1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
|
(*
* Copyright (C)2005-2013 Haxe Foundation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*)
open Ast
open Type
open Common
open Typecore
let locate_macro_error = ref true
(*
Build module structure : should be atomic - no type loading is possible
*)
let make_module ctx mpath file tdecls loadp =
let decls = ref [] in
let make_path name priv =
if List.exists (fun (t,_) -> snd (t_path t) = name) !decls then error ("Type name " ^ name ^ " is already defined in this module") loadp;
if priv then (fst mpath @ ["_" ^ snd mpath], name) else (fst mpath, name)
in
let m = {
m_id = alloc_mid();
m_path = mpath;
m_types = [];
m_extra = module_extra (Common.unique_full_path file) (Common.get_signature ctx.com) (file_time file) (if ctx.in_macro then MMacro else MCode);
} in
let pt = ref None in
let rec make_decl acc decl =
let p = snd decl in
let acc = (match fst decl with
| EImport _ | EUsing _ ->
(match !pt with
| None -> acc
| Some pt ->
display_error ctx "import and using may not appear after a type declaration" p;
error "Previous type declaration found here" pt)
| EClass d ->
if String.length d.d_name > 0 && d.d_name.[0] = '$' then error "Type names starting with a dollar are not allowed" p;
pt := Some p;
let priv = List.mem HPrivate d.d_flags in
let path = make_path d.d_name priv in
let c = mk_class m path p in
c.cl_module <- m;
c.cl_private <- priv;
c.cl_doc <- d.d_doc;
c.cl_meta <- d.d_meta;
decls := (TClassDecl c, decl) :: !decls;
acc
| EEnum d ->
if String.length d.d_name > 0 && d.d_name.[0] = '$' then error "Type names starting with a dollar are not allowed" p;
pt := Some p;
let priv = List.mem EPrivate d.d_flags in
let path = make_path d.d_name priv in
let e = {
e_path = path;
e_module = m;
e_pos = p;
e_doc = d.d_doc;
e_meta = d.d_meta;
e_params = [];
e_private = priv;
e_extern = List.mem EExtern d.d_flags;
e_constrs = PMap.empty;
e_names = [];
e_type = {
t_path = [], "Enum<" ^ (s_type_path path) ^ ">";
t_module = m;
t_doc = None;
t_pos = p;
t_type = mk_mono();
t_private = true;
t_params = [];
t_meta = [];
};
} in
decls := (TEnumDecl e, decl) :: !decls;
acc
| ETypedef d ->
if String.length d.d_name > 0 && d.d_name.[0] = '$' then error "Type names starting with a dollar are not allowed" p;
pt := Some p;
let priv = List.mem EPrivate d.d_flags in
let path = make_path d.d_name priv in
let t = {
t_path = path;
t_module = m;
t_pos = p;
t_doc = d.d_doc;
t_private = priv;
t_params = [];
t_type = mk_mono();
t_meta = d.d_meta;
} in
decls := (TTypeDecl t, decl) :: !decls;
acc
| EAbstract d ->
if String.length d.d_name > 0 && d.d_name.[0] = '$' then error "Type names starting with a dollar are not allowed" p;
let priv = List.mem APrivAbstract d.d_flags in
let path = make_path d.d_name priv in
let a = {
a_path = path;
a_private = priv;
a_module = m;
a_pos = p;
a_doc = d.d_doc;
a_params = [];
a_meta = d.d_meta;
a_from = [];
a_to = [];
a_from_field = [];
a_to_field = [];
a_ops = [];
a_unops = [];
a_impl = None;
a_array = [];
a_this = mk_mono();
} in
decls := (TAbstractDecl a, decl) :: !decls;
match d.d_data with
| [] when Meta.has Meta.CoreType a.a_meta ->
a.a_this <- t_dynamic;
acc
| fields ->
let a_t =
let params = List.map (fun t -> TPType (CTPath { tname = t.tp_name; tparams = []; tsub = None; tpackage = [] })) d.d_params in
CTPath { tpackage = []; tname = d.d_name; tparams = params; tsub = None }
in
let rec loop = function
| [] -> a_t
| AIsType t :: _ -> t
| _ :: l -> loop l
in
let this_t = loop d.d_flags in
let fields = List.map (fun f ->
let stat = List.mem AStatic f.cff_access in
let p = f.cff_pos in
match f.cff_kind with
| FProp (("get" | "never"),("set" | "never"),_,_) when not stat ->
(* TODO: hack to avoid issues with abstract property generation on As3 *)
if Common.defined ctx.com Define.As3 then f.cff_meta <- (Meta.Extern,[],p) :: f.cff_meta;
{ f with cff_access = AStatic :: f.cff_access; cff_meta = (Meta.Impl,[],p) :: f.cff_meta }
| FProp _ when not stat ->
display_error ctx "Member property accessors must be get/set or never" p;
f
| FFun fu when f.cff_name = "new" && not stat ->
let init p = (EVars ["this",Some this_t,None],p) in
let cast e = (ECast(e,None)),pos e in
let check_type e ct = (ECheckType(e,ct)),pos e in
let ret p = (EReturn (Some (cast (EConst (Ident "this"),p))),p) in
if Meta.has Meta.MultiType a.a_meta then begin
if List.mem AInline f.cff_access then error "MultiType constructors cannot be inline" f.cff_pos;
if fu.f_expr <> None then error "MultiType constructors cannot have a body" f.cff_pos;
end;
let has_call e =
let rec loop e = match fst e with
| ECall _ -> raise Exit
| _ -> Ast.map_expr loop e
in
try ignore(loop e); false with Exit -> true
in
let fu = {
fu with
f_expr = (match fu.f_expr with
| None -> if Meta.has Meta.MultiType a.a_meta then Some (EConst (Ident "null"),p) else None
| Some (EBlock [EBinop (OpAssign,(EConst (Ident "this"),_),e),_],_ | EBinop (OpAssign,(EConst (Ident "this"),_),e),_) when not (has_call e) ->
Some (EReturn (Some (cast (check_type e this_t))), pos e)
| Some (EBlock el,p) -> Some (EBlock (init p :: el @ [ret p]),p)
| Some e -> Some (EBlock [init p;e;ret p],p)
);
f_type = Some a_t;
} in
{ f with cff_name = "_new"; cff_access = AStatic :: f.cff_access; cff_kind = FFun fu; cff_meta = (Meta.Impl,[],p) :: f.cff_meta }
| FFun fu when not stat ->
if Meta.has Meta.From f.cff_meta then error "@:from cast functions must be static" f.cff_pos;
let fu = { fu with f_args = (if List.mem AMacro f.cff_access then fu.f_args else ("this",false,Some this_t,None) :: fu.f_args) } in
{ f with cff_kind = FFun fu; cff_access = AStatic :: f.cff_access; cff_meta = (Meta.Impl,[],p) :: f.cff_meta }
| _ ->
f
) fields in
let meta = ref [] in
if has_meta Meta.Dce a.a_meta then meta := (Meta.Dce,[],p) :: !meta;
let acc = make_decl acc (EClass { d_name = d.d_name ^ "_Impl_"; d_flags = [HPrivate]; d_data = fields; d_doc = None; d_params = []; d_meta = !meta },p) in
(match !decls with
| (TClassDecl c,_) :: _ ->
List.iter (fun m -> match m with
| ((Meta.Build | Meta.CoreApi | Meta.Allow | Meta.Access | Meta.Enum | Meta.Dce),_,_) ->
c.cl_meta <- m :: c.cl_meta;
| _ ->
()
) a.a_meta;
a.a_impl <- Some c;
c.cl_kind <- KAbstractImpl a
| _ -> assert false);
acc
) in
decl :: acc
in
let tdecls = List.fold_left make_decl [] tdecls in
let decls = List.rev !decls in
m.m_types <- List.map fst decls;
m, decls, List.rev tdecls
let parse_file com file p =
let ch = (try open_in_bin file with _ -> error ("Could not open " ^ file) p) in
let t = Common.timer "parsing" in
Lexer.init file true;
incr stats.s_files_parsed;
let data = (try Parser.parse com (Lexing.from_channel ch) with e -> close_in ch; t(); raise e) in
close_in ch;
t();
Common.log com ("Parsed " ^ file);
data
let parse_hook = ref parse_file
let type_module_hook = ref (fun _ _ _ -> None)
let type_function_params_rec = ref (fun _ _ _ _ -> assert false)
let return_partial_type = ref false
let type_function_arg ctx t e opt p =
if opt then
let e = (match e with None -> Some (EConst (Ident "null"),p) | _ -> e) in
ctx.t.tnull t, e
else
let t = match e with Some (EConst (Ident "null"),p) -> ctx.t.tnull t | _ -> t in
t, e
let type_var_field ctx t e stat p =
if stat then ctx.curfun <- FunStatic else ctx.curfun <- FunMember;
let e = type_expr ctx e (WithType t) in
let e = (!cast_or_unify_ref) ctx t e p in
match t with
| TType ({ t_path = ([],"UInt") },[]) | TAbstract ({ a_path = ([],"UInt") },[]) when stat -> { e with etype = t }
| _ -> e
let apply_macro ctx mode path el p =
let cpath, meth = (match List.rev (ExtString.String.nsplit path ".") with
| meth :: name :: pack -> (List.rev pack,name), meth
| _ -> error "Invalid macro path" p
) in
ctx.g.do_macro ctx mode cpath meth el p
(** since load_type_def and load_instance are used in PASS2, they should not access the structure of a type **)
(*
load a type or a subtype definition
*)
let rec load_type_def ctx p t =
let no_pack = t.tpackage = [] in
let tname = (match t.tsub with None -> t.tname | Some n -> n) in
try
if t.tsub <> None then raise Not_found;
List.find (fun t2 ->
let tp = t_path t2 in
tp = (t.tpackage,tname) || (no_pack && snd tp = tname)
) (ctx.m.curmod.m_types @ ctx.m.module_types)
with
Not_found ->
let next() =
let t, m = (try
t, ctx.g.do_load_module ctx (t.tpackage,t.tname) p
with Error (Module_not_found _,p2) as e when p == p2 ->
match t.tpackage with
| "std" :: l ->
let t = { t with tpackage = l } in
t, ctx.g.do_load_module ctx (t.tpackage,t.tname) p
| _ -> raise e
) in
let tpath = (t.tpackage,tname) in
try
List.find (fun t -> not (t_infos t).mt_private && t_path t = tpath) m.m_types
with
Not_found -> raise (Error (Type_not_found (m.m_path,tname),p))
in
(* lookup in wildcard imported packages *)
try
if not no_pack then raise Exit;
let rec loop = function
| [] -> raise Exit
| wp :: l ->
try
load_type_def ctx p { t with tpackage = wp }
with
| Error (Module_not_found _,p2)
| Error (Type_not_found _,p2) when p == p2 -> loop l
in
loop ctx.m.wildcard_packages
with Exit ->
(* lookup in our own package - and its upper packages *)
let rec loop = function
| [] -> raise Exit
| (_ :: lnext) as l ->
try
load_type_def ctx p { t with tpackage = List.rev l }
with
| Error (Module_not_found _,p2)
| Error (Type_not_found _,p2) when p == p2 -> loop lnext
in
try
if not no_pack then raise Exit;
(match fst ctx.m.curmod.m_path with
| [] -> raise Exit
| x :: _ ->
(* this can occur due to haxe remoting : a module can be
already defined in the "js" package and is not allowed
to access the js classes *)
try
(match PMap.find x ctx.com.package_rules with
| Forbidden -> raise Exit
| _ -> ())
with Not_found -> ());
loop (List.rev (fst ctx.m.curmod.m_path));
with
Exit -> next()
let check_param_constraints ctx types t pl c p =
match follow t with
| TMono _ -> ()
| _ ->
let ctl = (match c.cl_kind with KTypeParameter l -> l | _ -> []) in
List.iter (fun ti ->
let ti = apply_params types pl ti in
let ti = (match follow ti with
| TInst ({ cl_kind = KGeneric } as c,pl) ->
(* if we solve a generic contraint, let's substitute with the actual generic instance before unifying *)
let _,_, f = ctx.g.do_build_instance ctx (TClassDecl c) p in
f pl
| _ -> ti
) in
try
unify_raise ctx t ti p
with Error(Unify l,p) ->
if not ctx.untyped then display_error ctx (error_msg (Unify (Constraint_failure (s_type_path c.cl_path) :: l))) p;
) ctl
let requires_value_meta com co =
Common.defined com Define.DocGen || (match co with
| None -> false
| Some c -> c.cl_extern || Meta.has Meta.Rtti c.cl_meta)
let generate_value_meta com co cf args =
if requires_value_meta com co then begin
let values = List.fold_left (fun acc (name,_,_,eo) -> match eo with Some e -> (name,e) :: acc | _ -> acc) [] args in
match values with
| [] -> ()
| _ -> cf.cf_meta <- ((Meta.Value,[EObjectDecl values,cf.cf_pos],cf.cf_pos) :: cf.cf_meta)
end
(* build an instance from a full type *)
let rec load_instance ctx t p allow_no_params =
try
if t.tpackage <> [] || t.tsub <> None then raise Not_found;
let pt = List.assoc t.tname ctx.type_params in
if t.tparams <> [] then error ("Class type parameter " ^ t.tname ^ " can't have parameters") p;
pt
with Not_found ->
let mt = load_type_def ctx p t in
let is_generic,is_generic_build = match mt with
| TClassDecl {cl_kind = KGeneric} -> true,false
| TClassDecl {cl_kind = KGenericBuild _} -> false,true
| _ -> false,false
in
let types , path , f = ctx.g.do_build_instance ctx mt p in
let is_rest = is_generic_build && (match types with ["Rest",_] -> true | _ -> false) in
if allow_no_params && t.tparams = [] && not is_rest then begin
let pl = ref [] in
pl := List.map (fun (name,t) ->
match follow t with
| TInst (c,_) ->
let t = mk_mono() in
if c.cl_kind <> KTypeParameter [] || is_generic then delay ctx PCheckConstraint (fun() -> check_param_constraints ctx types t (!pl) c p);
t;
| _ -> assert false
) types;
f (!pl)
end else if path = ([],"Dynamic") then
match t.tparams with
| [] -> t_dynamic
| [TPType t] -> TDynamic (load_complex_type ctx p t)
| _ -> error "Too many parameters for Dynamic" p
else begin
if not is_rest && List.length types <> List.length t.tparams then error ("Invalid number of type parameters for " ^ s_type_path path) p;
let tparams = List.map (fun t ->
match t with
| TPExpr e ->
let name = (match fst e with
| EConst (String s) -> "S" ^ s
| EConst (Int i) -> "I" ^ i
| EConst (Float f) -> "F" ^ f
| _ -> "Expr"
) in
let c = mk_class null_module ([],name) p in
c.cl_kind <- KExpr e;
TInst (c,[])
| TPType t -> load_complex_type ctx p t
) t.tparams in
let rec loop tl1 tl2 is_rest = match tl1,tl2 with
| t :: tl1,(name,t2) :: tl2 ->
let isconst = (match t with TInst ({ cl_kind = KExpr _ },_) -> true | _ -> false) in
if isconst <> (name = "Const") && t != t_dynamic && name <> "Rest" then error (if isconst then "Constant value unexpected here" else "Constant value excepted as type parameter") p;
let is_rest = is_rest || name = "Rest" && is_generic_build in
let t = match follow t2 with
| TInst ({ cl_kind = KTypeParameter [] }, []) when not is_generic ->
t
| TInst (c,[]) ->
let r = exc_protect ctx (fun r ->
r := (fun() -> t);
delay ctx PCheckConstraint (fun() -> check_param_constraints ctx types t tparams c p);
t
) "constraint" in
delay ctx PForce (fun () -> ignore(!r()));
TLazy r
| _ -> assert false
in
t :: loop tl1 tl2 is_rest
| [],[] ->
[]
| [],["Rest",_] when is_generic_build ->
[]
| [],_ ->
error ("Not enough type parameters for " ^ s_type_path path) p
| t :: tl,[] ->
if is_rest then
t :: loop tl [] true
else
error ("Too many parameters for " ^ s_type_path path) p
in
let params = loop tparams types false in
f params
end
(*
build an instance from a complex type
*)
and load_complex_type ctx p t =
match t with
| CTParent t -> load_complex_type ctx p t
| CTPath t -> load_instance ctx t p false
| CTOptional _ -> error "Optional type not allowed here" p
| CTExtend (tl,l) ->
(match load_complex_type ctx p (CTAnonymous l) with
| TAnon a as ta ->
let is_redefined cf1 a2 =
try
let cf2 = PMap.find cf1.cf_name a2.a_fields in
let st = s_type (print_context()) in
if not (type_iseq cf1.cf_type cf2.cf_type) then begin
display_error ctx ("Cannot redefine field " ^ cf1.cf_name ^ " with different type") p;
display_error ctx ("First type was " ^ (st cf1.cf_type)) cf1.cf_pos;
error ("Second type was " ^ (st cf2.cf_type)) cf2.cf_pos
end else
true
with Not_found ->
false
in
let mk_extension t =
match follow t with
| TInst ({cl_kind = KTypeParameter _},_) ->
error "Cannot structurally extend type parameters" p
| TInst (c,tl) ->
ctx.com.warning "Structurally extending classes is deprecated and will be removed" p;
let c2 = mk_class null_module (fst c.cl_path,"+" ^ snd c.cl_path) p in
c2.cl_private <- true;
PMap.iter (fun f _ ->
try
ignore(class_field c tl f);
error ("Cannot redefine field " ^ f) p
with
Not_found -> ()
) a.a_fields;
(* do NOT tag as extern - for protect *)
c2.cl_kind <- KExtension (c,tl);
c2.cl_super <- Some (c,tl);
c2.cl_fields <- a.a_fields;
TInst (c2,[])
| TMono _ ->
error "Loop found in cascading signatures definitions. Please change order/import" p
