File: typer.ml

package info (click to toggle)
haxe 1%3A3.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 23,464 kB
  • ctags: 9,612
  • sloc: ml: 83,200; ansic: 1,724; makefile: 473; java: 349; cs: 314; python: 250; sh: 43; cpp: 39; xml: 25
file content (5029 lines) | stat: -rw-r--r-- 176,689 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
(*
 * Copyright (C)2005-2013 Haxe Foundation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 *)

open Ast
open Type
open Common
open Typecore

(* ---------------------------------------------------------------------- *)
(* TOOLS *)

type switch_mode =
	| CMatch of (tenum_field * (string * t) option list option * pos)
	| CExpr of texpr

type access_mode =
	| MGet
	| MSet
	| MCall

type identifier_type =
	| ITLocal of tvar
	| ITMember of tclass * tclass_field
	| ITStatic of tclass * tclass_field
	| ITEnum of tenum * tenum_field
	| ITGlobal of module_type * string * t
	| ITType of module_type
	| ITPackage of string

(* order of these variants affects output sorting *)
type display_field_kind =
	| FKVar
	| FKMethod
	| FKType
	| FKPackage

exception DisplayFields of (string * t * display_field_kind option * documentation) list
exception DisplayToplevel of identifier_type list

exception WithTypeError of unify_error list * pos

type access_kind =
	| AKNo of string
	| AKExpr of texpr
	| AKSet of texpr * t * tclass_field
	| AKInline of texpr * tclass_field * tfield_access * t
	| AKMacro of texpr * tclass_field
	| AKUsing of texpr * tclass * tclass_field * texpr
	| AKAccess of tabstract * tparams * tclass * texpr * texpr

let build_call_ref : (typer -> access_kind -> expr list -> with_type -> pos -> texpr) ref = ref (fun _ _ _ _ _ -> assert false)

let mk_infos ctx p params =
	let file = if ctx.in_macro then p.pfile else if Common.defined ctx.com Define.AbsolutePath then Common.get_full_path p.pfile else Filename.basename p.pfile in
	(EObjectDecl (
		("fileName" , (EConst (String file) , p)) ::
		("lineNumber" , (EConst (Int (string_of_int (Lexer.get_error_line p))),p)) ::
		("className" , (EConst (String (s_type_path ctx.curclass.cl_path)),p)) ::
		if ctx.curfield.cf_name = "" then
			params
		else
			("methodName", (EConst (String ctx.curfield.cf_name),p)) :: params
	) ,p)

let check_assign ctx e =
	match e.eexpr with
	| TLocal {v_extra = None} | TArray _ | TField _ ->
		()
	| TConst TThis | TTypeExpr _ when ctx.untyped ->
		()
	| _ ->
		error "Invalid assign" e.epos

type type_class =
	| KInt
	| KFloat
	| KString
	| KUnk
	| KDyn
	| KOther
	| KParam of t
	| KAbstract of tabstract * t list

let rec classify t =
	match follow t with
	| TInst ({ cl_path = ([],"String") },[]) -> KString
	| TAbstract({a_impl = Some _} as a,tl) -> KAbstract (a,tl)
	| TAbstract ({ a_path = [],"Int" },[]) -> KInt
	| TAbstract ({ a_path = [],"Float" },[]) -> KFloat
	| TAbstract (a,[]) when List.exists (fun t -> match classify t with KInt | KFloat -> true | _ -> false) a.a_to -> KParam t
	| TInst ({ cl_kind = KTypeParameter ctl },_) when List.exists (fun t -> match classify t with KInt | KFloat -> true | _ -> false) ctl -> KParam t
	| TMono r when !r = None -> KUnk
	| TDynamic _ -> KDyn
	| _ -> KOther

let get_iterator_param t =
	match follow t with
	| TAnon a ->
		if !(a.a_status) <> Closed then raise Not_found;
		(match follow (PMap.find "hasNext" a.a_fields).cf_type, follow (PMap.find "next" a.a_fields).cf_type with
		| TFun ([],tb), TFun([],t) when (match follow tb with TAbstract ({ a_path = [],"Bool" },[]) -> true | _ -> false) ->
			if PMap.fold (fun _ acc -> acc + 1) a.a_fields 0 <> 2 then raise Not_found;
			t
		| _ ->
			raise Not_found)
	| _ ->
		raise Not_found

let get_iterable_param t =
	match follow t with
	| TAnon a ->
		if !(a.a_status) <> Closed then raise Not_found;
		(match follow (PMap.find "iterator" a.a_fields).cf_type with
		| TFun ([],it) ->
			let t = get_iterator_param it in
			if PMap.fold (fun _ acc -> acc + 1) a.a_fields 0 <> 1 then raise Not_found;
			t
		| _ ->
			raise Not_found)
	| _ -> raise Not_found

