1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
module Numeric(fromRat,
showSigned, showIntAtBase,
showInt, showOct, showHex,
readSigned, readInt,
readDec, readOct, readHex,
floatToDigits,
showEFloat, showFFloat, showGFloat, showFloat,
readFloat, lexDigits) where
import Char ( isDigit, isOctDigit, isHexDigit
, digitToInt, intToDigit )
import Ratio ( (%), numerator, denominator )
import Array ( (!), Array, array )
-- This converts a rational to a floating. This should be used in the
-- Fractional instances of Float and Double.
fromRat :: (RealFloat a) => Rational -> a
fromRat x =
if x == 0 then encodeFloat 0 0 -- Handle exceptional cases
else if x < 0 then - fromRat' (-x) -- first.
else fromRat' x
-- Conversion process:
-- Scale the rational number by the RealFloat base until
-- it lies in the range of the mantissa (as used by decodeFloat/encodeFloat).
-- Then round the rational to an Integer and encode it with the exponent
-- that we got from the scaling.
-- To speed up the scaling process we compute the log2 of the number to get
-- a first guess of the exponent.
fromRat' :: (RealFloat a) => Rational -> a
fromRat' x = r
where b = floatRadix r
p = floatDigits r
(minExp0, _) = floatRange r
minExp = minExp0 - p -- the real minimum exponent
xMin = toRational (expt b (p-1))
xMax = toRational (expt b p)
p0 = (integerLogBase b (numerator x) -
integerLogBase b (denominator x) - p) `max` minExp
f = if p0 < 0 then 1 % expt b (-p0) else expt b p0 % 1
(x', p') = scaleRat (toRational b) minExp xMin xMax p0 (x / f)
r = encodeFloat (round x') p'
-- Scale x until xMin <= x < xMax, or p (the exponent) <= minExp.
scaleRat :: Rational -> Int -> Rational -> Rational ->
Int -> Rational -> (Rational, Int)
scaleRat b minExp xMin xMax p x =
if p <= minExp then
(x, p)
else if x >= xMax then
scaleRat b minExp xMin xMax (p+1) (x/b)
else if x < xMin then
scaleRat b minExp xMin xMax (p-1) (x*b)
else
(x, p)
-- Exponentiation with a cache for the most common numbers.
minExpt = 0::Int
maxExpt = 1100::Int
expt :: Integer -> Int -> Integer
expt base n =
if base == 2 && n >= minExpt && n <= maxExpt then
expts!n
else
base^n
expts :: Array Int Integer
expts = array (minExpt,maxExpt) [(n,2^n) | n <- [minExpt .. maxExpt]]
-- Compute the (floor of the) log of i in base b.
-- Simplest way would be just divide i by b until it's smaller then b,
-- but that would be very slow! We are just slightly more clever.
integerLogBase :: Integer -> Integer -> Int
integerLogBase b i =
if i < b then
0
else
-- Try squaring the base first to cut down the number of divisions.
let l = 2 * integerLogBase (b*b) i
doDiv :: Integer -> Int -> Int
doDiv i l = if i < b then l else doDiv (i `div` b) (l+1)
in doDiv (i `div` (b^l)) l
-- Misc utilities to show integers and floats
showSigned :: Real a => (a -> ShowS) -> Int -> a -> ShowS
showSigned showPos p x
| x < 0 = showParen (p > 6) (showChar '-' . showPos (-x))
| otherwise = showPos x
-- showInt, showOct, showHex are used for positive numbers only
showInt, showOct, showHex :: Integral a => a -> ShowS
showOct = showIntAtBase 8 intToDigit
showInt = showIntAtBase 10 intToDigit
showHex = showIntAtBase 16 intToDigit
showIntAtBase :: Integral a
=> a -- base
-> (Int -> Char) -- digit to char
-> a -- number to show
-> ShowS
showIntAtBase base intToDig n rest
| n < 0 = error "Numeric.showIntAtBase: can't show negative numbers"
| n' == 0 = rest'
| otherwise = showIntAtBase base intToDig n' rest'
where
(n',d) = quotRem n base
rest' = intToDig (fromIntegral d) : rest
readSigned :: (Real a) => ReadS a -> ReadS a
readSigned readPos = readParen False read'
where read' r = read'' r ++
[(-x,t) | ("-",s) <- lex r,
(x,t) <- read'' s]
read'' r = [(n,s) | (str,s) <- lex r,
(n,"") <- readPos str]
-- readInt reads a string of digits using an arbitrary base.