| TAnon a2 ->
PMap.iter (fun _ cf -> ignore(is_redefined cf a2)) a.a_fields;
TAnon { a_fields = (PMap.foldi PMap.add a.a_fields a2.a_fields); a_status = ref (Extend [t]); }
| _ -> error "Can only extend classes and structures" p
in
let loop t = match follow t with
| TAnon a2 ->
PMap.iter (fun f cf ->
if not (is_redefined cf a) then
a.a_fields <- PMap.add f cf a.a_fields
) a2.a_fields
| _ ->
error "Multiple structural extension is only allowed for structures" p
in
let il = List.map (fun t -> load_instance ctx t p false) tl in
let tr = ref None in
let t = TMono tr in
let r = exc_protect ctx (fun r ->
r := (fun _ -> t);
tr := Some (match il with
| [i] ->
mk_extension i
| _ ->
List.iter loop il;
a.a_status := Extend il;
ta);
t
) "constraint" in
delay ctx PForce (fun () -> ignore(!r()));
TLazy r
| _ -> assert false)
| CTAnonymous l ->
let rec loop acc f =
let n = f.cff_name in
let p = f.cff_pos in
if PMap.mem n acc then error ("Duplicate field declaration : " ^ n) p;
let topt = function
| None -> error ("Explicit type required for field " ^ n) p
| Some t -> load_complex_type ctx p t
in
let no_expr = function
| None -> ()
| Some (_,p) -> error "Expression not allowed here" p
in
let pub = ref true in
let dyn = ref false in
let params = ref [] in
List.iter (fun a ->
match a with
| APublic -> ()
| APrivate -> pub := false;
| ADynamic when (match f.cff_kind with FFun _ -> true | _ -> false) -> dyn := true
| AStatic | AOverride | AInline | ADynamic | AMacro -> error ("Invalid access " ^ Ast.s_access a) p
) f.cff_access;
let t , access = (match f.cff_kind with
| FVar (Some (CTPath({tpackage=[];tname="Void"})), _) | FProp (_,_,Some (CTPath({tpackage=[];tname="Void"})),_) ->
error "Fields of type Void are not allowed in structures" p
| FVar (t, e) ->
no_expr e;
topt t, Var { v_read = AccNormal; v_write = AccNormal }
| FFun fd ->
params := (!type_function_params_rec) ctx fd f.cff_name p;
no_expr fd.f_expr;
let old = ctx.type_params in
ctx.type_params <- !params @ old;
let args = List.map (fun (name,o,t,e) -> no_expr e; name, o, topt t) fd.f_args in
let t = TFun (args,topt fd.f_type), Method (if !dyn then MethDynamic else MethNormal) in
ctx.type_params <- old;
t
| FProp (i1,i2,t,e) ->
no_expr e;
let access m get =
match m with
| "null" -> AccNo
| "never" -> AccNever
| "default" -> AccNormal
| "dynamic" -> AccCall
| "get" when get -> AccCall
| "set" when not get -> AccCall
| x when get && x = "get_" ^ n -> AccCall
| x when not get && x = "set_" ^ n -> AccCall
| _ ->
error "Custom property access is no longer supported in Haxe 3" f.cff_pos;
in
let t = (match t with None -> error "Type required for structure property" p | Some t -> t) in
load_complex_type ctx p t, Var { v_read = access i1 true; v_write = access i2 false }
) in
let t = if Meta.has Meta.Optional f.cff_meta then ctx.t.tnull t else t in
let cf = {
cf_name = n;
cf_type = t;
cf_pos = p;
cf_public = !pub;
cf_kind = access;
cf_params = !params;
cf_expr = None;
cf_doc = f.cff_doc;
cf_meta = f.cff_meta;
cf_overloads = [];
} in
init_meta_overloads ctx None cf;
PMap.add n cf acc
in
mk_anon (List.fold_left loop PMap.empty l)
| CTFunction (args,r) ->
match args with
| [CTPath { tpackage = []; tparams = []; tname = "Void" }] ->
TFun ([],load_complex_type ctx p r)
| _ ->
TFun (List.map (fun t ->
let t, opt = (match t with CTOptional t -> t, true | _ -> t,false) in
"",opt,load_complex_type ctx p t
) args,load_complex_type ctx p r)
and init_meta_overloads ctx co cf =
let overloads = ref [] in
let filter_meta m = match m with
| ((Meta.Overload | Meta.Value),_,_) -> false
| _ -> true
in
let cf_meta = List.filter filter_meta cf.cf_meta in
cf.cf_meta <- List.filter (fun m ->
match m with
| (Meta.Overload,[(EFunction (fname,f),p)],_) ->
if fname <> None then error "Function name must not be part of @:overload" p;
(match f.f_expr with Some (EBlock [], _) -> () | _ -> error "Overload must only declare an empty method body {}" p);
let old = ctx.type_params in
(match cf.cf_params with
| [] -> ()
| l -> ctx.type_params <- List.filter (fun t -> not (List.mem t l)) ctx.type_params);
let params = (!type_function_params_rec) ctx f cf.cf_name p in
ctx.type_params <- params @ ctx.type_params;
let topt = function None -> error "Explicit type required" p | Some t -> load_complex_type ctx p t in
let args = List.map (fun (a,opt,t,_) -> a,opt,topt t) f.f_args in
let cf = { cf with cf_type = TFun (args,topt f.f_type); cf_params = params; cf_meta = cf_meta} in
generate_value_meta ctx.com co cf f.f_args;
overloads := cf :: !overloads;
ctx.type_params <- old;
false
| (Meta.Overload,[],_) when ctx.com.config.pf_overload ->
let topt (n,_,t) = match t with | TMono t when !t = None -> error ("Explicit type required for overload functions\nFor function argument '" ^ n ^ "'") cf.cf_pos | _ -> () in
(match follow cf.cf_type with
| TFun (args,_) -> List.iter topt args
| _ -> () (* could be a variable *));
true
| (Meta.Overload,[],p) ->
error "This platform does not support this kind of overload declaration. Try @:overload(function()... {}) instead" p
| (Meta.Overload,_,p) ->
error "Invalid @:overload metadata format" p
| _ ->
true
) cf.cf_meta;
cf.cf_overloads <- (List.rev !overloads)
let hide_params ctx =
let old_m = ctx.m in
let old_type_params = ctx.type_params in
let old_deps = ctx.g.std.m_extra.m_deps in
ctx.m <- {
curmod = ctx.g.std;
module_types = [];
module_using = [];
module_globals = PMap.empty;
wildcard_packages = [];
};
ctx.type_params <- [];
(fun() ->
ctx.m <- old_m;
ctx.type_params <- old_type_params;
(* restore dependencies that might be have been wronly inserted *)
ctx.g.std.m_extra.m_deps <- old_deps;
)
(*
load a type while ignoring the current imports or local types
*)
let load_core_type ctx name =
let show = hide_params ctx in
let t = load_instance ctx { tpackage = []; tname = name; tparams = []; tsub = None; } null_pos false in
show();
add_dependency ctx.m.curmod (match t with
| TInst (c,_) -> c.cl_module
| TType (t,_) -> t.t_module
| TAbstract (a,_) -> a.a_module
| TEnum (e,_) -> e.e_module
| _ -> assert false);
t
let t_iterator ctx =
let show = hide_params ctx in
match load_type_def ctx null_pos { tpackage = []; tname = "Iterator"; tparams = []; tsub = None } with
| TTypeDecl t ->
show();
add_dependency ctx.m.curmod t.t_module;
if List.length t.t_params <> 1 then assert false;
let pt = mk_mono() in
apply_params t.t_params [pt] t.t_type, pt
| _ ->
assert false
(*
load either a type t or Null<Unknown> if not defined
*)
let load_type_opt ?(opt=false) ctx p t =
let t = (match t with None -> mk_mono() | Some t -> load_complex_type ctx p t) in
if opt then ctx.t.tnull t else t
(* ---------------------------------------------------------------------- *)
(* Structure check *)
let valid_redefinition ctx f1 t1 f2 t2 =
let valid t1 t2 =
Type.unify t1 t2;
if is_null t1 <> is_null t2 then raise (Unify_error [Cannot_unify (t1,t2)]);
in
let t1, t2 = (match f1.cf_params, f2.cf_params with
| [], [] -> t1, t2
| l1, l2 when List.length l1 = List.length l2 ->
let to_check = ref [] in
let monos = List.map2 (fun (name,p1) (_,p2) ->
(match follow p1, follow p2 with
| TInst ({ cl_kind = KTypeParameter ct1 } as c1,pl1), TInst ({ cl_kind = KTypeParameter ct2 } as c2,pl2) ->
(match ct1, ct2 with
| [], [] -> ()
| _, _ when List.length ct1 = List.length ct2 ->
(* if same constraints, they are the same type *)
let check monos =
List.iter2 (fun t1 t2 ->
try
let t1 = apply_params l1 monos (apply_params c1.cl_params pl1 t1) in
let t2 = apply_params l2 monos (apply_params c2.cl_params pl2 t2) in
type_eq EqStrict t1 t2
with Unify_error l ->
raise (Unify_error (Unify_custom "Constraints differ" :: l))
) ct1 ct2
in
to_check := check :: !to_check;
| _ ->
raise (Unify_error [Unify_custom "Different number of constraints"]))
| _ -> ());
TInst (mk_class null_module ([],name) Ast.null_pos,[])
) l1 l2 in
List.iter (fun f -> f monos) !to_check;
apply_params l1 monos t1, apply_params l2 monos t2
| _ ->
(* ignore type params, will create other errors later *)
t1, t2
) in
match f1.cf_kind,f2.cf_kind with
| Method m1, Method m2 when not (m1 = MethDynamic) && not (m2 = MethDynamic) ->
begin match follow t1, follow t2 with
| TFun (args1,r1) , TFun (args2,r2) -> (
if not (List.length args1 = List.length args2) then raise (Unify_error [Unify_custom "Different number of function arguments"]);
try
List.iter2 (fun (n,o1,a1) (_,o2,a2) ->
if o1 <> o2 then raise (Unify_error [Not_matching_optional n]);
(try valid a2 a1 with Unify_error _ -> raise (Unify_error [Cannot_unify(a1,a2)]))
) args1 args2;
valid r1 r2
with Unify_error l ->
raise (Unify_error (Cannot_unify (t1,t2) :: l)))
| _ ->
assert false
end
| _,(Var { v_write = AccNo | AccNever }) ->
(* write variance *)
valid t2 t1
| _,(Var { v_read = AccNo | AccNever }) ->
(* read variance *)
valid t1 t2
| _ , _ ->
(* in case args differs, or if an interface var *)
type_eq EqStrict t1 t2;
if is_null t1 <> is_null t2 then raise (Unify_error [Cannot_unify (t1,t2)])
let copy_meta meta_src meta_target sl =
let meta = ref meta_target in
List.iter (fun (m,e,p) ->
if List.mem m sl then meta := (m,e,p) :: !meta
) meta_src;
!meta
let same_overload_args ?(get_vmtype) t1 t2 f1 f2 =
let get_vmtype = match get_vmtype with
| None -> (fun f -> f)
| Some f -> f
in
if List.length f1.cf_params <> List.length f2.cf_params then
false
else
let rec follow_skip_null t = match t with
| TMono r ->
(match !r with
| Some t -> follow_skip_null t
| _ -> t)
| TLazy f ->
follow_skip_null (!f())
| TType ({ t_path = [],"Null" } as t, [p]) ->
TType(t,[follow p])
| TType (t,tl) ->
follow_skip_null (apply_params t.t_params tl t.t_type)
| _ -> t
in
let same_arg t1 t2 =
let t1 = get_vmtype (follow_skip_null t1) in
let t2 = get_vmtype (follow_skip_null t2) in
match t1, t2 with
| TType _, TType _ -> type_iseq t1 t2
| TType _, _
| _, TType _ -> false
| _ -> type_iseq t1 t2
in
match follow (apply_params f1.cf_params (List.map (fun (_,t) -> t) f2.cf_params) t1), follow t2 with
| TFun(a1,_), TFun(a2,_) ->
(try
List.for_all2 (fun (_,_,t1) (_,_,t2) ->
same_arg t1 t2) a1 a2
with | Invalid_argument("List.for_all2") ->
false)
| _ -> assert false
(** retrieves all overloads from class c and field i, as (Type.t * tclass_field) list *)
let rec get_overloads c i =
let ret = try
let f = PMap.find i c.cl_fields in
match f.cf_kind with
| Var _ ->
(* @:libType may generate classes that have a variable field in a superclass of an overloaded method *)
[]
| Method _ ->
(f.cf_type, f) :: (List.map (fun f -> f.cf_type, f) f.cf_overloads)
with | Not_found -> []
in
let rsup = match c.cl_super with
| None when c.cl_interface ->
let ifaces = List.concat (List.map (fun (c,tl) ->
List.map (fun (t,f) -> apply_params c.cl_params tl t, f) (get_overloads c i)
) c.cl_implements) in
ret @ ifaces
| None -> ret
| Some (c,tl) ->
ret @ ( List.map (fun (t,f) -> apply_params c.cl_params tl t, f) (get_overloads c i) )
in
ret @ (List.filter (fun (t,f) -> not (List.exists (fun (t2,f2) -> same_overload_args t t2 f f2) ret)) rsup)
let check_overloads ctx c =
(* check if field with same signature was declared more than once *)
List.iter (fun f ->
if Meta.has Meta.Overload f.cf_meta then
List.iter (fun f2 ->
try
ignore (List.find (fun f3 -> f3 != f2 && same_overload_args f2.cf_type f3.cf_type f2 f3) (f :: f.cf_overloads));
display_error ctx ("Another overloaded field of same signature was already declared : " ^ f2.cf_name) f2.cf_pos
with | Not_found -> ()
) (f :: f.cf_overloads)) (c.cl_ordered_fields @ c.cl_ordered_statics)
let check_overriding ctx c =
match c.cl_super with
| None ->
(match c.cl_overrides with
| [] -> ()
| i :: _ ->
display_error ctx ("Field " ^ i.cf_name ^ " is declared 'override' but doesn't override any field") i.cf_pos)
| _ when c.cl_extern && Meta.has Meta.CsNative c.cl_meta -> () (* -net-lib specific: do not check overrides on extern CsNative classes *)
| Some (csup,params) ->
PMap.iter (fun i f ->
let p = f.cf_pos in
let check_field f get_super_field is_overload = try
(if is_overload && not (Meta.has Meta.Overload f.cf_meta) then
display_error ctx ("Missing @:overload declaration for field " ^ i) p);
let t, f2 = get_super_field csup i in
(* allow to define fields that are not defined for this platform version in superclass *)
(match f2.cf_kind with
| Var { v_read = AccRequire _ } -> raise Not_found;
| _ -> ());
if ctx.com.config.pf_overload && (Meta.has Meta.Overload f2.cf_meta && not (Meta.has Meta.Overload f.cf_meta)) then
display_error ctx ("Field " ^ i ^ " should be declared with @:overload since it was already declared as @:overload in superclass") p
else if not (List.memq f c.cl_overrides) then
display_error ctx ("Field " ^ i ^ " should be declared with 'override' since it is inherited from superclass " ^ Ast.s_type_path csup.cl_path) p
else if not f.cf_public && f2.cf_public then
display_error ctx ("Field " ^ i ^ " has less visibility (public/private) than superclass one") p
else (match f.cf_kind, f2.cf_kind with
| _, Method MethInline ->
display_error ctx ("Field " ^ i ^ " is inlined and cannot be overridden") p
| a, b when a = b -> ()
| Method MethInline, Method MethNormal ->
() (* allow to redefine a method as inlined *)
| _ ->
display_error ctx ("Field " ^ i ^ " has different property access than in superclass") p);
if has_meta Meta.Final f2.cf_meta then display_error ctx ("Cannot override @:final method " ^ i) p;
try
let t = apply_params csup.cl_params params t in
valid_redefinition ctx f f.cf_type f2 t
with
Unify_error l ->
display_error ctx ("Field " ^ i ^ " overloads parent class with different or incomplete type") p;
display_error ctx (error_msg (Unify l)) p;
with
Not_found ->
if List.memq f c.cl_overrides then
let msg = if is_overload then
("Field " ^ i ^ " is declared 'override' but no compatible overload was found")
else
("Field " ^ i ^ " is declared 'override' but doesn't override any field")
in
display_error ctx msg p
in
if ctx.com.config.pf_overload && Meta.has Meta.Overload f.cf_meta then begin
let overloads = get_overloads csup i in
List.iter (fun (t,f2) ->
(* check if any super class fields are vars *)
match f2.cf_kind with
| Var _ ->
display_error ctx ("A variable named '" ^ f2.cf_name ^ "' was already declared in a superclass") f.cf_pos
| _ -> ()
) overloads;
List.iter (fun f ->
(* find the exact field being overridden *)
check_field f (fun csup i ->
List.find (fun (t,f2) ->
same_overload_args f.cf_type (apply_params csup.cl_params params t) f f2
) overloads
) true
) (f :: f.cf_overloads)
end else
check_field f (fun csup i ->
let _, t, f2 = raw_class_field (fun f -> f.cf_type) csup params i in
t, f2) false
) c.cl_fields
let class_field_no_interf c i =
try
let f = PMap.find i c.cl_fields in
f.cf_type , f
with Not_found ->
match c.cl_super with
| None ->
raise Not_found
| Some (c,tl) ->
(* rec over class_field *)
let _, t , f = raw_class_field (fun f -> f.cf_type) c tl i in
apply_params c.cl_params tl t , f
let rec check_interface ctx c intf params =
let p = c.cl_pos in
let rec check_field i f =
(if ctx.com.config.pf_overload then
List.iter (function