(*
	temporally remove the constant flag from structures to allow larger unification
*)
let remove_constant_flag t callb =
	let tmp = ref [] in
	let rec loop t =
		match follow t with
		| TAnon a ->
			if !(a.a_status) = Const then begin
				a.a_status := Closed;
				tmp := a :: !tmp;
			end;
			PMap.iter (fun _ f -> loop f.cf_type) a.a_fields;
		|  _ ->
			()
	in
	let restore() =
		List.iter (fun a -> a.a_status := Const) (!tmp)
	in
	try
		loop t;
		let ret = callb (!tmp <> []) in
		restore();
		ret
	with e ->
		restore();
		raise e

let rec is_pos_infos = function
	| TMono r ->
		(match !r with
		| Some t -> is_pos_infos t
		| _ -> false)
	| TLazy f ->
		is_pos_infos (!f())
	| TType ({ t_path = ["haxe"] , "PosInfos" },[]) ->
		true
	| TType (t,tl) ->
		is_pos_infos (apply_params t.t_params tl t.t_type)
	| _ ->
		false

let check_constraints ctx tname tpl tl map delayed p =
	List.iter2 (fun m (name,t) ->
		match follow t with
		| TInst ({ cl_kind = KTypeParameter constr },_) when constr <> [] ->
			let f = (fun() ->
				List.iter (fun ct ->
					try
						Type.unify (map m) (map ct)
					with Unify_error l ->
						let l = Constraint_failure (tname ^ "." ^ name) :: l in
						raise (Unify_error l)
				) constr
			) in
			if delayed then
				delay ctx PCheckConstraint (fun () -> try f() with Unify_error l -> display_error ctx (error_msg (Unify l)) p)
			else
				f()
		| _ ->
			()
	) tl tpl

let enum_field_type ctx en ef tl_en tl_ef p =
	let map t = apply_params en.e_params tl_en (apply_params ef.ef_params tl_ef t) in
	begin try
		check_constraints ctx (s_type_path en.e_path) en.e_params tl_en map true p;
		check_constraints ctx ef.ef_name ef.ef_params tl_ef map true p;
	with Unify_error l ->
		display_error ctx (error_msg (Unify l)) p
	end;
	map ef.ef_type

let add_constraint_checks ctx ctypes pl f tl p =
	List.iter2 (fun m (name,t) ->
		match follow t with
		| TInst ({ cl_kind = KTypeParameter constr },_) when constr <> [] ->
			let constr = List.map (fun t ->
				let t = apply_params f.cf_params tl t in
				(* only apply params if not static : in that case no param is passed *)
				let t = (if pl = [] then t else apply_params ctypes pl t) in
				t
			) constr in
			delay ctx PCheckConstraint (fun() ->
				List.iter (fun ct ->
					try
						(* if has_mono m then raise (Unify_error [Unify_custom "Could not resolve full type for constraint checks"; Unify_custom ("Type was " ^ (s_type (print_context()) m))]); *)
						Type.unify m ct
					with Unify_error l ->
						display_error ctx (error_msg (Unify (Constraint_failure (f.cf_name ^ "." ^ name) :: l))) p;
				) constr
			);
		| _ -> ()
	) tl f.cf_params

let field_type ctx c pl f p =
	match f.cf_params with
	| [] -> f.cf_type
	| l ->
		let monos = List.map (fun _ -> mk_mono()) l in
		if not (Meta.has Meta.Generic f.cf_meta) then add_constraint_checks ctx c.cl_params pl f monos p;
		apply_params l monos f.cf_type

let class_field ctx c tl name p =
	raw_class_field (fun f -> field_type ctx c tl f p) c tl name

