =
CompressOutputAvailable chunk $ do
(strm', zstate') <- runStreamST next zstate
return (go strm' zstate')
go CompressStreamEnd _ = CompressStreamEnd
-- | Chunk size must fit into t'CUInt'.
decompressStreamIO :: Stream.Format -> DecompressParams -> DecompressStream IO
decompressStreamIO format params =
DecompressInputRequired $ \chunk -> do
zstate <- mkStateIO
let next = decompressStream format params False
(strm', zstate') <- runStreamIO (next chunk) zstate
go strm' zstate' (S.null chunk)
where
go :: DecompressStream Stream -> Stream.State RealWorld -> Bool
-> IO (DecompressStream IO)
go (DecompressInputRequired next) zstate !_ =
return $ DecompressInputRequired $ \chunk -> do
(strm', zstate') <- runStreamIO (next chunk) zstate
go strm' zstate' (S.null chunk)
go (DecompressOutputAvailable chunk next) zstate !eof =
return $ DecompressOutputAvailable chunk $ do
(strm', zstate') <- runStreamIO next zstate
go strm' zstate' eof
go (DecompressStreamEnd unconsumed) zstate !eof
| format == Stream.gzipFormat
, decompressAllMembers params
, not eof = tryFollowingStream unconsumed zstate
| otherwise = finaliseStreamEnd unconsumed zstate
go (DecompressStreamError err) zstate !_ = finaliseStreamError err zstate
tryFollowingStream :: S.ByteString -> Stream.State RealWorld -> IO (DecompressStream IO)
tryFollowingStream chunk zstate = case S.length chunk of
0 -> return $ DecompressInputRequired $ \chunk' -> case S.length chunk' of
0 -> finaliseStreamEnd S.empty zstate
1 | S.head chunk' /= 0x1f
-> finaliseStreamEnd chunk' zstate
1 -> return $ DecompressInputRequired $ \chunk'' -> case S.length chunk'' of
0 -> finaliseStreamEnd chunk' zstate
_ -> checkHeaderSplit (S.head chunk') chunk'' zstate
_ -> checkHeader chunk' zstate
1 -> return $ DecompressInputRequired $ \chunk' -> case S.length chunk' of
0 -> finaliseStreamEnd chunk zstate
_ -> checkHeaderSplit (S.head chunk) chunk' zstate
_ -> checkHeader chunk zstate
checkHeaderSplit :: Word8 -> S.ByteString -> Stream.State RealWorld -> IO (DecompressStream IO)
checkHeaderSplit 0x1f chunk zstate
| S.head chunk == 0x8b = do
let resume = decompressStream format params True (S.pack [0x1f, 0x8b])
if S.length chunk > 1
then do
-- have to handle the remaining data in this chunk
(DecompressInputRequired next, zstate') <- runStreamIO resume zstate
(strm', zstate'') <- runStreamIO (next (S.tail chunk)) zstate'
go strm' zstate'' False
else do
-- subtle special case when the chunk tail is empty
-- yay for QC tests
(strm, zstate') <- runStreamIO resume zstate
go strm zstate' False
checkHeaderSplit byte chunk zstate =
finaliseStreamEnd (S.cons byte chunk) zstate
checkHeader :: S.ByteString -> Stream.State RealWorld -> IO (DecompressStream IO)
checkHeader chunk zstate
| S.index chunk 0 == 0x1f
, S.index chunk 1 == 0x8b = do
let resume = decompressStream format params True chunk
(strm', zstate') <- runStreamIO resume zstate
go strm' zstate' False
checkHeader chunk zstate = finaliseStreamEnd chunk zstate
finaliseStreamEnd unconsumed zstate = do
_ <- runStreamIO Stream.finalise zstate
return (DecompressStreamEnd unconsumed)
finaliseStreamError err zstate = do
_ <- runStreamIO Stream.finalise zstate
return (DecompressStreamError err)
-- | Chunk size must fit into t'CUInt'.