| f2 when f != f2 ->
check_field i f2
| _ -> ()) f.cf_overloads);
let is_overload = ref false in
try
let t2, f2 = class_field_no_interf c i in
let t2, f2 =
if ctx.com.config.pf_overload && (f2.cf_overloads <> [] || Meta.has Meta.Overload f2.cf_meta) then
let overloads = get_overloads c i in
is_overload := true;
let t = (apply_params intf.cl_params params f.cf_type) in
List.find (fun (t1,f1) -> same_overload_args t t1 f f1) overloads
else
t2, f2
in
ignore(follow f2.cf_type); (* force evaluation *)
let p = (match f2.cf_expr with None -> p | Some e -> e.epos) in
let mkind = function
| MethNormal | MethInline -> 0
| MethDynamic -> 1
| MethMacro -> 2
in
if f.cf_public && not f2.cf_public && not (Meta.has Meta.CompilerGenerated f.cf_meta) then
display_error ctx ("Field " ^ i ^ " should be public as requested by " ^ s_type_path intf.cl_path) p
else if not (unify_kind f2.cf_kind f.cf_kind) || not (match f.cf_kind, f2.cf_kind with Var _ , Var _ -> true | Method m1, Method m2 -> mkind m1 = mkind m2 | _ -> false) then
display_error ctx ("Field " ^ i ^ " has different property access than in " ^ s_type_path intf.cl_path ^ " (" ^ s_kind f2.cf_kind ^ " should be " ^ s_kind f.cf_kind ^ ")") p
else try
valid_redefinition ctx f2 t2 f (apply_params intf.cl_params params f.cf_type)
with
Unify_error l ->
if not (Meta.has Meta.CsNative c.cl_meta && c.cl_extern) then begin
display_error ctx ("Field " ^ i ^ " has different type than in " ^ s_type_path intf.cl_path) p;
display_error ctx (error_msg (Unify l)) p;
end
with
| Not_found when not c.cl_interface ->
let msg = if !is_overload then
let ctx = print_context() in
let args = match follow f.cf_type with | TFun(args,_) -> String.concat ", " (List.map (fun (n,o,t) -> (if o then "?" else "") ^ n ^ " : " ^ (s_type ctx t)) args) | _ -> assert false in
"No suitable overload for " ^ i ^ "( " ^ args ^ " ), as needed by " ^ s_type_path intf.cl_path ^ " was found"
else
("Field " ^ i ^ " needed by " ^ s_type_path intf.cl_path ^ " is missing")
in
display_error ctx msg p
| Not_found -> ()
in
PMap.iter check_field intf.cl_fields;
List.iter (fun (i2,p2) ->
check_interface ctx c i2 (List.map (apply_params intf.cl_params params) p2)
) intf.cl_implements
let check_interfaces ctx c =
match c.cl_path with
| "Proxy" :: _ , _ -> ()
| _ when c.cl_extern && Meta.has Meta.CsNative c.cl_meta -> ()
| _ ->
List.iter (fun (intf,params) -> check_interface ctx c intf params) c.cl_implements
let rec return_flow ctx e =
let error() = display_error ctx "A return is missing here" e.epos; raise Exit in
let return_flow = return_flow ctx in
match e.eexpr with
| TReturn _ | TThrow _ -> ()
| TParenthesis e | TMeta(_,e) ->
return_flow e
| TBlock el ->
let rec loop = function
| [] -> error()
| [e] -> return_flow e
| { eexpr = TReturn _ } :: _ | { eexpr = TThrow _ } :: _ -> ()
| _ :: l -> loop l
in
loop el
| TIf (_,e1,Some e2) ->
return_flow e1;
return_flow e2;
| TSwitch (v,cases,Some e) ->
List.iter (fun (_,e) -> return_flow e) cases;
return_flow e
| TSwitch ({eexpr = TMeta((Meta.Exhaustive,_,_),_)},cases,None) ->
List.iter (fun (_,e) -> return_flow e) cases;
| TTry (e,cases) ->
return_flow e;
List.iter (fun (_,e) -> return_flow e) cases;
| TWhile({eexpr = (TConst (TBool true))},e,_) ->
(* a special case for "inifite" while loops that have no break *)
let rec loop e = match e.eexpr with
(* ignore nested loops to not accidentally get one of its breaks *)
| TWhile _ | TFor _ -> ()
| TBreak -> error()
| _ -> Type.iter loop e
in
loop e
| _ ->
error()
(* ---------------------------------------------------------------------- *)
(* PASS 1 & 2 : Module and Class Structure *)
let is_generic_parameter ctx c =
(* first check field parameters, then class parameters *)
try
ignore (List.assoc (snd c.cl_path) ctx.curfield.cf_params);
Meta.has Meta.Generic ctx.curfield.cf_meta
with Not_found -> try
ignore(List.assoc (snd c.cl_path) ctx.type_params);
(match ctx.curclass.cl_kind with | KGeneric -> true | _ -> false);
with Not_found ->
false
let check_extends ctx c t p = match follow t with
| TInst ({ cl_path = [],"Array"; cl_extern = basic_extern },_)
| TInst ({ cl_path = [],"String"; cl_extern = basic_extern },_)
| TInst ({ cl_path = [],"Date"; cl_extern = basic_extern },_)
| TInst ({ cl_path = [],"Xml"; cl_extern = basic_extern },_) when not (c.cl_extern && basic_extern) ->
error "Cannot extend basic class" p;
| TInst (csup,params) ->
if is_parent c csup then error "Recursive class" p;
begin match csup.cl_kind with
| KTypeParameter _ when not (is_generic_parameter ctx csup) -> error "Cannot extend non-generic type parameters" p
| _ -> csup,params
end
| _ -> error "Should extend by using a class" p
let type_function_arg_value ctx t c =
match c with
| None -> None
| Some e ->
let p = pos e in
let e = ctx.g.do_optimize ctx (type_expr ctx e (WithType t)) in
unify ctx e.etype t p;
let rec loop e = match e.eexpr with
| TConst c -> Some c
| TCast(e,None) -> loop e
| _ -> display_error ctx "Parameter default value should be constant" p; None
in
loop e
(**** strict meta ****)
let get_native_repr md pos =
let path, meta = match md with
| TClassDecl cl -> cl.cl_path, cl.cl_meta
| TEnumDecl e -> e.e_path, e.e_meta
| TTypeDecl t -> t.t_path, t.t_meta
| TAbstractDecl a -> a.a_path, a.a_meta
in
let rec loop acc = function
| (Meta.JavaCanonical,[EConst(String pack),_; EConst(String name),_],_) :: _ ->
ExtString.String.nsplit pack ".", name
| (Meta.Native,[EConst(String name),_],_) :: meta ->
loop (Ast.parse_path name) meta
| _ :: meta ->
loop acc meta
| [] ->
acc
in
let pack, name = loop path meta in
match pack with
| [] ->
(EConst(Ident(name)), pos)
| hd :: tl ->
let rec loop pack expr = match pack with
| hd :: tl ->
loop tl (EField(expr,hd),pos)
| [] ->
(EField(expr,name),pos)
in
loop tl (EConst(Ident(hd)),pos)
let rec process_meta_argument ?(toplevel=true) ctx expr = match expr.eexpr with
| TField(e,f) ->
(EField(process_meta_argument ~toplevel:false ctx e,field_name f),expr.epos)
| TConst(TInt i) ->
(EConst(Int (Int32.to_string i)), expr.epos)
| TConst(TFloat f) ->
(EConst(Float f), expr.epos)
| TConst(TString s) ->
(EConst(String s), expr.epos)
| TConst TNull ->
(EConst(Ident "null"), expr.epos)
| TConst(TBool b) ->
(EConst(Ident (string_of_bool b)), expr.epos)
| TCast(e,_) | TMeta(_,e) | TParenthesis(e) ->
process_meta_argument ~toplevel ctx e
| TTypeExpr md when toplevel ->
let p = expr.epos in
if ctx.com.platform = Cs then
(ECall( (EConst(Ident "typeof"), p), [get_native_repr md expr.epos] ), p)
else
(EField(get_native_repr md expr.epos, "class"), p)
| TTypeExpr md ->
get_native_repr md expr.epos
| _ ->
display_error ctx "This expression is too complex to be a strict metadata argument" expr.epos;
(EConst(Ident "null"), expr.epos)
let make_meta ctx texpr extra =
match texpr.eexpr with
| TNew(c,_,el) ->
ECall(get_native_repr (TClassDecl c) texpr.epos, (List.map (process_meta_argument ctx) el) @ extra), texpr.epos
| TTypeExpr(md) ->
ECall(get_native_repr md texpr.epos, extra), texpr.epos
| _ ->
display_error ctx "Unexpected expression" texpr.epos; assert false
let field_to_type_path ctx e =
let rec loop e pack name = match e with
| EField(e,f),p when Char.lowercase (String.get f 0) <> String.get f 0 -> (match name with
| [] | _ :: [] ->
loop e pack (f :: name)
| _ -> (* too many name paths *)
display_error ctx ("Unexpected " ^ f) p;
raise Exit)
| EField(e,f),_ ->
loop e (f :: pack) name
| EConst(Ident f),_ ->
let pack, name, sub = match name with
| [] ->
let fchar = String.get f 0 in
if Char.uppercase fchar = fchar then
pack, f, None
else begin
display_error ctx "A class name must start with an uppercase character" (snd e);
raise Exit
end
| [name] ->
f :: pack, name, None
| [name; sub] ->
f :: pack, name, Some sub
| _ ->
assert false
in
{ tpackage=pack; tname=name; tparams=[]; tsub=sub }
| _,pos ->
display_error ctx "Unexpected expression when building strict meta" pos;
raise Exit
in
loop e [] []
let handle_fields ctx fields_to_check with_type_expr =
List.map (fun (name,expr) ->
let pos = snd expr in
let field = (EField(with_type_expr,name), pos) in
let fieldexpr = (EConst(Ident name),pos) in
let left_side = match ctx.com.platform with
| Cs -> field
| Java -> (ECall(field,[]),pos)
| _ -> assert false
in
let left = type_expr ctx left_side NoValue in
let right = type_expr ctx expr (WithType left.etype) in
unify ctx left.etype right.etype (snd expr);
(EBinop(Ast.OpAssign,fieldexpr,process_meta_argument ctx right), pos)
) fields_to_check
let get_strict_meta ctx params pos =
let pf = ctx.com.platform in
let changed_expr, fields_to_check, ctype = match params with
| [ECall(ef, el),p] ->
(* check last argument *)
let el, fields = match List.rev el with
| (EObjectDecl(decl),_) :: el ->
List.rev el, decl
| _ ->
el, []
in
let tpath = field_to_type_path ctx ef in
if pf = Cs then
(ENew(tpath, el), p), fields, CTPath tpath
else
ef, fields, CTPath tpath
| [EConst(Ident i),p as expr] ->
let tpath = { tpackage=[]; tname=i; tparams=[]; tsub=None } in
if pf = Cs then
(ENew(tpath, []), p), [], CTPath tpath
else
expr, [], CTPath tpath
| [ (EField(_),p as field) ] ->
let tpath = field_to_type_path ctx field in
if pf = Cs then
(ENew(tpath, []), p), [], CTPath tpath
else
field, [], CTPath tpath
| _ ->
display_error ctx "A @:strict metadata must contain exactly one parameter. Please check the documentation for more information" pos;
raise Exit
in
let texpr = type_expr ctx changed_expr NoValue in
let with_type_expr = (ECheckType( (EConst (Ident "null"), pos), ctype ), pos) in
let extra = handle_fields ctx fields_to_check with_type_expr in
Meta.Meta, [make_meta ctx texpr extra], pos
let check_strict_meta ctx metas =
let pf = ctx.com.platform in
match pf with
| Cs | Java ->
let ret = ref [] in
List.iter (function
| Meta.Strict,params,pos -> (try
ret := get_strict_meta ctx params pos :: !ret
with | Exit -> ())
| _ -> ()
) metas;
!ret
| _ -> []
(**** end of strict meta handling *****)
let rec add_constructor ctx c force_constructor p =
match c.cl_constructor, c.cl_super with
| None, Some ({ cl_constructor = Some cfsup } as csup,cparams) when not c.cl_extern && not (Meta.has Meta.CompilerGenerated cfsup.cf_meta) ->
let cf = {
cfsup with
cf_pos = p;
cf_meta = [];
cf_doc = None;
cf_expr = None;
} in
let r = exc_protect ctx (fun r ->
let t = mk_mono() in
r := (fun() -> t);
let ctx = { ctx with
curfield = cf;
pass = PTypeField;
} in
ignore (follow cfsup.cf_type); (* make sure it's typed *)
(if ctx.com.config.pf_overload then List.iter (fun cf -> ignore (follow cf.cf_type)) cf.cf_overloads);
let map_arg (v,def) =
(*
let's optimize a bit the output by not always copying the default value
into the inherited constructor when it's not necessary for the platform
*)
match ctx.com.platform, def with
| _, Some _ when not ctx.com.config.pf_static -> v, (Some TNull)
| Flash, Some (TString _) -> v, (Some TNull)
| Cpp, Some (TString _) -> v, def
| Cpp, Some _ -> { v with v_type = ctx.t.tnull v.v_type }, (Some TNull)
| _ -> v, def
in
let args = (match cfsup.cf_expr with
| Some { eexpr = TFunction f } ->
List.map map_arg f.tf_args
| _ ->
let values = get_value_meta cfsup.cf_meta in
match follow cfsup.cf_type with
| TFun (args,_) ->
List.map (fun (n,o,t) ->
let def = try type_function_arg_value ctx t (Some (PMap.find n values)) with Not_found -> if o then Some TNull else None in
map_arg (alloc_var n (if o then ctx.t.tnull t else t),def)
) args
| _ -> assert false
) in
let p = c.cl_pos in
let vars = List.map (fun (v,def) -> alloc_var v.v_name (apply_params csup.cl_params cparams v.v_type), def) args in
let super_call = mk (TCall (mk (TConst TSuper) (TInst (csup,cparams)) p,List.map (fun (v,_) -> mk (TLocal v) v.v_type p) vars)) ctx.t.tvoid p in
let constr = mk (TFunction {
tf_args = vars;
tf_type = ctx.t.tvoid;
tf_expr = super_call;
}) (TFun (List.map (fun (v,c) -> v.v_name, c <> None, v.v_type) vars,ctx.t.tvoid)) p in
cf.cf_expr <- Some constr;
cf.cf_type <- t;
unify ctx t constr.etype p;
t
) "add_constructor" in
cf.cf_type <- TLazy r;
c.cl_constructor <- Some cf;
delay ctx PForce (fun() -> ignore((!r)()));
| None,_ when force_constructor ->
let constr = mk (TFunction {
tf_args = [];
tf_type = ctx.t.tvoid;
tf_expr = mk (TBlock []) ctx.t.tvoid p;
}) (tfun [] ctx.t.tvoid) p in
let cf = mk_field "new" constr.etype p in
cf.cf_expr <- Some constr;
cf.cf_type <- constr.etype;
cf.cf_meta <- [Meta.CompilerGenerated,[],p];
cf.cf_kind <- Method MethNormal;
c.cl_constructor <- Some cf;
| _ ->
(* nothing to do *)
()
let set_heritance ctx c herits p =
let is_lib = Meta.has Meta.LibType c.cl_meta in
let ctx = { ctx with curclass = c; type_params = c.cl_params; } in
let old_meta = c.cl_meta in
let process_meta csup =
List.iter (fun m ->
match m with
| Meta.Final, _, _ -> if not (Meta.has Meta.Hack c.cl_meta || (match c.cl_kind with KTypeParameter _ -> true | _ -> false)) then error "Cannot extend a final class" p;
| Meta.AutoBuild, el, p -> c.cl_meta <- (Meta.Build,el,p) :: m :: c.cl_meta
| _ -> ()
) csup.cl_meta
in
let cancel_build csup =
(* for macros reason, our super class is not yet built - see #2177 *)
(* let's reset our build and delay it until we are done *)
c.cl_meta <- old_meta;
c.cl_array_access <- None;
c.cl_dynamic <- None;
c.cl_implements <- [];
c.cl_super <- None;
raise Exit
in
let has_interf = ref false in
let rec loop = function
| HPrivate | HExtern | HInterface ->
()
| HExtends t ->
if c.cl_super <> None then error "Cannot extend several classes" p;
let t = load_instance ctx t p false in
let csup,params = check_extends ctx c t p in
if not (csup.cl_build()) then cancel_build csup;
process_meta csup;
if c.cl_interface then begin
if not csup.cl_interface then error "Cannot extend by using a class" p;
c.cl_implements <- (csup,params) :: c.cl_implements;
if not !has_interf then begin
if not is_lib then delay ctx PForce (fun() -> check_interfaces ctx c);
has_interf := true;
end
end else begin
if csup.cl_interface then error "Cannot extend by using an interface" p;
c.cl_super <- Some (csup,params)
end
| HImplements t ->
let t = load_instance ctx t p false in
(match follow t with
| TInst ({ cl_path = [],"ArrayAccess"; cl_extern = true; },[t]) ->
if c.cl_array_access <> None then error "Duplicate array access" p;
c.cl_array_access <- Some t
| TInst (intf,params) ->
if not (intf.cl_build()) then cancel_build intf;
if is_parent c intf then error "Recursive class" p;
if c.cl_interface then error "Interfaces cannot implement another interface (use extends instead)" p;
if not intf.cl_interface then error "You can only implement an interface" p;
process_meta intf;
c.cl_implements <- (intf, params) :: c.cl_implements;
if not !has_interf && not is_lib && not (Meta.has (Meta.Custom "$do_not_check_interf") c.cl_meta) then begin
delay ctx PForce (fun() -> check_interfaces ctx c);
has_interf := true;
end
| TDynamic t ->
if c.cl_dynamic <> None then error "Cannot have several dynamics" p;
c.cl_dynamic <- Some t
| _ -> error "Should implement by using an interface" p)
in
(*
resolve imports before calling build_inheritance, since it requires full paths.