(* checks if we can access to a given class field using current context *)
let rec can_access ctx ?(in_overload=false) c cf stat =
	if cf.cf_public then
		true
	else if not in_overload && ctx.com.config.pf_overload && Meta.has Meta.Overload cf.cf_meta then
		true
	else
	(* TODO: should we add a c == ctx.curclass short check here? *)
	(* has metadata path *)
	let rec make_path c f = match c.cl_kind with
		| KAbstractImpl a -> fst a.a_path @ [snd a.a_path; f.cf_name]
		| KGenericInstance(c,_) -> make_path c f
		| _ when c.cl_private -> List.rev (f.cf_name :: snd c.cl_path :: (List.tl (List.rev (fst c.cl_path))))
		| _ -> fst c.cl_path @ [snd c.cl_path; f.cf_name]
	in
	let rec expr_path acc e =
		match fst e with
		| EField (e,f) -> expr_path (f :: acc) e
		| EConst (Ident n) -> n :: acc
		| _ -> []
	in
	let rec chk_path psub pfull =
		match psub, pfull with
		| [], _ -> true
		| a :: l1, b :: l2 when a = b -> chk_path l1 l2
		| _ -> false
	in
	let has m c f path =
		let rec loop = function
			| (m2,el,_) :: l when m = m2 ->
				List.exists (fun e ->
					let p = expr_path [] e in
					(p <> [] && chk_path p path)
				) el
				|| loop l
			| _ :: l -> loop l
			| [] -> false
		in
		loop c.cl_meta || loop f.cf_meta
	in
	let cur_paths = ref [] in
	let rec loop c =
		cur_paths := make_path c ctx.curfield :: !cur_paths;
		begin match c.cl_super with
			| Some (csup,_) -> loop csup
			| None -> ()
		end;
		List.iter (fun (c,_) -> loop c) c.cl_implements;
	in
	loop ctx.curclass;
	let is_constr = cf.cf_name = "new" in
	let rec loop c =
		(try
			(* if our common ancestor declare/override the field, then we can access it *)
			let f = if is_constr then (match c.cl_constructor with None -> raise Not_found | Some c -> c) else PMap.find cf.cf_name (if stat then c.cl_statics else c.cl_fields) in
			is_parent c ctx.curclass || (List.exists (has Meta.Allow c f) !cur_paths)
		with Not_found ->
			false
		)
		|| (match c.cl_super with
		| Some (csup,_) -> loop csup
		| None -> false)
		|| has Meta.Access ctx.curclass ctx.curfield (make_path c cf)
	in
	let b = loop c
	(* access is also allowed of we access a type parameter which is constrained to our (base) class *)
	|| (match c.cl_kind with
		| KTypeParameter tl ->
			List.exists (fun t -> match follow t with TInst(c,_) -> loop c | _ -> false) tl
		| _ -> false)
	|| (Meta.has Meta.PrivateAccess ctx.meta) in
	(* TODO: find out what this does and move it to genas3 *)
	if b && Common.defined ctx.com Common.Define.As3 && not (Meta.has Meta.Public cf.cf_meta) then cf.cf_meta <- (Meta.Public,[],cf.cf_pos) :: cf.cf_meta;
	b

(* removes the first argument of the class field's function type and all its overloads *)
let prepare_using_field cf = match cf.cf_type with
	| TFun((_,_,tf) :: args,ret) ->
		let rec loop acc overloads = match overloads with
			| ({cf_type = TFun((_,_,tfo) :: args,ret)} as cfo) :: l ->
				let tfo = apply_params cfo.cf_params (List.map snd cfo.cf_params) tfo in
				(* ignore overloads which have a different first argument *)
				if Type.type_iseq tf tfo then loop ({cfo with cf_type = TFun(args,ret)} :: acc) l else loop acc l
			| _ :: l ->
				loop acc l
			| [] ->
				acc
		in
		{cf with cf_overloads = loop [] cf.cf_overloads; cf_type = TFun(args,ret)}
	| _ -> cf

let parse_string com s p inlined =
	let old = Lexer.save() in
	let old_file = (try Some (Hashtbl.find Lexer.all_files p.pfile) with Not_found -> None) in
	let old_display = !Parser.resume_display in
	let old_de = !Parser.display_error in
	let restore() =
		(match old_file with
		| None -> ()
		| Some f -> Hashtbl.replace Lexer.all_files p.pfile f);
		if not inlined then Parser.resume_display := old_display;
		Lexer.restore old;
		Parser.display_error := old_de
	in
	Lexer.init p.pfile true;
	Parser.display_error := (fun e p -> raise (Parser.Error (e,p)));
	if not inlined then Parser.resume_display := null_pos;
	let pack, decls = try
		Parser.parse com (Lexing.from_string s)
	with Parser.Error (e,pe) ->
		restore();
		error (Parser.error_msg e) (if inlined then pe else p)
	| Lexer.Error (e,pe) ->
		restore();
		error (Lexer.error_msg e) (if inlined then pe else p)
	in
	restore();
	pack,decls