-- Leading minus signs must be handled elsewhere.
readInt :: (Integral a) => a -> (Char -> Bool) -> (Char -> Int) -> ReadS a
readInt radix isDig digToInt s =
[(foldl1 (\n d -> n * radix + d) (map (fromIntegral . digToInt) ds), r)
| (ds,r) <- nonnull isDig s ]
-- Unsigned readers for various bases
readDec, readOct, readHex :: (Integral a) => ReadS a
readDec = readInt 10 isDigit digitToInt
readOct = readInt 8 isOctDigit digitToInt
readHex = readInt 16 isHexDigit digitToInt
showEFloat :: (RealFloat a) => Maybe Int -> a -> ShowS
showFFloat :: (RealFloat a) => Maybe Int -> a -> ShowS
showGFloat :: (RealFloat a) => Maybe Int -> a -> ShowS
showFloat :: (RealFloat a) => a -> ShowS
showEFloat d x = showString (formatRealFloat FFExponent d x)
showFFloat d x = showString (formatRealFloat FFFixed d x)
showGFloat d x = showString (formatRealFloat FFGeneric d x)
showFloat = showGFloat Nothing
-- These are the format types. This type is not exported.
data FFFormat = FFExponent | FFFixed | FFGeneric
formatRealFloat :: (RealFloat a) => FFFormat -> Maybe Int -> a -> String
formatRealFloat fmt decs x
= s
where
base = 10
s = if isNaN x then
"NaN"
else if isInfinite x then
if x < 0 then "-Infinity" else "Infinity"
else if x < 0 || isNegativeZero x then
'-' : doFmt fmt (floatToDigits (toInteger base) (-x))
else
doFmt fmt (floatToDigits (toInteger base) x)
doFmt fmt (is, e)
= let
ds = map intToDigit is
in
case fmt of
FFGeneric ->
doFmt (if e < 0 || e > 7 then FFExponent else FFFixed)
(is, e)
FFExponent ->
case decs of
Nothing ->
case ds of
[] -> "0.0e0"
[d] -> d : ".0e" ++ show (e-1)
d:ds -> d : '.' : ds ++ 'e':show (e-1)
Just dec ->
let dec' = max dec 1 in
case is of
[] -> '0':'.':take dec' (repeat '0') ++ "e0"
_ ->
let (ei, is') = roundTo base (dec'+1) is
d:ds = map intToDigit
(if ei > 0 then init is' else is')
in d:'.':ds ++ "e" ++ show (e-1+ei)
FFFixed ->
case decs of
Nothing -- Always prints a decimal point
| e > 0 -> take e (ds ++ repeat '0')
++ '.' : mk0 (drop e ds)
| otherwise -> "0." ++ mk0 (replicate (-e) '0' ++ ds)
Just dec -> -- Print decimal point iff dec > 0
let dec' = max dec 0 in
if e >= 0 then
let (ei, is') = roundTo base (dec' + e) is
(ls, rs) = splitAt (e+ei)
(map intToDigit is')
in mk0 ls ++ mkdot0 rs
else
let (ei, is') = roundTo base dec'
(replicate (-e) 0 ++ is)
d : ds = map intToDigit
(if ei > 0 then is' else 0:is')
in d : mkdot0 ds
where
mk0 "" = "0" -- Print 0.34, not .34
mk0 s = s
mkdot0 "" = "" -- Print 34, not 34.
mkdot0 s = '.' : s -- when the format specifies no
-- digits after the decimal point
roundTo :: Int -> Int -> [Int] -> (Int, [Int])
roundTo base d is = case f d is of
(0, is) -> (0, is)
(1, is) -> (1, 1 : is)
where b2 = base `div` 2
f n [] = (0, replicate n 0)
f 0 (i:_) = (if i >= b2 then 1 else 0, [])
f d (i:is) =
let (c, ds) = f (d-1) is
i' = c + i
in if i' == base then (1, 0:ds) else (0, i':ds)
--
-- Based on "Printing Floating-Point Numbers Quickly and Accurately"
-- by R.G. Burger and R. K. Dybvig, in PLDI 96.