that means that typedefs are not working, but that's a fair limitation
*)
let rec resolve_imports t =
match t.tpackage with
| _ :: _ -> t
| [] ->
try
let find = List.find (fun lt -> snd (t_path lt) = t.tname) in
let lt = try find ctx.m.curmod.m_types with Not_found -> find ctx.m.module_types in
{ t with tpackage = fst (t_path lt) }
with
Not_found -> t
in
let herits = List.map (function
| HExtends t -> HExtends (resolve_imports t)
| HImplements t -> HImplements (resolve_imports t)
| h -> h
) herits in
List.iter loop (List.filter (ctx.g.do_inherit ctx c p) herits)
let rec type_type_params ?(enum_constructor=false) ctx path get_params p tp =
let n = tp.tp_name in
let c = mk_class ctx.m.curmod (fst path @ [snd path],n) p in
c.cl_params <- List.map (type_type_params ctx c.cl_path get_params p) tp.tp_params;
c.cl_kind <- KTypeParameter [];
if enum_constructor then c.cl_meta <- (Meta.EnumConstructorParam,[],c.cl_pos) :: c.cl_meta;
let t = TInst (c,List.map snd c.cl_params) in
match tp.tp_constraints with
| [] ->
n, t
| _ ->
let r = exc_protect ctx (fun r ->
r := (fun _ -> t);
let ctx = { ctx with type_params = ctx.type_params @ get_params() } in
let constr = List.map (load_complex_type ctx p) tp.tp_constraints in
(* check against direct recursion *)
let rec loop t =
match follow t with
| TInst (c2,_) when c == c2 -> error "Recursive constraint parameter is not allowed" p
| TInst ({ cl_kind = KTypeParameter cl },_) ->
List.iter loop cl
| _ ->
()
in
List.iter loop constr;
c.cl_kind <- KTypeParameter constr;
t
) "constraint" in
delay ctx PForce (fun () -> ignore(!r()));
n, TLazy r
let type_function_params ctx fd fname p =
let params = ref [] in
params := List.map (fun tp ->
type_type_params ctx ([],fname) (fun() -> !params) p tp
) fd.f_params;
!params
let find_enclosing com e =
let display_pos = ref (!Parser.resume_display) in
let mk_null p = (EDisplay(((EConst(Ident "null")),p),false),p) in
let encloses_display_pos p =
if p.pmin <= !display_pos.pmin && p.pmax >= !display_pos.pmax then begin
let p = !display_pos in
display_pos := { pfile = ""; pmin = -2; pmax = -2 };
Some p
end else
None
in
let rec loop e = match fst e with
| EBlock el ->
let p = pos e in
(* We want to find the innermost block which contains the display position. *)
let el = List.map loop el in
let el = match encloses_display_pos p with
| None ->
el
| Some p2 ->
let b,el = List.fold_left (fun (b,el) e ->
let p = pos e in
if b || p.pmax <= p2.pmin then begin
(b,e :: el)
end else begin
let e_d = (EDisplay(mk_null p,false)),p in
(true,e :: e_d :: el)
end
) (false,[]) el in
let el = if b then
el
else begin
mk_null p :: el
end in
List.rev el
in
(EBlock el),(pos e)
| _ ->
Ast.map_expr loop e
in
loop e
let find_before_pos com e =
let display_pos = ref (!Parser.resume_display) in
let is_annotated p =
if p.pmax = !display_pos.pmin - 1 then begin
display_pos := { pfile = ""; pmin = -2; pmax = -2 };
true
end else
false
in
let rec loop e =
if is_annotated (pos e) then
(EDisplay(e,false),(pos e))
else
e
in
let rec map e =
loop (Ast.map_expr map e)
in
map e
let type_function ctx args ret fmode f do_display p =
let locals = save_locals ctx in
let fargs = List.map (fun (n,c,t) ->
if n.[0] = '$' then error "Function argument names starting with a dollar are not allowed" p;
let c = type_function_arg_value ctx t c in
let v,c = add_local ctx n t, c in
if n = "this" then v.v_meta <- (Meta.This,[],p) :: v.v_meta;
v,c
) args in
let old_ret = ctx.ret in
let old_fun = ctx.curfun in
let old_opened = ctx.opened in
ctx.curfun <- fmode;
ctx.ret <- ret;
ctx.opened <- [];
let e = match f.f_expr with None -> error "Function body required" p | Some e -> e in
let e = if not do_display then
type_expr ctx e NoValue
else begin
let e = match ctx.com.display with
| DMToplevel -> find_enclosing ctx.com e
| DMPosition | DMUsage | DMType -> find_before_pos ctx.com e
| _ -> e
in
try
if Common.defined ctx.com Define.NoCOpt then raise Exit;
type_expr ctx (Optimizer.optimize_completion_expr e) NoValue
with
| Parser.TypePath (_,None,_) | Exit ->
type_expr ctx e NoValue
| DisplayTypes [t] when (match follow t with TMono _ -> true | _ -> false) ->
type_expr ctx (if ctx.com.display = DMToplevel then find_enclosing ctx.com e else e) NoValue
end in
let e = match e.eexpr with
| TMeta((Meta.MergeBlock,_,_), ({eexpr = TBlock el} as e1)) -> e1
| _ -> e
in
let rec loop e =
match e.eexpr with
| TReturn (Some e) -> (match follow e.etype with TAbstract({a_path = [],"Void"},[]) -> () | _ -> raise Exit)
| TFunction _ -> ()
| _ -> Type.iter loop e
in
let have_ret = (try loop e; false with Exit -> true) in
if have_ret then
(try return_flow ctx e with Exit -> ())
else (try type_eq EqStrict ret ctx.t.tvoid with Unify_error _ ->
match e.eexpr with
(* accept final throw (issue #1923) *)
| TThrow _ -> ()
| TBlock el when (match List.rev el with ({eexpr = TThrow _} :: _) -> true | _ -> false) -> ()
| _ -> display_error ctx ("Missing return " ^ (s_type (print_context()) ret)) p);
let rec loop e =
match e.eexpr with
| TCall ({ eexpr = TConst TSuper },_) -> raise Exit
| TFunction _ -> ()
| _ -> Type.iter loop e
in
let has_super_constr() =
match ctx.curclass.cl_super with
| None ->
None
| Some (csup,tl) ->
try
let _,cf = get_constructor (fun f->f.cf_type) csup in
Some (Meta.has Meta.CompilerGenerated cf.cf_meta,TInst(csup,tl))
with Not_found ->
None
in
let e = if fmode <> FunConstructor then
e
else match has_super_constr() with
| Some (was_forced,t_super) ->
(try
loop e;
if was_forced then
let e_super = mk (TConst TSuper) t_super e.epos in
let e_super_call = mk (TCall(e_super,[])) ctx.t.tvoid e.epos in
concat e_super_call e
else begin
display_error ctx "Missing super constructor call" p;
e
end
with
Exit -> e);
| None ->
e
in
locals();
let e = match ctx.curfun, ctx.vthis with
| (FunMember|FunConstructor), Some v ->
let ev = mk (TVar (v,Some (mk (TConst TThis) ctx.tthis p))) ctx.t.tvoid p in
(match e.eexpr with
| TBlock l -> { e with eexpr = TBlock (ev::l) }
| _ -> mk (TBlock [ev;e]) e.etype p)
| _ -> e
in
List.iter (fun r -> r := Closed) ctx.opened;
ctx.ret <- old_ret;
ctx.curfun <- old_fun;
ctx.opened <- old_opened;
e , fargs
let load_core_class ctx c =
let ctx2 = (match ctx.g.core_api with
| None ->
let com2 = Common.clone ctx.com in
com2.defines <- PMap.empty;
Common.define com2 Define.CoreApi;
Common.define com2 Define.Sys;
if ctx.in_macro then Common.define com2 Define.Macro;
com2.class_path <- ctx.com.std_path;
let ctx2 = ctx.g.do_create com2 in
ctx.g.core_api <- Some ctx2;
ctx2
| Some c ->
c
) in
let tpath = match c.cl_kind with
| KAbstractImpl a -> { tpackage = fst a.a_path; tname = snd a.a_path; tparams = []; tsub = None; }
| _ -> { tpackage = fst c.cl_path; tname = snd c.cl_path; tparams = []; tsub = None; }
in
let t = load_instance ctx2 tpath c.cl_pos true in
flush_pass ctx2 PFinal "core_final";
match t with
| TInst (ccore,_) | TAbstract({a_impl = Some ccore}, _) ->
ccore
| _ ->
assert false
let init_core_api ctx c =
let ccore = load_core_class ctx c in
begin try
List.iter2 (fun (n1,t1) (n2,t2) -> match follow t1, follow t2 with
| TInst({cl_kind = KTypeParameter l1},_),TInst({cl_kind = KTypeParameter l2},_) ->
begin try
List.iter2 (fun t1 t2 -> type_eq EqCoreType t2 t1) l1 l2
with
| Invalid_argument _ ->
error "Type parameters must have the same number of constraints as core type" c.cl_pos
| Unify_error l ->
display_error ctx ("Type parameter " ^ n2 ^ " has different constraint than in core type") c.cl_pos;
display_error ctx (error_msg (Unify l)) c.cl_pos
end
| t1,t2 ->
Printf.printf "%s %s" (s_type (print_context()) t1) (s_type (print_context()) t2);
assert false
) ccore.cl_params c.cl_params;
with Invalid_argument _ ->
error "Class must have the same number of type parameters as core type" c.cl_pos
end;
(match c.cl_doc with
| None -> c.cl_doc <- ccore.cl_doc
| Some _ -> ());
let compare_fields f f2 =
let p = (match f2.cf_expr with None -> c.cl_pos | Some e -> e.epos) in
(try
type_eq EqCoreType (apply_params ccore.cl_params (List.map snd c.cl_params) f.cf_type) f2.cf_type
with Unify_error l ->
display_error ctx ("Field " ^ f.cf_name ^ " has different type than in core type") p;
display_error ctx (error_msg (Unify l)) p);
if f2.cf_public <> f.cf_public then error ("Field " ^ f.cf_name ^ " has different visibility than core type") p;
(match f2.cf_doc with
| None -> f2.cf_doc <- f.cf_doc
| Some _ -> ());
if f2.cf_kind <> f.cf_kind then begin
match f2.cf_kind, f.cf_kind with
| Method MethInline, Method MethNormal -> () (* allow to add 'inline' *)
| Method MethNormal, Method MethInline -> () (* allow to disable 'inline' *)
| _ ->
error ("Field " ^ f.cf_name ^ " has different property access than core type") p;
end;
(match follow f.cf_type, follow f2.cf_type with
| TFun (pl1,_), TFun (pl2,_) ->
if List.length pl1 != List.length pl2 then error "Argument count mismatch" p;
List.iter2 (fun (n1,_,_) (n2,_,_) ->
if n1 <> n2 then error ("Method parameter name '" ^ n2 ^ "' should be '" ^ n1 ^ "'") p;
) pl1 pl2;
| _ -> ());
in
let check_fields fcore fl =
PMap.iter (fun i f ->
if not f.cf_public then () else
let f2 = try PMap.find f.cf_name fl with Not_found -> error ("Missing field " ^ i ^ " required by core type") c.cl_pos in
compare_fields f f2;
) fcore;
PMap.iter (fun i f ->
let p = (match f.cf_expr with None -> c.cl_pos | Some e -> e.epos) in
if f.cf_public && not (Meta.has Meta.Hack f.cf_meta) && not (PMap.mem f.cf_name fcore) && not (List.memq f c.cl_overrides) then error ("Public field " ^ i ^ " is not part of core type") p;
) fl;
in
check_fields ccore.cl_fields c.cl_fields;
check_fields ccore.cl_statics c.cl_statics;
(match ccore.cl_constructor, c.cl_constructor with
| None, None -> ()
| Some { cf_public = false }, _ -> ()
| Some f, Some f2 -> compare_fields f f2
| None, Some { cf_public = false } -> ()
| _ -> error "Constructor differs from core type" c.cl_pos)
let check_global_metadata ctx f_add mpath tpath so =
let sl1 = if mpath = tpath then
(fst tpath) @ [snd tpath]
else
(fst mpath) @ [snd mpath;snd tpath]
in
let sl1,field_mode = match so with None -> sl1,false | Some s -> sl1 @ [s],true in
List.iter (fun (sl2,m,(recursive,to_types,to_fields)) ->
let rec loop sl1 sl2 = match sl1,sl2 with
| [],[] ->
true
(* always recurse into types of package paths *)
| (s1 :: s11 :: _),[s2] when is_lower_ident s2 && not (is_lower_ident s11)->
s1 = s2
| [_],[""] ->
true
| _,([] | [""]) ->
recursive
| [],_ ->
false
| (s1 :: sl1),(s2 :: sl2) ->
s1 = s2 && loop sl1 sl2
in
let add = ((field_mode && to_fields) || (not field_mode && to_types)) && (loop sl1 sl2) in
if add then f_add m
) ctx.g.global_metadata
let patch_class ctx c fields =
let path = match c.cl_kind with
| KAbstractImpl a -> a.a_path
| _ -> c.cl_path
in
let h = (try Some (Hashtbl.find ctx.g.type_patches path) with Not_found -> None) in
match h with
| None -> fields
| Some (h,hcl) ->
c.cl_meta <- c.cl_meta @ hcl.tp_meta;
let rec loop acc = function
| [] -> acc
| f :: l ->
(* patch arguments types *)
(match f.cff_kind with
| FFun ff ->
let param ((n,opt,t,e) as p) =
try
let t2 = (try Hashtbl.find h (("$" ^ f.cff_name ^ "__" ^ n),false) with Not_found -> Hashtbl.find h (("$" ^ n),false)) in
n, opt, t2.tp_type, e
with Not_found ->
p
in
f.cff_kind <- FFun { ff with f_args = List.map param ff.f_args }
| _ -> ());
(* other patches *)
match (try Some (Hashtbl.find h (f.cff_name,List.mem AStatic f.cff_access)) with Not_found -> None) with
| None -> loop (f :: acc) l
| Some { tp_remove = true } -> loop acc l
| Some p ->
f.cff_meta <- f.cff_meta @ p.tp_meta;
(match p.tp_type with
| None -> ()
| Some t ->
f.cff_kind <- match f.cff_kind with
| FVar (_,e) -> FVar (Some t,e)
| FProp (get,set,_,eo) -> FProp (get,set,Some t,eo)
| FFun f -> FFun { f with f_type = Some t });
loop (f :: acc) l
in
List.rev (loop [] fields)
let string_list_of_expr_path (e,p) =
try string_list_of_expr_path_raise (e,p)
with Exit -> error "Invalid path" p
let build_enum_abstract ctx c a fields p =
List.iter (fun field ->
match field.cff_kind with
| FVar(ct,eo) when not (List.mem AStatic field.cff_access) ->
field.cff_access <- [AStatic;APublic;AInline];
field.cff_meta <- (Meta.Enum,[],field.cff_pos) :: (Meta.Impl,[],field.cff_pos) :: field.cff_meta;
let e = match eo with
| None -> error "Value required" field.cff_pos
| Some e -> (ECast(e,None),field.cff_pos)
in
field.cff_kind <- FVar(ct,Some e)
| _ ->
()
) fields;
EVars ["",Some (CTAnonymous fields),None],p
let is_java_native_function meta = try
match Meta.get Meta.Native meta with
| (Meta.Native,[],_) -> true
| _ -> false
with | Not_found -> false
let build_module_def ctx mt meta fvars context_init fbuild =
let rec loop = function
| (Meta.Build,args,p) :: l ->
let epath, el = (match args with
| [ECall (epath,el),p] -> epath, el
| _ -> error "Invalid build parameters" p
) in
let s = try String.concat "." (List.rev (string_list_of_expr_path epath)) with Error (_,p) -> error "Build call parameter must be a class path" p in
if ctx.in_macro then error "You cannot use @:build inside a macro : make sure that your enum is not used in macro" p;
let old = ctx.g.get_build_infos in
ctx.g.get_build_infos <- (fun() -> Some (mt, List.map snd (t_infos mt).mt_params, fvars()));
context_init();