let eval ctx s =
	let p = { pfile = "--eval"; pmin = 0; pmax = String.length s; } in
	let pack,decls = parse_string ctx.com s p false in
	let rec find_main current decls = match decls with
		| (EClass c,_) :: decls ->
			let path = pack,c.d_name in
			begin try
				let cff = List.find (fun cff -> cff.cff_name = "main") c.d_data in
				if ctx.com.main_class <> None then error "Multiple main" cff.cff_pos;
				ctx.com.main_class <- Some path;
				Some path
			with Not_found ->
				find_main (if current = None then Some path else current) decls
			end
		| ((EEnum {d_name = s} | ETypedef {d_name = s} | EAbstract {d_name = s}),_) :: decls when current = None ->
			find_main (Some (pack,s)) decls
		| _ :: decls ->
			find_main current decls
		| [] ->
			current
	in
	let path_module = match find_main None decls with
		| None -> error "Evaluated string did not define any types" p
		| Some path -> path
	in
	ignore(Typeload.type_module ctx path_module "eval" decls p);
	flush_pass ctx PBuildClass "eval"

let parse_expr_string ctx s p inl =
	let head = "class X{static function main() " in
	let head = (if p.pmin > String.length head then head ^ String.make (p.pmin - String.length head) ' ' else head) in
	let rec loop e = let e = Ast.map_expr loop e in (fst e,p) in
	match parse_string ctx.com (head ^ s ^ ";}") p inl with
	| _,[EClass { d_data = [{ cff_name = "main"; cff_kind = FFun { f_expr = Some e } }]},_] -> if inl then e else loop e
	| _ -> raise Interp.Invalid_expr

let collect_toplevel_identifiers ctx =
	let acc = DynArray.create () in

	(* locals *)
	PMap.iter (fun _ v ->
		if not (is_gen_local v) then
			DynArray.add acc (ITLocal v)
	) ctx.locals;

	(* member vars *)
	if ctx.curfun <> FunStatic then begin
		let rec loop c =
			List.iter (fun cf ->
				DynArray.add acc (ITMember(ctx.curclass,cf))
			) c.cl_ordered_fields;
			match c.cl_super with
				| None ->
					()
				| Some (csup,tl) ->
					loop csup; (* TODO: type parameters *)
		in
		loop ctx.curclass;
		(* TODO: local using? *)
	end;

	(* statics *)
	List.iter (fun cf ->
		DynArray.add acc (ITStatic(ctx.curclass,cf))
	) ctx.curclass.cl_ordered_statics;

	(* enum constructors *)
	let rec enum_ctors t =
		match t with
		| TClassDecl _ | TAbstractDecl _ ->
			()
		| TTypeDecl t ->
			begin match follow t.t_type with
				| TEnum (e,_) -> enum_ctors (TEnumDecl e)
				| _ -> ()
			end
		| TEnumDecl e ->
			PMap.iter (fun _ ef ->
				DynArray.add acc (ITEnum(e,ef))
			) e.e_constrs;
	in
	List.iter enum_ctors ctx.m.curmod.m_types;
	List.iter enum_ctors ctx.m.module_types;

	(* imported globals *)
	PMap.iter (fun _ (mt,s) ->
		try
			let t = match Typeload.resolve_typedef mt with
				| TClassDecl c -> (PMap.find s c.cl_statics).cf_type
				| TEnumDecl en -> (PMap.find s en.e_constrs).ef_type
				| TAbstractDecl {a_impl = Some c} -> (PMap.find s c.cl_statics).cf_type
				| _ -> raise Not_found
			in
			DynArray.add acc (ITGlobal(mt,s,t))
		with Not_found ->
			()
	) ctx.m.module_globals;

	let module_types = ref [] in

	let add_type mt =
		match mt with
		| TClassDecl {cl_kind = KAbstractImpl _} -> ()
		| _ ->
			let path = (t_infos mt).mt_path in
			if not (List.exists (fun mt2 -> (t_infos mt2).mt_path = path) !module_types) then module_types := mt :: !module_types
	in