decompressStreamST :: Stream.Format -> DecompressParams -> DecompressStream (ST s)
decompressStreamST format params =
DecompressInputRequired $ \chunk -> do
zstate <- mkStateST
let next = decompressStream format params False
(strm', zstate') <- runStreamST (next chunk) zstate
go strm' zstate' (S.null chunk)
where
go :: DecompressStream Stream -> Stream.State s -> Bool
-> ST s (DecompressStream (ST s))
go (DecompressInputRequired next) zstate !_ =
return $ DecompressInputRequired $ \chunk -> do
(strm', zstate') <- runStreamST (next chunk) zstate
go strm' zstate' (S.null chunk)
go (DecompressOutputAvailable chunk next) zstate !eof =
return $ DecompressOutputAvailable chunk $ do
(strm', zstate') <- runStreamST next zstate
go strm' zstate' eof
go (DecompressStreamEnd unconsumed) zstate !eof
| format == Stream.gzipFormat
, decompressAllMembers params
, not eof = tryFollowingStream unconsumed zstate
| otherwise = finaliseStreamEnd unconsumed zstate
go (DecompressStreamError err) zstate !_ = finaliseStreamError err zstate
tryFollowingStream :: S.ByteString -> Stream.State s -> ST s (DecompressStream (ST s))
tryFollowingStream chunk zstate =
case S.length chunk of
0 -> return $ DecompressInputRequired $ \chunk' -> case S.length chunk' of
0 -> finaliseStreamEnd S.empty zstate
1 | S.head chunk' /= 0x1f
-> finaliseStreamEnd chunk' zstate
1 -> return $ DecompressInputRequired $ \chunk'' -> case S.length chunk'' of
0 -> finaliseStreamEnd chunk' zstate
_ -> checkHeaderSplit (S.head chunk') chunk'' zstate
_ -> checkHeader chunk' zstate
1 -> return $ DecompressInputRequired $ \chunk' -> case S.length chunk' of
0 -> finaliseStreamEnd chunk zstate
_ -> checkHeaderSplit (S.head chunk) chunk' zstate
_ -> checkHeader chunk zstate
checkHeaderSplit :: Word8 -> S.ByteString -> Stream.State s -> ST s (DecompressStream (ST s))
checkHeaderSplit 0x1f chunk zstate
| S.head chunk == 0x8b = do
let resume = decompressStream format params True (S.pack [0x1f, 0x8b])
if S.length chunk > 1
then do
-- have to handle the remaining data in this chunk
(x, zstate') <- runStreamST resume zstate
let next = case x of
DecompressInputRequired n -> n
_ -> error "checkHeaderSplit: unexpected result of runStreamST"
(strm', zstate'') <- runStreamST (next (S.tail chunk)) zstate'
go strm' zstate'' False
else do
-- subtle special case when the chunk tail is empty
-- yay for QC tests
(strm, zstate') <- runStreamST resume zstate
go strm zstate' False
checkHeaderSplit byte chunk zstate =
finaliseStreamEnd (S.cons byte chunk) zstate
checkHeader :: S.ByteString -> Stream.State s -> ST s (DecompressStream (ST s))
checkHeader chunk zstate
| S.index chunk 0 == 0x1f
, S.index chunk 1 == 0x8b = do
let resume = decompressStream format params True chunk
(strm', zstate') <- runStreamST resume zstate
go strm' zstate' False
checkHeader chunk zstate = finaliseStreamEnd chunk zstate
finaliseStreamEnd unconsumed zstate = do
_ <- runStreamST Stream.finalise zstate
return (DecompressStreamEnd unconsumed)
finaliseStreamError err zstate = do
_ <- runStreamST Stream.finalise zstate
return (DecompressStreamError err)
-- | This one should not fail on 64-bit arch.
cuint2int :: CUInt -> Int
cuint2int n = fromMaybe (error $ "cuint2int: cannot cast " ++ show n) $ toIntegralSized n
-- | This one could and will fail if chunks of ByteString are longer than 4G.
int2cuint :: Int -> CUInt
int2cuint n = fromMaybe (error $ "int2cuint: cannot cast " ++ show n) $ toIntegralSized n
int2cuint_capped :: Int -> CUInt
int2cuint_capped = fromMaybe maxBound . toIntegralSized . max 0
int2cuint_safe :: Int -> Maybe CUInt
int2cuint_safe = toIntegralSized
toLimitedChunks :: L.ByteString -> [S.ByteString]
toLimitedChunks L.Empty = []
toLimitedChunks (L.Chunk x xs) = case int2cuint_safe (S.length x) of
Nothing -> let (y, z) = S.splitAt (cuint2int (maxBound :: CUInt)) x in
y : toLimitedChunks (L.Chunk z xs)
Just{} -> x : toLimitedChunks xs
|