let r = try apply_macro ctx MBuild s el p with e -> ctx.g.get_build_infos <- old; raise e in
ctx.g.get_build_infos <- old;
(match r with
| None -> error "Build failure" p
| Some e -> fbuild e; loop l)
| (Meta.Enum,_,p) :: l ->
begin match mt with
| TClassDecl ({cl_kind = KAbstractImpl a} as c) ->
context_init();
let e = build_enum_abstract ctx c a (fvars()) p in
fbuild e;
loop l
| _ ->
loop l
end
| _ :: l -> loop l
| [] -> ()
in
(* let errors go through to prevent resume if build fails *)
loop meta
let init_class ctx c p context_init herits fields =
(* a lib type will skip most checks *)
let is_lib = Meta.has Meta.LibType c.cl_meta in
if is_lib && not c.cl_extern then ctx.com.error "@:libType can only be used in extern classes" c.cl_pos;
(* a native type will skip one check: the static vs non-static field *)
let is_native = Meta.has Meta.JavaNative c.cl_meta || Meta.has Meta.CsNative c.cl_meta in
let ctx = {
ctx with
curclass = c;
type_params = c.cl_params;
pass = PBuildClass;
tthis = (match c.cl_kind with
| KAbstractImpl a ->
(match a.a_this with
| TMono r when !r = None -> TAbstract (a,List.map snd c.cl_params)
| t -> t)
| _ -> TInst (c,List.map snd c.cl_params));
on_error = (fun ctx msg ep ->
ctx.com.error msg ep;
(* macros expressions might reference other code, let's recall which class we are actually compiling *)
if !locate_macro_error && (ep.pfile <> c.cl_pos.pfile || ep.pmax < c.cl_pos.pmin || ep.pmin > c.cl_pos.pmax) then ctx.com.error "Defined in this class" c.cl_pos
);
} in
locate_macro_error := true;
incr stats.s_classes_built;
let fields = patch_class ctx c fields in
let fields = ref fields in
let get_fields() = !fields in
build_module_def ctx (TClassDecl c) c.cl_meta get_fields context_init (fun (e,p) ->
match e with
| EVars [_,Some (CTAnonymous f),None] ->
List.iter (fun f ->
if List.mem AMacro f.cff_access then
(match ctx.g.macros with
| Some (_,mctx) when Hashtbl.mem mctx.g.types_module c.cl_path ->
(* assume that if we had already a macro with the same name, it has not been changed during the @:build operation *)
if not (List.exists (fun f2 -> f2.cff_name = f.cff_name && List.mem AMacro f2.cff_access) (!fields)) then
error "Class build macro cannot return a macro function when the class has already been compiled into the macro context" p
| _ -> ())
) f;
fields := f
| _ -> error "Class build macro must return a single variable with anonymous fields" p
);
let fields = !fields in
let core_api = Meta.has Meta.CoreApi c.cl_meta in
let is_class_macro = Meta.has Meta.Macro c.cl_meta in
if is_class_macro then display_error ctx "Macro classes are no longer allowed in haxe 3" p;
let fields, herits = if is_class_macro && not ctx.in_macro then begin
c.cl_extern <- true;
List.filter (fun f -> List.mem AStatic f.cff_access) fields, []
end else fields, herits in
if core_api && ctx.com.display = DMNone then delay ctx PForce (fun() -> init_core_api ctx c);
let rec extends_public c =
Meta.has Meta.PublicFields c.cl_meta ||
match c.cl_super with
| None -> false
| Some (c,_) -> extends_public c
in
let extends_public = extends_public c in
let is_public access parent =
if List.mem APrivate access then
false
else if List.mem APublic access then
true
else match parent with
| Some { cf_public = p } -> p
| _ -> c.cl_extern || c.cl_interface || extends_public
in
let rec get_parent c name =
match c.cl_super with
| None -> None
| Some (csup,_) ->
try
Some (PMap.find name csup.cl_fields)
with
Not_found -> get_parent csup name
in
let type_opt ctx p t =
match t with
| None when c.cl_extern || c.cl_interface ->
display_error ctx "Type required for extern classes and interfaces" p;
t_dynamic
| None when core_api ->
display_error ctx "Type required for core api classes" p;
t_dynamic
| _ ->
load_type_opt ctx p t
in
let rec has_field f = function
| None -> false
| Some (c,_) ->
PMap.exists f c.cl_fields || has_field f c.cl_super || List.exists (fun i -> has_field f (Some i)) c.cl_implements
in
let rec get_declared f = function
| None -> None
| Some (c,a) when PMap.exists f c.cl_fields ->
Some (c,a)
| Some (c,_) ->
let ret = get_declared f c.cl_super in
match ret with
| Some r -> Some r
| None ->
let rec loop ifaces = match ifaces with
| [] -> None
| i :: ifaces -> match get_declared f (Some i) with
| Some r -> Some r
| None -> loop ifaces
in
loop c.cl_implements
in
if not is_lib then (match c.cl_super with None -> () | Some _ -> delay ctx PForce (fun() -> check_overriding ctx c));
if ctx.com.config.pf_overload && not is_lib then delay ctx PForce (fun() -> check_overloads ctx c);
(* ----------------------- COMPLETION ----------------------------- *)
let display_file = match ctx.com.display with
| DMNone -> false
| DMResolve s ->
let mt = load_type_def ctx p {tname = s; tpackage = []; tsub = None; tparams = []} in
let p = (t_infos mt).mt_pos in
raise (DisplayPosition [p]);
| _ ->
Common.unique_full_path p.pfile = (!Parser.resume_display).pfile
in
let cp = !Parser.resume_display in
let delayed_expr = ref [] in
let rec is_full_type t =
match t with
| TFun (args,ret) -> is_full_type ret && List.for_all (fun (_,_,t) -> is_full_type t) args
| TMono r -> (match !r with None -> false | Some t -> is_full_type t)
| TAbstract _ | TInst _ | TEnum _ | TLazy _ | TDynamic _ | TAnon _ | TType _ -> true
in
let bind_type ctx cf r p macro =
if ctx.com.display <> DMNone then begin
let cp = !Parser.resume_display in
if display_file && (cp.pmin = 0 || (p.pmin <= cp.pmin && p.pmax >= cp.pmax)) then begin
if macro && not ctx.in_macro then
(* force macro system loading of this class in order to get completion *)
delay ctx PTypeField (fun() -> ignore(ctx.g.do_macro ctx MExpr c.cl_path cf.cf_name [] p))
else begin
cf.cf_type <- TLazy r;
delayed_expr := (ctx,Some r) :: !delayed_expr;
end
end else begin
if not (is_full_type cf.cf_type) then begin
delayed_expr := (ctx, None) :: !delayed_expr;
cf.cf_type <- TLazy r;
end;
end
end else if macro && not ctx.in_macro then
()
else begin
cf.cf_type <- TLazy r;
(* is_lib ? *)
delayed_expr := (ctx,Some r) :: !delayed_expr;
end
in
let force_constructor = ref false in
let bind_var ctx cf e stat inline =
let p = cf.cf_pos in
if not stat && not is_lib then begin match get_declared cf.cf_name c.cl_super with
| None -> ()
| Some (csup,_) ->
(* this can happen on -net-lib generated classes if a combination of explicit interfaces and variables with the same name happens *)
if not (csup.cl_interface && Meta.has Meta.CsNative c.cl_meta) then
error ("Redefinition of variable " ^ cf.cf_name ^ " in subclass is not allowed. Previously declared at " ^ (Ast.s_type_path csup.cl_path) ) p
end;
let t = cf.cf_type in
match e with
| None -> ()
| Some e ->
if requires_value_meta ctx.com (Some c) then cf.cf_meta <- ((Meta.Value,[e],cf.cf_pos) :: cf.cf_meta);
let check_cast e =
(* insert cast to keep explicit field type (issue #1901) *)
if type_iseq e.etype cf.cf_type then
e
else begin match e.eexpr,follow cf.cf_type with
| TConst (TInt i),TAbstract({a_path=[],"Float"},_) ->
(* turn int constant to float constant if expected type is float *)
{e with eexpr = TConst (TFloat (Int32.to_string i))}
| _ ->
mk_cast e cf.cf_type e.epos
end
in
let r = exc_protect ctx (fun r ->
(* type constant init fields (issue #1956) *)
if not !return_partial_type || (match fst e with EConst _ -> true | _ -> false) then begin
r := (fun() -> t);
context_init();
if ctx.com.verbose then Common.log ctx.com ("Typing " ^ (if ctx.in_macro then "macro " else "") ^ s_type_path c.cl_path ^ "." ^ cf.cf_name);
let e = type_var_field ctx t e stat p in
let require_constant_expression e msg = match Optimizer.make_constant_expression ctx e with
| Some e -> e
| None -> display_error ctx msg p; e
in
let e = (match cf.cf_kind with
| Var v when c.cl_extern || Meta.has Meta.Extern cf.cf_meta ->
if not stat then begin
display_error ctx "Extern non-static variables may not be initialized" p;
e
end else if v.v_read <> AccInline then begin
display_error ctx "Extern non-inline variables may not be initialized" p;
e
end else require_constant_expression e "Extern variable initialization must be a constant value"
| Var v when is_extern_field cf ->
(* disallow initialization of non-physical fields (issue #1958) *)
display_error ctx "This field cannot be initialized because it is not a real variable" p; e
| Var v when not stat ->
let e = match Optimizer.make_constant_expression ctx e with
| Some e -> e
| None ->
let rec has_this e = match e.eexpr with
| TConst TThis ->
display_error ctx "Cannot access this or other member field in variable initialization" e.epos;
| TLocal v when (match ctx.vthis with Some v2 -> v == v2 | None -> false) ->
display_error ctx "Cannot access this or other member field in variable initialization" e.epos;
| _ ->
Type.iter has_this e
in
has_this e;
e
in
e
| Var v when v.v_read = AccInline ->
let e = require_constant_expression e "Inline variable initialization must be a constant value" in
begin match c.cl_kind with
| KAbstractImpl a when Meta.has Meta.Enum cf.cf_meta && Meta.has Meta.Enum a.a_meta ->
unify ctx t (TAbstract(a,(List.map (fun _ -> mk_mono()) a.a_params))) p;
begin match e.eexpr with
| TCast(e1,None) -> unify ctx e1.etype a.a_this e1.epos
| _ -> assert false
end
| _ ->
()
end;
e
| _ ->
e
) in
let e = check_cast e in
cf.cf_expr <- Some e;
cf.cf_type <- t;
end;
t
) "bind_var" in
if not stat then force_constructor := true;
bind_type ctx cf r (snd e) false
in
(* ----------------------- FIELD INIT ----------------------------- *)
let loop_cf f =
let name = f.cff_name in
check_global_metadata ctx (fun m -> f.cff_meta <- m :: f.cff_meta) c.cl_module.m_path c.cl_path (Some name);
let p = f.cff_pos in
if name.[0] = '$' && ctx.com.display = DMNone then error "Field names starting with a dollar are not allowed" p;
let stat = List.mem AStatic f.cff_access in
let extern = Meta.has Meta.Extern f.cff_meta || c.cl_extern in
let is_abstract,allow_inline =
match c.cl_kind, f.cff_kind with
| KAbstractImpl _, _ -> true,true
|_, FFun _ -> false,ctx.g.doinline || extern
| _ -> false,true
in
let inline = List.mem AInline f.cff_access && allow_inline in
let override = List.mem AOverride f.cff_access in
let is_macro = Meta.has Meta.Macro f.cff_meta in
if is_macro then ctx.com.warning "@:macro should now be 'macro' accessor" p;
let is_macro = is_macro || List.mem AMacro f.cff_access in
List.iter (fun acc ->
match (acc, f.cff_kind) with
| APublic, _ | APrivate, _ | AStatic, _ -> ()
| ADynamic, FFun _ | AOverride, FFun _ | AMacro, FFun _ | AInline, FFun _ | AInline, FVar _ -> ()
| _, FVar _ -> error ("Invalid accessor '" ^ Ast.s_access acc ^ "' for variable " ^ name) p
| _, FProp _ -> error ("Invalid accessor '" ^ Ast.s_access acc ^ "' for property " ^ name) p
) f.cff_access;
if override then (match c.cl_super with None -> error ("Invalid override on field '" ^ f.cff_name ^ "': class has no super class") p | _ -> ());
(* build the per-field context *)
let ctx = {
ctx with
pass = PBuildClass; (* will be set later to PTypeExpr *)
} in
match f.cff_kind with
| FVar (t,e) ->
if not stat && is_abstract then error (f.cff_name ^ ": Cannot declare member variable in abstract") p;
if inline && not stat then error (f.cff_name ^ ": Inline variable must be static") p;
if inline && e = None then error (f.cff_name ^ ": Inline variable must be initialized") p;
let t = (match t with
| None when not stat && e = None ->
error ("Type required for member variable " ^ name) p;
| None ->
mk_mono()
| Some t ->
(* TODO is_lib: only load complex type if needed *)
let old = ctx.type_params in
if stat then ctx.type_params <- [];
let t = load_complex_type ctx p t in
if stat then ctx.type_params <- old;
t
) in
let cf = {
cf_name = name;
cf_doc = f.cff_doc;
cf_meta = f.cff_meta;
cf_type = t;
cf_pos = f.cff_pos;
cf_kind = Var (if inline then { v_read = AccInline ; v_write = AccNever } else { v_read = AccNormal; v_write = AccNormal });
cf_expr = None;
cf_public = is_public f.cff_access None;
cf_params = [];
cf_overloads = [];
} in
ctx.curfield <- cf;
bind_var ctx cf e stat inline;
f, false, cf, true
| FFun fd ->
let params = type_function_params ctx fd f.cff_name p in
if inline && c.cl_interface then error (f.cff_name ^ ": You can't declare inline methods in interfaces") p;
if Meta.has Meta.Generic f.cff_meta then begin
if params = [] then error (f.cff_name ^ ": Generic functions must have type parameters") p;
end;
let is_macro = is_macro || (is_class_macro && stat) in
let f, stat, fd = if not is_macro || stat then
f, stat, fd
else if ctx.in_macro then
(* non-static macros methods are turned into static when we are running the macro *)
{ f with cff_access = AStatic :: f.cff_access }, true, fd
else
(* remove display of first argument which will contain the "this" expression *)
f, stat, { fd with f_args = match fd.f_args with [] -> [] | _ :: l -> l }
in
let fd = if not is_macro then
fd
else begin
if ctx.in_macro then begin
(* a class with a macro cannot be extern in macro context (issue #2015) *)
c.cl_extern <- false;
let texpr = CTPath { tpackage = ["haxe";"macro"]; tname = "Expr"; tparams = []; tsub = None } in
(* ExprOf type parameter might contain platform-specific type, let's replace it by Expr *)
let no_expr_of = function