	(* module types *)
	List.iter add_type ctx.m.curmod.m_types;

	(* module imports *)
	List.iter add_type ctx.m.module_types;

	(* module using *)
	List.iter (fun c ->
		add_type (TClassDecl c)
	) ctx.m.module_using;

	(* TODO: wildcard packages. How? *)

	(* packages and toplevel types *)
	let class_paths = ctx.com.class_path in
	let class_paths = List.filter (fun s -> s <> "") class_paths in

	let packages = ref [] in
	let add_package pack =
		try
			begin match PMap.find pack ctx.com.package_rules with
				| Forbidden ->
					()
				| _ ->
					raise Not_found
			end
		with Not_found ->
			if not (List.mem pack !packages) then packages := pack :: !packages
	in

	List.iter (fun dir ->
		try
			let entries = Sys.readdir dir in
			Array.iter (fun file ->
				match file with
					| "." | ".." ->
						()
					| _ when Sys.is_directory (dir ^ file) ->
						add_package file
					| _ ->
						let l = String.length file in
						if l > 3 && String.sub file (l - 3) 3 = ".hx" then begin
							try
								let name = String.sub file 0 (l - 3) in
								let md = Typeload.load_module ctx ([],name) Ast.null_pos in
								List.iter (fun mt ->
									if (t_infos mt).mt_path = md.m_path then add_type mt
								) md.m_types
							with _ ->
								()
						end
			) entries;
		with Sys_error _ ->
			()
	) class_paths;

	List.iter (fun pack ->
		DynArray.add acc (ITPackage pack)
	) !packages;

	List.iter (fun mt ->
		DynArray.add acc (ITType mt)
	) !module_types;

	raise (DisplayToplevel (DynArray.to_list acc))

(* ---------------------------------------------------------------------- *)
(* PASS 3 : type expression & check structure *)

let rec base_params t =
	let tl = ref [] in
	let rec loop t = (match t with
		| TInst(cl, params) ->
			(match cl.cl_kind with
			| KTypeParameter tl -> List.iter loop tl
			| _ -> ());
			List.iter (fun (ic, ip) ->
				let t = apply_params cl.cl_params params (TInst (ic,ip)) in
				loop t
			) cl.cl_implements;
			(match cl.cl_super with None -> () | Some (csup, pl) ->
				let t = apply_params cl.cl_params params (TInst (csup,pl)) in
				loop t);
			tl := t :: !tl;
		| TEnum(en,(_ :: _ as tl2)) ->
			tl := (TEnum(en,List.map (fun _ -> t_dynamic) tl2)) :: !tl;
			tl := t :: !tl;
		| TType (td,pl) ->
			loop (apply_params td.t_params pl td.t_type);
			(* prioritize the most generic definition *)
			tl := t :: !tl;
		| TLazy f -> loop (!f())
		| TMono r -> (match !r with None -> () | Some t -> loop t)
		| _ -> tl := t :: !tl)
	in
	loop t;
	!tl

let rec unify_min_raise ctx (el:texpr list) : t =
	match el with
	| [] -> mk_mono()
	| [e] -> e.etype
	| _ ->
		let rec chk_null e = is_null e.etype ||
			match e.eexpr with
			| TConst TNull -> true
			| TBlock el ->
				(match List.rev el with
				| [] -> false
				| e :: _ -> chk_null e)
			| TParenthesis e | TMeta(_,e) -> chk_null e
			| _ -> false
		in