-- The version here uses a much slower logarithm estimator.
-- It should be improved.
-- This function returns a non-empty list of digits (Ints in [0..base-1])
-- and an exponent. In general, if
-- floatToDigits r = ([a, b, ... z], e)
-- then
-- r = 0.ab..z * base^e
--
floatToDigits :: (RealFloat a) => Integer -> a -> ([Int], Int)
floatToDigits _ 0 = ([], 0)
floatToDigits base x =
let (f0, e0) = decodeFloat x
(minExp0, _) = floatRange x
p = floatDigits x
b = floatRadix x
minExp = minExp0 - p -- the real minimum exponent
-- Haskell requires that f be adjusted so denormalized numbers
-- will have an impossibly low exponent. Adjust for this.
f :: Integer
e :: Int
(f, e) = let n = minExp - e0
in if n > 0 then (f0 `div` (b^n), e0+n) else (f0, e0)
(r, s, mUp, mDn) =
if e >= 0 then
let be = b^e in
if f == b^(p-1) then
(f*be*b*2, 2*b, be*b, b)
else
(f*be*2, 2, be, be)
else
if e > minExp && f == b^(p-1) then
(f*b*2, b^(-e+1)*2, b, 1)
else
(f*2, b^(-e)*2, 1, 1)
k =
let k0 =
if b==2 && base==10 then
-- logBase 10 2 is slightly bigger than 3/10 so
-- the following will err on the low side. Ignoring
-- the fraction will make it err even more.
-- Haskell promises that p-1 <= logBase b f < p.
(p - 1 + e0) * 3 `div` 10
else
ceiling ((log (fromInteger (f+1)) +
fromIntegral e * log (fromInteger b)) /
log (fromInteger base))
fixup n =
if n >= 0 then
if r + mUp <= expt base n * s then n else fixup (n+1)
else
if expt base (-n) * (r + mUp) <= s then n
else fixup (n+1)
in fixup k0
gen ds rn sN mUpN mDnN =
let (dn, rn') = (rn * base) `divMod` sN
mUpN' = mUpN * base
mDnN' = mDnN * base
in case (rn' < mDnN', rn' + mUpN' > sN) of
(True, False) -> dn : ds
(False, True) -> dn+1 : ds
(True, True) -> if rn' * 2 < sN then dn : ds else dn+1 : ds
(False, False) -> gen (dn:ds) rn' sN mUpN' mDnN'
rds =
if k >= 0 then
gen [] r (s * expt base k) mUp mDn
else
let bk = expt base (-k)
in gen [] (r * bk) s (mUp * bk) (mDn * bk)
in (map fromIntegral (reverse rds), k)
-- This floating point reader uses a less restrictive syntax for floating
-- point than the Haskell lexer. The `.' is optional.
readFloat :: (RealFrac a) => ReadS a
readFloat r = [(fromRational ((n%1)*10^^(k-d)),t) | (n,d,s) <- readFix r,
(k,t) <- readExp s] ++
[ (0/0, t) | ("NaN",t) <- lex r] ++
[ (1/0, t) | ("Infinity",t) <- lex r]
where
readFix r = [(read (ds++ds'), length ds', t)
| (ds,d) <- lexDigits r,
(ds',t) <- lexFrac d ]
lexFrac ('.':ds) = lexDigits ds
lexFrac s = [("",s)]
readExp (e:s) | e `elem` "eE" = readExp' s
readExp s = [(0,s)]
readExp' ('-':s) = [(-k,t) | (k,t) <- readDec s]
readExp' ('+':s) = readDec s
readExp' s = readDec s
lexDigits :: ReadS String
lexDigits = nonnull isDigit
nonnull :: (Char -> Bool) -> ReadS String
nonnull p s = [(cs,t) | (cs@(_:_),t) <- [span p s]]
|