| CTPath { tpackage = ["haxe";"macro"]; tname = "Expr"; tsub = Some ("ExprOf"); tparams = [TPType _] }
| CTPath { tpackage = []; tname = ("ExprOf"); tsub = None; tparams = [TPType _] } -> Some texpr
| t -> Some t
in
{
f_params = fd.f_params;
f_type = (match fd.f_type with None -> Some texpr | Some t -> no_expr_of t);
f_args = List.map (fun (a,o,t,e) -> a,o,(match t with None -> Some texpr | Some t -> no_expr_of t),e) fd.f_args;
f_expr = fd.f_expr;
}
end else
let tdyn = Some (CTPath { tpackage = []; tname = "Dynamic"; tparams = []; tsub = None }) in
let to_dyn = function
| { tpackage = ["haxe";"macro"]; tname = "Expr"; tsub = Some ("ExprOf"); tparams = [TPType t] } -> Some t
| { tpackage = []; tname = ("ExprOf"); tsub = None; tparams = [TPType t] } -> Some t
| { tpackage = ["haxe"]; tname = ("PosInfos"); tsub = None; tparams = [] } -> error "haxe.PosInfos is not allowed on macro functions, use Context.currentPos() instead" p
| _ -> tdyn
in
{
f_params = fd.f_params;
f_type = (match fd.f_type with Some (CTPath t) -> to_dyn t | _ -> tdyn);
f_args = List.map (fun (a,o,t,_) -> a,o,(match t with Some (CTPath t) -> to_dyn t | _ -> tdyn),None) fd.f_args;
f_expr = None;
}
end in
let parent = (if not stat then get_parent c name else None) in
let dynamic = List.mem ADynamic f.cff_access || (match parent with Some { cf_kind = Method MethDynamic } -> true | _ -> false) in
if inline && dynamic then error (f.cff_name ^ ": You can't have both 'inline' and 'dynamic'") p;
ctx.type_params <- (match c.cl_kind with
| KAbstractImpl a when Meta.has Meta.Impl f.cff_meta ->
params @ a.a_params
| _ ->
if stat then params else params @ ctx.type_params);
let constr = (name = "new") in
(* TODO is_lib: avoid forcing the return type to be typed *)
let ret = if constr then ctx.t.tvoid else type_opt ctx p fd.f_type in
let rec loop args = match args with
| (name,opt,t,ct) :: args ->
(* TODO is_lib: avoid forcing the field to be typed *)
let t, ct = type_function_arg ctx (type_opt ctx p t) ct opt p in
delay ctx PTypeField (fun() -> match follow t with
| TAbstract({a_path = ["haxe";"extern"],"Rest"},_) ->
if not c.cl_extern then error "Rest argument are only supported for extern methods" p;
if opt then error "Rest argument cannot be optional" p;
if ct <> None then error "Rest argument cannot have default value" p;
if args <> [] then error "Rest should only be used for the last function argument" p;
| _ ->
()
);
(name, ct, t) :: (loop args)
| [] ->
[]
in
let args = loop fd.f_args in
let t = TFun (fun_args args,ret) in
if c.cl_interface && not stat && fd.f_expr <> None then error (f.cff_name ^ ": An interface method cannot have a body") p;
if constr then begin
if c.cl_interface then error "An interface cannot have a constructor" p;
if stat then error "A constructor must not be static" p;
match fd.f_type with
| None | Some (CTPath { tpackage = []; tname = "Void" }) -> ()
| _ -> error "A class constructor can't have a return value" p
end;
let cf = {
cf_name = name;
cf_doc = f.cff_doc;
cf_meta = f.cff_meta;
cf_type = t;
cf_pos = f.cff_pos;
cf_kind = Method (if is_macro then MethMacro else if inline then MethInline else if dynamic then MethDynamic else MethNormal);
cf_expr = None;
cf_public = is_public f.cff_access parent;
cf_params = params;
cf_overloads = [];
} in
generate_value_meta ctx.com (Some c) cf fd.f_args;
let do_bind = ref (((not c.cl_extern || inline) && not c.cl_interface) || cf.cf_name = "__init__") in
let do_add = ref true in
(match c.cl_kind with
| KAbstractImpl a ->
let m = mk_mono() in
let ta = TAbstract(a, List.map (fun _ -> mk_mono()) a.a_params) in
let tthis = if Meta.has Meta.Impl f.cff_meta || Meta.has Meta.To f.cff_meta then monomorphs a.a_params a.a_this else a.a_this in
let check_bind () =
if fd.f_expr = None then begin
if inline then error (f.cff_name ^ ": Inline functions must have an expression") f.cff_pos;
begin match fd.f_type with
| None -> error (f.cff_name ^ ": Functions without expressions must have an explicit return type") f.cff_pos
| Some _ -> ()
end;
cf.cf_meta <- (Meta.NoExpr,[],cf.cf_pos) :: cf.cf_meta;
do_add := false;
do_bind := false;
end
in
let rec loop ml = match ml with
| (Meta.From,_,_) :: _ ->
if is_macro then error (f.cff_name ^ ": Macro cast functions are not supported") p;
let r = fun () ->
(* the return type of a from-function must be the abstract, not the underlying type *)
(try type_eq EqStrict ret ta with Unify_error l -> error (error_msg (Unify l)) p);
match t with
| TFun([_,_,t],_) -> t
| _ -> error (f.cff_name ^ ": @:from cast functions must accept exactly one argument") p
in
a.a_from_field <- (TLazy (ref r),cf) :: a.a_from_field;
| (Meta.To,_,_) :: _ ->
if is_macro then error (f.cff_name ^ ": Macro cast functions are not supported") p;
if not (Meta.has Meta.Impl cf.cf_meta) then cf.cf_meta <- (Meta.Impl,[],cf.cf_pos) :: cf.cf_meta;
let resolve_m args =
(try unify_raise ctx t (tfun (tthis :: args) m) f.cff_pos with Error (Unify l,p) -> error (error_msg (Unify l)) p);
match follow m with
| TMono _ when (match cf.cf_type with TFun(_,r) -> r == t_dynamic | _ -> false) -> t_dynamic
| m -> m
in
let r = exc_protect ctx (fun r ->
let args = if Meta.has Meta.MultiType a.a_meta then begin
let ctor = try
PMap.find "_new" c.cl_statics
with Not_found ->
error "Constructor of multi-type abstract must be defined before the individual @:to-functions are" cf.cf_pos
in
(* delay ctx PFinal (fun () -> unify ctx m tthis f.cff_pos); *)
let args = match follow (monomorphs a.a_params ctor.cf_type) with
| TFun(args,_) -> List.map (fun (_,_,t) -> t) args
| _ -> assert false
in
args
end else
[]
in
let t = resolve_m args in
r := (fun() -> t);
t
) "@:to" in
delay ctx PForce (fun() -> ignore ((!r)()));
a.a_to_field <- (TLazy r, cf) :: a.a_to_field
| (Meta.ArrayAccess,_,_) :: _ ->
if is_macro then error (f.cff_name ^ ": Macro array-access functions are not supported") p;
a.a_array <- cf :: a.a_array;
if Meta.has Meta.CoreType a.a_meta then check_bind();
| (Meta.Op,[EBinop(op,_,_),_],_) :: _ ->
if is_macro then error (f.cff_name ^ ": Macro operator functions are not supported") p;
let targ = if Meta.has Meta.Impl f.cff_meta then tthis else ta in
let left_eq,right_eq = match follow t with
| TFun([(_,_,t1);(_,_,t2)],_) ->
type_iseq targ t1,type_iseq targ t2
| _ ->
if Meta.has Meta.Impl cf.cf_meta then
error (f.cff_name ^ ": Member @:op functions must accept exactly one argument") cf.cf_pos
else
error (f.cff_name ^ ": Static @:op functions must accept exactly two arguments") cf.cf_pos
in
if not (left_eq || right_eq) then error (f.cff_name ^ ": The left or right argument type must be " ^ (s_type (print_context()) targ)) f.cff_pos;
if right_eq && Meta.has Meta.Commutative f.cff_meta then error (f.cff_name ^ ": @:commutative is only allowed if the right argument is not " ^ (s_type (print_context()) targ)) f.cff_pos;
a.a_ops <- (op,cf) :: a.a_ops;
check_bind();
| (Meta.Op,[EUnop(op,flag,_),_],_) :: _ ->
if is_macro then error (f.cff_name ^ ": Macro operator functions are not supported") p;
let targ = if Meta.has Meta.Impl f.cff_meta then tthis else ta in
(try type_eq EqStrict t (tfun [targ] (mk_mono())) with Unify_error l -> raise (Error ((Unify l),f.cff_pos)));
a.a_unops <- (op,flag,cf) :: a.a_unops;
check_bind();
| (Meta.Impl,_,_) :: ml when f.cff_name <> "_new" && not is_macro ->
begin match follow t with
| TFun((_,_,t1) :: _, _) when type_iseq tthis t1 ->
()
| _ ->
display_error ctx ("First argument of implementation function must be " ^ (s_type (print_context()) tthis)) f.cff_pos
end;
loop ml
(* | (Meta.Resolve,_,_) :: _ ->
let targ = if Meta.has Meta.Impl f.cff_meta then tthis else ta in
begin match follow t with
| TFun([(_,_,t1);(_,_,t2)],_) ->
if not is_macro then begin
if not (type_iseq targ t1) then error ("First argument type must be " ^ (s_type (print_context()) targ)) f.cff_pos;
if not (type_iseq ctx.t.tstring t2) then error ("Second argument type must be String") f.cff_pos
end
| _ ->
error ("Field type of resolve must be " ^ (s_type (print_context()) targ) ^ " -> String -> T") f.cff_pos
end *)
| _ :: ml ->
loop ml
| [] ->
()
in
loop f.cff_meta;
if f.cff_name = "_new" && Meta.has Meta.MultiType a.a_meta then do_bind := false;
| _ ->
());
init_meta_overloads ctx (Some c) cf;
ctx.curfield <- cf;
let r = exc_protect ctx (fun r ->
if not !return_partial_type then begin
r := (fun() -> t);
context_init();
incr stats.s_methods_typed;
if ctx.com.verbose then Common.log ctx.com ("Typing " ^ (if ctx.in_macro then "macro " else "") ^ s_type_path c.cl_path ^ "." ^ name);
let fmode = (match c.cl_kind with
| KAbstractImpl _ ->
(match args with
| ("this",_,_) :: _ -> FunMemberAbstract
| _ when name = "_new" -> FunMemberAbstract
| _ -> FunStatic)
| _ ->
if constr then FunConstructor else if stat then FunStatic else FunMember
) in
let display_field = display_file && (f.cff_pos.pmin <= cp.pmin && f.cff_pos.pmax >= cp.pmax) in
match ctx.com.platform with
| Java when is_java_native_function cf.cf_meta ->
if fd.f_expr <> None then
ctx.com.warning "@:native function definitions shouldn't include an expression. This behaviour is deprecated." cf.cf_pos;
cf.cf_expr <- None;
cf.cf_type <- t
| _ ->
let e , fargs = type_function ctx args ret fmode fd display_field p in
let f = {
tf_args = fargs;
tf_type = ret;
tf_expr = e;
} in
if stat && name = "__init__" then
(match e.eexpr with
| TBlock [] | TBlock [{ eexpr = TConst _ }] | TConst _ | TObjectDecl [] -> ()
| _ -> c.cl_init <- Some e);
cf.cf_expr <- Some (mk (TFunction f) t p);
cf.cf_type <- t;
end;
t
) "type_fun" in
if !do_bind then bind_type ctx cf r (match fd.f_expr with Some e -> snd e | None -> f.cff_pos) is_macro;
f, constr, cf, !do_add
| FProp (get,set,t,eo) ->
(match c.cl_kind with
| KAbstractImpl a when Meta.has Meta.Impl f.cff_meta ->
ctx.type_params <- a.a_params;
| _ -> ());
(* TODO is_lib: lazify load_complex_type *)
let ret = (match t, eo with
| None, None -> error (f.cff_name ^ ": Property must either define a type or a default value") p;
| None, _ -> mk_mono()
| Some t, _ -> load_complex_type ctx p t
) in
let t_get,t_set = match c.cl_kind with
| KAbstractImpl a when Meta.has Meta.Impl f.cff_meta ->
if Meta.has Meta.IsVar f.cff_meta then error (f.cff_name ^ ": Abstract properties cannot be real variables") f.cff_pos;
let ta = apply_params a.a_params (List.map snd a.a_params) a.a_this in
tfun [ta] ret, tfun [ta;ret] ret
| _ -> tfun [] ret, TFun(["value",false,ret],ret)
in
let check_method m t req_name =
if ctx.com.display <> DMNone then () else
try
let overloads =
(* on pf_overload platforms, the getter/setter may have been defined as an overloaded function; get all overloads *)
if ctx.com.config.pf_overload then
if stat then
let f = PMap.find m c.cl_statics in
(f.cf_type, f) :: (List.map (fun f -> f.cf_type, f) f.cf_overloads)
else
get_overloads c m
else
[ if stat then
let f = PMap.find m c.cl_statics in
f.cf_type, f
else match class_field c (List.map snd c.cl_params) m with
| _, t,f -> t,f ]
in
(* choose the correct overload if and only if there is more than one overload found *)
let rec get_overload overl = match overl with
| [tf] -> tf
| (t2,f2) :: overl ->
if type_iseq t t2 then
(t2,f2)
else
get_overload overl
| [] ->
if c.cl_interface then
raise Not_found
else
raise (Error (Custom
(Printf.sprintf "No overloaded method named %s was compatible with the property %s with expected type %s" m name (s_type (print_context()) t)
), p))
in
let t2, f2 = get_overload overloads in
(* accessors must be public on As3 (issue #1872) *)
if Common.defined ctx.com Define.As3 then f2.cf_meta <- (Meta.Public,[],p) :: f2.cf_meta;
(match f2.cf_kind with
| Method MethMacro ->
display_error ctx (f2.cf_name ^ ": Macro methods cannot be used as property accessor") p;
display_error ctx (f2.cf_name ^ ": Accessor method is here") f2.cf_pos;
| _ -> ());
unify_raise ctx t2 t f2.cf_pos;
if (Meta.has Meta.Impl f.cff_meta && not (Meta.has Meta.Impl f2.cf_meta)) || (Meta.has Meta.Impl f2.cf_meta && not (Meta.has Meta.Impl f.cff_meta)) then
display_error ctx "Mixing abstract implementation and static properties/accessors is not allowed" f2.cf_pos;
(match req_name with None -> () | Some n -> display_error ctx ("Please use " ^ n ^ " to name your property access method") f2.cf_pos);
with
| Error (Unify l,p) -> raise (Error (Stack (Custom ("In method " ^ m ^ " required by property " ^ name),Unify l),p))
| Not_found ->
if req_name <> None then display_error ctx (f.cff_name ^ ": Custom property accessor is no longer supported, please use get/set") p else
if c.cl_interface then begin
let cf = mk_field m t p in
cf.cf_meta <- [Meta.CompilerGenerated,[],p];
cf.cf_kind <- Method MethNormal;
c.cl_fields <- PMap.add cf.cf_name cf c.cl_fields;
c.cl_ordered_fields <- cf :: c.cl_ordered_fields;
end else if not c.cl_extern then begin
try
let _, _, f2 = (if not stat then let f = PMap.find m c.cl_statics in None, f.cf_type, f else class_field c (List.map snd c.cl_params) m) in
display_error ctx (Printf.sprintf "Method %s is no valid accessor for %s because it is %sstatic" m name (if stat then "not " else "")) f2.cf_pos
with Not_found ->
display_error ctx ("Method " ^ m ^ " required by property " ^ name ^ " is missing") p
end
in
let get = (match get with
| "null" -> AccNo
| "dynamic" -> AccCall
| "never" -> AccNever
| "default" -> AccNormal
| _ ->
let get = if get = "get" then "get_" ^ name else get in
if not is_lib then delay ctx PTypeField (fun() -> check_method get t_get (if get <> "get" && get <> "get_" ^ name then Some ("get_" ^ name) else None));
AccCall
) in
let set = (match set with
| "null" ->
(* standard flash library read-only variables can't be accessed for writing, even in subclasses *)
if c.cl_extern && (match c.cl_path with "flash" :: _ , _ -> true | _ -> false) && ctx.com.platform = Flash then
AccNever
else
AccNo
| "never" -> AccNever
| "dynamic" -> AccCall
| "default" -> AccNormal
| _ ->
let set = if set = "set" then "set_" ^ name else set in
if not is_lib then delay ctx PTypeField (fun() -> check_method set t_set (if set <> "set" && set <> "set_" ^ name then Some ("set_" ^ name) else None));
AccCall
) in
if set = AccNormal && (match get with AccCall -> true | _ -> false) then error (f.cff_name ^ ": Unsupported property combination") p;
let cf = {
cf_name = name;
cf_doc = f.cff_doc;
cf_meta = f.cff_meta;
cf_pos = f.cff_pos;
cf_kind = Var { v_read = get; v_write = set };
cf_expr = None;
cf_type = ret;
cf_public = is_public f.cff_access None;
cf_params = [];
cf_overloads = [];
} in
ctx.curfield <- cf;
bind_var ctx cf eo stat inline;
f, false, cf, true
in
let rec check_require = function
| [] -> None
| (Meta.Require,conds,_) :: l ->
let rec loop = function
| [] -> check_require l
| e :: l ->
let sc = match fst e with
| EConst (Ident s) -> s
| EBinop ((OpEq|OpNotEq|OpGt|OpGte|OpLt|OpLte) as op,(EConst (Ident s),_),(EConst ((Int _ | Float _ | String _) as c),_)) -> s ^ s_binop op ^ s_constant c
| _ -> ""
in
if not (Parser.is_true (Parser.eval ctx.com e)) then
Some (sc,(match List.rev l with (EConst (String msg),_) :: _ -> Some msg | _ -> None))
else
loop l
in
loop conds
| _ :: l ->
check_require l
in
let cl_req = check_require c.cl_meta in
List.iter (fun f ->
let p = f.cff_pos in
try
let fd , constr, f, do_add = loop_cf f in
let is_static = List.mem AStatic fd.cff_access in
if (is_static || constr) && c.cl_interface && f.cf_name <> "__init__" && not is_lib then error "You can't declare static fields in interfaces" p;
begin try
let _,args,_ = Meta.get Meta.IfFeature f.cf_meta in
List.iter (fun e -> match fst e with
| EConst(String s) ->
ctx.m.curmod.m_extra.m_if_feature <- (s,(c,f,is_static)) :: ctx.m.curmod.m_extra.m_if_feature;
| _ ->
error "String expected" (pos e)
) args
with Not_found -> () end;
let req = check_require fd.cff_meta in
let req = (match req with None -> if is_static || constr then cl_req else None | _ -> req) in
(match req with
| None -> ()
| Some r -> f.cf_kind <- Var { v_read = AccRequire (fst r, snd r); v_write = AccRequire (fst r, snd r) });
if constr then begin
match c.cl_constructor with
| None ->
c.cl_constructor <- Some f
| Some ctor when ctx.com.config.pf_overload ->
if Meta.has Meta.Overload f.cf_meta && Meta.has Meta.Overload ctor.cf_meta then
ctor.cf_overloads <- f :: ctor.cf_overloads
else
display_error ctx ("If using overloaded constructors, all constructors must be declared with @:overload") (if Meta.has Meta.Overload f.cf_meta then ctor.cf_pos else f.cf_pos)
| Some ctor ->
display_error ctx "Duplicate constructor" p
end else if not is_static || f.cf_name <> "__init__" then begin
let dup = if is_static then PMap.exists f.cf_name c.cl_fields || has_field f.cf_name c.cl_super else PMap.exists f.cf_name c.cl_statics in
if not is_native && dup then error ("Same field name can't be use for both static and instance : " ^ f.cf_name) p;
if List.mem AOverride fd.cff_access then c.cl_overrides <- f :: c.cl_overrides;
let is_var f = match f.cf_kind with | Var _ -> true | _ -> false in
if PMap.mem f.cf_name (if is_static then c.cl_statics else c.cl_fields) then
if ctx.com.config.pf_overload && Meta.has Meta.Overload f.cf_meta && not (is_var f) then
let mainf = PMap.find f.cf_name (if is_static then c.cl_statics else c.cl_fields) in
if is_var mainf then display_error ctx "Cannot declare a variable with same name as a method" mainf.cf_pos;
(if not (Meta.has Meta.Overload mainf.cf_meta) then display_error ctx ("Overloaded methods must have @:overload metadata") mainf.cf_pos);
mainf.cf_overloads <- f :: mainf.cf_overloads
else
display_error ctx ("Duplicate class field declaration : " ^ f.cf_name) p
else
if not do_add then
()
else if is_static then begin
c.cl_statics <- PMap.add f.cf_name f c.cl_statics;
c.cl_ordered_statics <- f :: c.cl_ordered_statics;
end else begin
c.cl_fields <- PMap.add f.cf_name f c.cl_fields;
c.cl_ordered_fields <- f :: c.cl_ordered_fields;
end;
end
with Error (Custom str,p2) when p = p2 ->
display_error ctx str p
) fields;
(match c.cl_kind with
| KAbstractImpl a ->
a.a_to_field <- List.rev a.a_to_field;
a.a_from_field <- List.rev a.a_from_field;
a.a_ops <- List.rev a.a_ops;
a.a_unops <- List.rev a.a_unops;
a.a_array <- List.rev a.a_array;
| _ -> ());
c.cl_ordered_statics <- List.rev c.cl_ordered_statics;
c.cl_ordered_fields <- List.rev c.cl_ordered_fields;
(*
make sure a default contructor with same access as super one will be added to the class structure at some point.
*)
(* add_constructor does not deal with overloads correctly *)
if not ctx.com.config.pf_overload then add_constructor ctx c !force_constructor p;
(* check overloaded constructors *)
(if ctx.com.config.pf_overload && not is_lib then match c.cl_constructor with
| Some ctor ->
delay ctx PTypeField (fun() ->
List.iter (fun f ->
try
(* TODO: consider making a broader check, and treat some types, like TAnon and type parameters as Dynamic *)
ignore(List.find (fun f2 -> f != f2 && same_overload_args f.cf_type f2.cf_type f f2) (ctor :: ctor.cf_overloads));
display_error ctx ("Another overloaded field of same signature was already declared : " ^ f.cf_name) f.cf_pos;
with Not_found -> ()
) (ctor :: ctor.cf_overloads)
)
| _ -> ());
(* push delays in reverse order so they will be run in correct order *)
List.iter (fun (ctx,r) ->
init_class_done ctx;
(match r with
| None -> ()
| Some r -> delay ctx PTypeField (fun() -> ignore((!r)())))
) !delayed_expr
let resolve_typedef t =
match t with
| TClassDecl _ | TEnumDecl _ | TAbstractDecl _ -> t
| TTypeDecl td ->
match follow td.t_type with
| TEnum (e,_) -> TEnumDecl e
| TInst (c,_) -> TClassDecl c
| TAbstract (a,_) -> TAbstractDecl a
| _ -> t
let add_module ctx m p =
let decl_type t =
let t = t_infos t in
try
let m2 = Hashtbl.find ctx.g.types_module t.mt_path in
if m.m_path <> m2 && String.lowercase (s_type_path m2) = String.lowercase (s_type_path m.m_path) then error ("Module " ^ s_type_path m2 ^ " is loaded with a different case than " ^ s_type_path m.m_path) p;
error ("Type name " ^ s_type_path t.mt_path ^ " is redefined from module " ^ s_type_path m2) p
with
Not_found ->
Hashtbl.add ctx.g.types_module t.mt_path m.m_path
in
List.iter decl_type m.m_types;
Hashtbl.add ctx.g.modules m.m_path m
(*
In this pass, we can access load and access other modules types, but we cannot follow them or access their structure
since they have not been setup. We also build a context_init list that will be evaluated the first time we evaluate
an expression into the context
*)
let rec init_module_type ctx context_init do_init (decl,p) =
let get_type name =
try List.find (fun t -> snd (t_infos t).mt_path = name) ctx.m.curmod.m_types with Not_found -> assert false
in
match decl with
| EImport (path,mode) ->
let rec loop acc = function
| x :: l when is_lower_ident (fst x) -> loop (x::acc) l
| rest -> List.rev acc, rest
in
let pack, rest = loop [] path in
(match rest with
| [] ->
(match mode with
| IAll ->
ctx.m.wildcard_packages <- List.map fst pack :: ctx.m.wildcard_packages
| _ ->
(match List.rev path with
| [] -> assert false
| (_,p) :: _ -> error "Module name must start with an uppercase letter" p))
| (tname,p2) :: rest ->
let p1 = (match pack with [] -> p2 | (_,p1) :: _ -> p1) in
let p_type = punion p1 p2 in
let md = ctx.g.do_load_module ctx (List.map fst pack,tname) p_type in
let types = md.m_types in
let no_private t = not (t_infos t).mt_private in
let chk_private t p = if (t_infos t).mt_private then error "You can't import a private type" p in
let has_name name t = snd (t_infos t).mt_path = name in
let get_type tname =
let t = (try List.find (has_name tname) types with Not_found -> error (string_error tname (List.map (fun mt -> snd (t_infos mt).mt_path) types) ("Module " ^ s_type_path md.m_path ^ " does not define type " ^ tname)) p_type) in
chk_private t p_type;
t
in
let rebind t name =
if not (name.[0] >= 'A' && name.[0] <= 'Z') then
error "Type aliases must start with an uppercase letter" p;
let _, _, f = ctx.g.do_build_instance ctx t p_type in
(* create a temp private typedef, does not register it in module *)
TTypeDecl {
t_path = (fst md.m_path @ ["_" ^ snd md.m_path],name);
t_module = md;
t_pos = p;
t_private = true;
t_doc = None;
t_meta = [];
t_params = (t_infos t).mt_params;
t_type = f (List.map snd (t_infos t).mt_params);
}
in
let add_static_init t name s =
let name = (match name with None -> s | Some n -> n) in
match resolve_typedef t with
| TClassDecl c ->
ignore(c.cl_build());
ignore(PMap.find s c.cl_statics);
ctx.m.module_globals <- PMap.add name (TClassDecl c,s) ctx.m.module_globals
| TEnumDecl e ->
ignore(PMap.find s e.e_constrs);
ctx.m.module_globals <- PMap.add name (TEnumDecl e,s) ctx.m.module_globals
| _ ->
raise Not_found
in
(match mode with
| INormal | IAsName _ ->
let name = (match mode with IAsName n -> Some n | _ -> None) in
(match rest with
| [] ->
(match name with
| None ->
ctx.m.module_types <- List.filter no_private types @ ctx.m.module_types
| Some newname ->
ctx.m.module_types <- rebind (get_type tname) newname :: ctx.m.module_types);
| [tsub,p2] ->
let p = punion p1 p2 in
(try
let tsub = List.find (has_name tsub) types in
chk_private tsub p;
ctx.m.module_types <- (match name with None -> tsub | Some n -> rebind tsub n) :: ctx.m.module_types
with Not_found ->
(* this might be a static property, wait later to check *)
let tmain = get_type tname in
context_init := (fun() ->
try
add_static_init tmain name tsub
with Not_found ->
error (s_type_path (t_infos tmain).mt_path ^ " has no field or subtype " ^ tsub) p
) :: !context_init)
| (tsub,p2) :: (fname,p3) :: rest ->
(match rest with
| [] -> ()
| (n,p) :: _ -> error ("Unexpected " ^ n) p);
let tsub = get_type tsub in
context_init := (fun() ->
try
add_static_init tsub name fname
with Not_found ->
error (s_type_path (t_infos tsub).mt_path ^ " has no field " ^ fname) (punion p p3)
) :: !context_init;
)
| IAll ->
let t = (match rest with
| [] -> get_type tname
| [tsub,_] -> get_type tsub
| _ :: (n,p) :: _ -> error ("Unexpected " ^ n) p
) in
context_init := (fun() ->
match resolve_typedef t with
| TClassDecl c
| TAbstractDecl {a_impl = Some c} ->
ignore(c.cl_build());
PMap.iter (fun _ cf -> if not (has_meta Meta.NoImportGlobal cf.cf_meta) then ctx.m.module_globals <- PMap.add cf.cf_name (TClassDecl c,cf.cf_name) ctx.m.module_globals) c.cl_statics
| TEnumDecl e ->
PMap.iter (fun _ c -> if not (has_meta Meta.NoImportGlobal c.ef_meta) then ctx.m.module_globals <- PMap.add c.ef_name (TEnumDecl e,c.ef_name) ctx.m.module_globals) e.e_constrs
| _ ->
error "No statics to import from this type" p
) :: !context_init
))
| EUsing t ->
(* do the import first *)
let types = (match t.tsub with
| None ->
let md = ctx.g.do_load_module ctx (t.tpackage,t.tname) p in
let types = List.filter (fun t -> not (t_infos t).mt_private) md.m_types in
ctx.m.module_types <- types @ ctx.m.module_types;
types
| Some _ ->
let t = load_type_def ctx p t in
ctx.m.module_types <- t :: ctx.m.module_types;
[t]
) in
(* delay the using since we need to resolve typedefs *)
let filter_classes types =
let rec loop acc types = match types with
| td :: l ->
(match resolve_typedef td with
| TClassDecl c | TAbstractDecl({a_impl = Some c}) ->
loop (c :: acc) l
| td ->
loop acc l)
| [] ->
acc
in
loop [] types
in
context_init := (fun() -> ctx.m.module_using <- filter_classes types @ ctx.m.module_using) :: !context_init
| EClass d ->
let c = (match get_type d.d_name with TClassDecl c -> c | _ -> assert false) in
check_global_metadata ctx (fun m -> c.cl_meta <- m :: c.cl_meta) c.cl_module.m_path c.cl_path None;
let herits = d.d_flags in
if Meta.has Meta.Generic c.cl_meta && c.cl_params <> [] then c.cl_kind <- KGeneric;
if Meta.has Meta.GenericBuild c.cl_meta then c.cl_kind <- KGenericBuild d.d_data;
if c.cl_path = (["haxe";"macro"],"MacroType") then c.cl_kind <- KMacroType;
c.cl_extern <- List.mem HExtern herits;
c.cl_interface <- List.mem HInterface herits;
let rec build() =
c.cl_build <- (fun()-> false);
try
set_heritance ctx c herits p;
init_class ctx c p do_init d.d_flags d.d_data;
c.cl_build <- (fun()-> true);
List.iter (fun (_,t) -> ignore(follow t)) c.cl_params;
true;
with Exit ->
c.cl_build <- make_pass ctx build;
delay ctx PTypeField (fun() -> ignore(c.cl_build())); (* delay after PBuildClass, not very good but better than forgotten *)
false
| exn ->
c.cl_build <- (fun()-> true);
raise exn
in
ctx.pass <- PBuildClass;
ctx.curclass <- c;
c.cl_build <- make_pass ctx build;
ctx.pass <- PBuildModule;
ctx.curclass <- null_class;
delay ctx PBuildClass (fun() -> ignore(c.cl_build()));
if (ctx.com.platform = Java || ctx.com.platform = Cs) && not c.cl_extern then
delay ctx PTypeField (fun () ->
let metas = check_strict_meta ctx c.cl_meta in
if metas <> [] then c.cl_meta <- metas @ c.cl_meta;
let rec run_field cf =
let metas = check_strict_meta ctx cf.cf_meta in
if metas <> [] then cf.cf_meta <- metas @ cf.cf_meta;
List.iter run_field cf.cf_overloads
in
List.iter run_field c.cl_ordered_statics;
List.iter run_field c.cl_ordered_fields;
match c.cl_constructor with
| Some f -> run_field f
| _ -> ()
);
| EEnum d ->
let e = (match get_type d.d_name with TEnumDecl e -> e | _ -> assert false) in
let ctx = { ctx with type_params = e.e_params } in
let h = (try Some (Hashtbl.find ctx.g.type_patches e.e_path) with Not_found -> None) in
check_global_metadata ctx (fun m -> e.e_meta <- m :: e.e_meta) e.e_module.m_path e.e_path None;
(match h with
| None -> ()
| Some (h,hcl) ->
Hashtbl.iter (fun _ _ -> error "Field type patch not supported for enums" e.e_pos) h;
e.e_meta <- e.e_meta @ hcl.tp_meta);
let constructs = ref d.d_data in
let get_constructs() =
List.map (fun c ->
{
cff_name = c.ec_name;
cff_doc = c.ec_doc;
cff_meta = c.ec_meta;
cff_pos = c.ec_pos;
cff_access = [];
cff_kind = (match c.ec_args, c.ec_params with
| [], [] -> FVar (c.ec_type,None)
| _ -> FFun { f_params = c.ec_params; f_type = c.ec_type; f_expr = None; f_args = List.map (fun (n,o,t) -> n,o,Some t,None) c.ec_args });
}
) (!constructs)
in
let init () = List.iter (fun f -> f()) !context_init in
build_module_def ctx (TEnumDecl e) e.e_meta get_constructs init (fun (e,p) ->
match e with
| EVars [_,Some (CTAnonymous fields),None] ->
constructs := List.map (fun f ->
let args, params, t = (match f.cff_kind with
| FVar (t,None) -> [], [], t
| FFun { f_params = pl; f_type = t; f_expr = (None|Some (EBlock [],_)); f_args = al } ->
let al = List.map (fun (n,o,t,_) -> match t with None -> error "Missing function parameter type" f.cff_pos | Some t -> n,o,t) al in
al, pl, t
| _ ->
error "Invalid enum constructor in @:build result" p
) in
{
ec_name = f.cff_name;
ec_doc = f.cff_doc;
ec_meta = f.cff_meta;
ec_pos = f.cff_pos;
ec_args = args;
ec_params = params;
ec_type = t;
}
) fields
| _ -> error "Enum build macro must return a single variable with anonymous object fields" p
);
let et = TEnum (e,List.map snd e.e_params) in
let names = ref [] in
let index = ref 0 in
let is_flat = ref true in
let fields = ref PMap.empty in
List.iter (fun c ->
let p = c.ec_pos in
let params = ref [] in
params := List.map (fun tp -> type_type_params ~enum_constructor:true ctx ([],c.ec_name) (fun() -> !params) c.ec_pos tp) c.ec_params;
let params = !params in
let ctx = { ctx with type_params = params @ ctx.type_params } in
let rt = (match c.ec_type with
| None -> et
| Some t ->
let t = load_complex_type ctx p t in
(match follow t with
| TEnum (te,_) when te == e ->
()
| _ ->
error "Explicit enum type must be of the same enum type" p);
t
) in
let t = (match c.ec_args with
| [] -> rt
| l ->
is_flat := false;
let pnames = ref PMap.empty in
TFun (List.map (fun (s,opt,t) ->
(match t with CTPath({tpackage=[];tname="Void"}) -> error "Arguments of type Void are not allowed in enum constructors" c.ec_pos | _ -> ());
if PMap.mem s (!pnames) then error ("Duplicate parameter '" ^ s ^ "' in enum constructor " ^ c.ec_name) p;
pnames := PMap.add s () (!pnames);
s, opt, load_type_opt ~opt ctx p (Some t)
) l, rt)
) in
if PMap.mem c.ec_name e.e_constrs then error ("Duplicate constructor " ^ c.ec_name) p;
let f = {
ef_name = c.ec_name;
ef_type = t;
ef_pos = p;
ef_doc = c.ec_doc;
ef_index = !index;
ef_params = params;
ef_meta = c.ec_meta;
} in
let cf = {
cf_name = f.ef_name;
cf_public = true;
cf_type = f.ef_type;
cf_kind = (match follow f.ef_type with
| TFun _ -> Method MethNormal
| _ -> Var { v_read = AccNormal; v_write = AccNo }
);
cf_pos = e.e_pos;
cf_doc = None;
cf_meta = no_meta;
cf_expr = None;
cf_params = f.ef_params;
cf_overloads = [];
} in
e.e_constrs <- PMap.add f.ef_name f e.e_constrs;
fields := PMap.add cf.cf_name cf !fields;
incr index;
names := c.ec_name :: !names;
) (!constructs);
e.e_names <- List.rev !names;
e.e_extern <- e.e_extern;
e.e_type.t_params <- e.e_params;
e.e_type.t_type <- TAnon {
a_fields = !fields;
a_status = ref (EnumStatics e);
};
if !is_flat then e.e_meta <- (Meta.FlatEnum,[],e.e_pos) :: e.e_meta;
if (ctx.com.platform = Java || ctx.com.platform = Cs) && not e.e_extern then
delay ctx PTypeField (fun () ->
let metas = check_strict_meta ctx e.e_meta in
e.e_meta <- metas @ e.e_meta;
PMap.iter (fun _ ef ->
let metas = check_strict_meta ctx ef.ef_meta in
if metas <> [] then ef.ef_meta <- metas @ ef.ef_meta
) e.e_constrs
);
| ETypedef d ->
let t = (match get_type d.d_name with TTypeDecl t -> t | _ -> assert false) in
check_global_metadata ctx (fun m -> t.t_meta <- m :: t.t_meta) t.t_module.m_path t.t_path None;
let ctx = { ctx with type_params = t.t_params } in
let tt = load_complex_type ctx p d.d_data in
(*
we exceptionnaly allow follow here because we don't care the type we get as long as it's not our own
*)
(match d.d_data with
| CTExtend _ -> ()
| _ ->
if t.t_type == follow tt then error "Recursive typedef is not allowed" p);
(match t.t_type with
| TMono r ->
(match !r with
| None -> r := Some tt;
| Some _ -> assert false);
| _ -> assert false);
if ctx.com.platform = Cs && t.t_meta <> [] then
delay ctx PTypeField (fun () ->
let metas = check_strict_meta ctx t.t_meta in
if metas <> [] then t.t_meta <- metas @ t.t_meta;
);
| EAbstract d ->
let a = (match get_type d.d_name with TAbstractDecl a -> a | _ -> assert false) in
check_global_metadata ctx (fun m -> a.a_meta <- m :: a.a_meta) a.a_module.m_path a.a_path None;
let ctx = { ctx with type_params = a.a_params } in
let is_type = ref false in
let load_type t from =
let t = load_complex_type ctx p t in
let t = if not (Meta.has Meta.CoreType a.a_meta) then begin
if !is_type then begin
let r = exc_protect ctx (fun r ->
r := (fun() -> t);
let at = monomorphs a.a_params a.a_this in
(try (if from then Type.unify t at else Type.unify at t) with Unify_error _ -> error "You can only declare from/to with compatible types" p);
t
) "constraint" in
delay ctx PForce (fun () -> ignore(!r()));
TLazy r
end else
error "Missing underlying type declaration or @:coreType declaration" p;
end else begin
if Meta.has Meta.Callable a.a_meta then
error "@:coreType abstracts cannot be @:callable" p;
t
end in
t
in
List.iter (function
| AFromType t -> a.a_from <- (load_type t true) :: a.a_from
| AToType t -> a.a_to <- (load_type t false) :: a.a_to
| AIsType t ->
if a.a_impl = None then error "Abstracts with underlying type must have an implementation" a.a_pos;
if Meta.has Meta.CoreType a.a_meta then error "@:coreType abstracts cannot have an underlying type" p;
let at = load_complex_type ctx p t in
(match at with TAbstract(a2,_) when a == a2 -> error "Abstract underlying type cannot be recursive" a.a_pos | _ -> ());
a.a_this <- at;
is_type := true;
| APrivAbstract -> ()
) d.d_flags;
if not !is_type then begin
if Meta.has Meta.CoreType a.a_meta then
a.a_this <- TAbstract(a,List.map snd a.a_params)
else
error "Abstract is missing underlying type declaration" a.a_pos
end
let type_module ctx m file ?(is_extern=false) tdecls p =
let m, decls, tdecls = make_module ctx m file tdecls p in
if is_extern then m.m_extra.m_kind <- MExtern;
add_module ctx m p;
(* define the per-module context for the next pass *)
let ctx = {
com = ctx.com;
g = ctx.g;
t = ctx.t;
m = {
curmod = m;
module_types = ctx.g.std.m_types;
module_using = [];
module_globals = PMap.empty;
wildcard_packages = [];
};
meta = [];
this_stack = [];
with_type_stack = [];
call_argument_stack = [];
pass = PBuildModule;
on_error = (fun ctx msg p -> ctx.com.error msg p);
macro_depth = ctx.macro_depth;
curclass = null_class;
curfield = null_field;
tthis = ctx.tthis;
ret = ctx.ret;
locals = PMap.empty;
type_params = [];
curfun = FunStatic;
untyped = false;
in_super_call = false;
in_macro = ctx.in_macro;
in_display = false;
in_loop = false;
opened = [];
vthis = None;
} in
if ctx.g.std != null_module then begin
add_dependency m ctx.g.std;
(* this will ensure both String and (indirectly) Array which are basic types which might be referenced *)
ignore(load_core_type ctx "String");
end;
(* here is an additional PASS 1 phase, which define the type parameters for all module types.
Constraints are handled lazily (no other type is loaded) because they might be recursive anyway *)
List.iter (fun d ->
match d with
| (TClassDecl c, (EClass d, p)) ->
c.cl_params <- List.map (type_type_params ctx c.cl_path (fun() -> c.cl_params) p) d.d_params;
| (TEnumDecl e, (EEnum d, p)) ->
e.e_params <- List.map (type_type_params ctx e.e_path (fun() -> e.e_params) p) d.d_params;
| (TTypeDecl t, (ETypedef d, p)) ->
t.t_params <- List.map (type_type_params ctx t.t_path (fun() -> t.t_params) p) d.d_params;
| (TAbstractDecl a, (EAbstract d, p)) ->
a.a_params <- List.map (type_type_params ctx a.a_path (fun() -> a.a_params) p) d.d_params;
| _ ->
assert false
) decls;
(* setup module types *)
let context_init = ref [] in
let do_init() =
match !context_init with
| [] -> ()
| l -> context_init := []; List.iter (fun f -> f()) (List.rev l)
in
List.iter (init_module_type ctx context_init do_init) tdecls;
m
let resolve_module_file com m remap p =
let forbid = ref false in
let file = (match m with
| [] , name -> name
| x :: l , name ->
let x = (try
match PMap.find x com.package_rules with
| Forbidden -> forbid := true; x
| Directory d -> d
| Remap d -> remap := d :: l; d
with Not_found -> x
) in
String.concat "/" (x :: l) ^ "/" ^ name
) ^ ".hx" in
let file = Common.find_file com file in
let file = (match String.lowercase (snd m) with
| "con" | "aux" | "prn" | "nul" | "com1" | "com2" | "com3" | "lpt1" | "lpt2" | "lpt3" when Sys.os_type = "Win32" ->
(* these names are reserved by the OS - old DOS legacy, such files cannot be easily created but are reported as visible *)
if (try (Unix.stat file).Unix.st_size with _ -> 0) > 0 then file else raise Not_found
| _ -> file
) in
(* if we try to load a std.xxxx class and resolve a real std file, the package name is not valid, ignore *)
(match fst m with
| "std" :: _ ->
let file = Common.unique_full_path file in
if List.exists (fun path -> ExtString.String.starts_with file (try Common.unique_full_path path with _ -> path)) com.std_path then raise Not_found;
| _ -> ());
if !forbid then begin
let _, decls = (!parse_hook) com file p in
let rec loop decls = match decls with
| ((EImport _,_) | (EUsing _,_)) :: decls -> loop decls
| (EClass d,_) :: _ -> d.d_meta
| (EEnum d,_) :: _ -> d.d_meta
| (EAbstract d,_) :: _ -> d.d_meta
| (ETypedef d,_) :: _ -> d.d_meta
| [] -> []
in
let meta = loop decls in
if not (Meta.has Meta.NoPackageRestrict meta) then begin
let x = (match fst m with [] -> assert false | x :: _ -> x) in
raise (Forbid_package ((x,m,p),[],if Common.defined com Define.Macro then "macro" else platform_name com.platform));
end;
end;
file
let parse_module ctx m p =
let remap = ref (fst m) in
let file = resolve_module_file ctx.com m remap p in
let pack, decls = (!parse_hook) ctx.com file p in
if pack <> !remap then begin
let spack m = if m = [] then "<empty>" else String.concat "." m in
if p == Ast.null_pos then
display_error ctx ("Invalid commandline class : " ^ s_type_path m ^ " should be " ^ s_type_path (pack,snd m)) p
else
display_error ctx ("Invalid package : " ^ spack (fst m) ^ " should be " ^ spack pack) p
end;
file, if !remap <> fst m then
(* build typedefs to redirect to real package *)
List.rev (List.fold_left (fun acc (t,p) ->
let build f d =
let priv = List.mem f d.d_flags in
(ETypedef {
d_name = d.d_name;
d_doc = None;
d_meta = [];
d_params = d.d_params;
d_flags = if priv then [EPrivate] else [];
d_data = CTPath (if priv then { tpackage = []; tname = "Dynamic"; tparams = []; tsub = None; } else
{
tpackage = !remap;
tname = d.d_name;
tparams = List.map (fun tp ->
TPType (CTPath { tpackage = []; tname = tp.tp_name; tparams = []; tsub = None; })
) d.d_params;
tsub = None;
});
},p) :: acc
in
match t with
| EClass d -> build HPrivate d
| EEnum d -> build EPrivate d
| ETypedef d -> build EPrivate d
| EAbstract d -> build APrivAbstract d
| EImport _ | EUsing _ -> acc
) [(EImport (List.map (fun s -> s,null_pos) (!remap @ [snd m]),INormal),null_pos)] decls)
else
decls
let load_module ctx m p =
let m2 = (try
Hashtbl.find ctx.g.modules m
with
Not_found ->
match !type_module_hook ctx m p with
| Some m -> m
| None ->
let is_extern = ref false in
let file, decls = (try
parse_module ctx m p
with Not_found ->
let rec loop = function
| [] ->
raise (Error (Module_not_found m,p))
| load :: l ->
match load m p with
| None -> loop l
| Some (file,(_,a)) -> file, a
in
is_extern := true;
loop ctx.com.load_extern_type
) in
let is_extern = !is_extern in
try
type_module ctx m file ~is_extern decls p
with Forbid_package (inf,pl,pf) when p <> Ast.null_pos ->
raise (Forbid_package (inf,p::pl,pf))
) in
add_dependency ctx.m.curmod m2;
if ctx.pass = PTypeField then flush_pass ctx PBuildClass "load_module";
m2
;;
type_function_params_rec := type_function_params
|