		(* First pass: Try normal unification and find out if null is involved. *)
		let rec loop t = function
			| [] ->
				false, t
			| e :: el ->
				let t = if chk_null e then ctx.t.tnull t else t in
				try
					unify_raise ctx e.etype t e.epos;
					loop t el
				with Error (Unify _,_) -> try
					unify_raise ctx t e.etype e.epos;
					loop (if is_null t then ctx.t.tnull e.etype else e.etype) el
				with Error (Unify _,_) ->
					true, t
		in
		let has_error, t = loop (mk_mono()) el in
		if not has_error then
			t
		else try
			(* specific case for const anon : we don't want to hide fields but restrict their common type *)
			let fcount = ref (-1) in
			let field_count a =
				PMap.fold (fun _ acc -> acc + 1) a.a_fields 0
			in
			let expr f = match f.cf_expr with None -> mk (TBlock []) f.cf_type f.cf_pos | Some e -> e in
			let fields = List.fold_left (fun acc e ->
				match follow e.etype with
				| TAnon a when !(a.a_status) = Const ->
					if !fcount = -1 then begin
						fcount := field_count a;
						PMap.map (fun f -> [expr f]) a.a_fields
					end else begin
						if !fcount <> field_count a then raise Not_found;
						PMap.mapi (fun n el -> expr (PMap.find n a.a_fields) :: el) acc
					end
				| _ ->
					raise Not_found
			) PMap.empty el in
			let fields = PMap.foldi (fun n el acc ->
				let t = try unify_min_raise ctx el with Error (Unify _, _) -> raise Not_found in
				PMap.add n (mk_field n t (List.hd el).epos) acc
			) fields PMap.empty in
			TAnon { a_fields = fields; a_status = ref Closed }
		with Not_found ->
			(* Second pass: Get all base types (interfaces, super classes and their interfaces) of most general type.
			   Then for each additional type filter all types that do not unify. *)
			let common_types = base_params t in
			let dyn_types = List.fold_left (fun acc t ->
				let rec loop c =
					Meta.has Meta.UnifyMinDynamic c.cl_meta || (match c.cl_super with None -> false | Some (c,_) -> loop c)
				in
				match t with
				| TInst (c,params) when params <> [] && loop c ->
					TInst (c,List.map (fun _ -> t_dynamic) params) :: acc
				| _ -> acc
			) [] common_types in
			let common_types = ref (match List.rev dyn_types with [] -> common_types | l -> common_types @ l) in
			let loop e =
				let first_error = ref None in
				let filter t = (try unify_raise ctx e.etype t e.epos; true
					with Error (Unify l, p) as err -> if !first_error = None then first_error := Some(err); false)
				in
				common_types := List.filter filter !common_types;
				match !common_types, !first_error with
				| [], Some err -> raise err
				| _ -> ()
			in
			match !common_types with
			| [] ->
				error "No common base type found" (punion (List.hd el).epos (List.hd (List.rev el)).epos)
			| _ ->
				List.iter loop (List.tl el);
				List.hd !common_types

let unify_min ctx el =
	try unify_min_raise ctx el
	with Error (Unify l,p) ->
		if not ctx.untyped then display_error ctx (error_msg (Unify l)) p;
		(List.hd el).etype

let is_forced_inline c cf =
	match c with
	| Some { cl_extern = true } -> true
	| Some { cl_kind = KAbstractImpl _ } -> true
	| _ when Meta.has Meta.Extern cf.cf_meta -> true
	| _ -> false

let rec unify_call_args' ctx el args r callp inline force_inline =
	let call_error err p =
		raise (Error (Call_error err,p))
	in
	let arg_error ul name opt p =
		let err = Stack (Unify ul,Custom ("For " ^ (if opt then "optional " else "") ^ "function argument '" ^ name ^ "'")) in
		call_error (Could_not_unify err) p
	in
	let mk_pos_infos t =
		let infos = mk_infos ctx callp [] in
		type_expr ctx infos (WithType t)
	in
	let rec default_value name t =
		if is_pos_infos t then
			mk_pos_infos t
		else
			null (ctx.t.tnull t) callp
	in
	let skipped = ref [] in
	let skip name ul t =
		if not ctx.com.config.pf_can_skip_non_nullable_argument && not (is_nullable t) then
			call_error (Cannot_skip_non_nullable name) callp;
		skipped := (name,ul) :: !skipped;
		default_value name t
	in
	(* let force_inline, is_extern = match cf with Some(TInst(c,_),f) -> is_forced_inline (Some c) f, c.cl_extern | _ -> false, false in *)
	let type_against t e =
		let e = type_expr ctx e (WithTypeResume t) in
		(try Codegen.AbstractCast.cast_or_unify_raise ctx t e e.epos with Error (Unify l,p) -> raise (WithTypeError (l,p)));
	in
	let rec loop el args = match el,args with
		| [],[] ->
			[]
		| _,[name,false,t] when (match follow t with TAbstract({a_path = ["haxe";"extern"],"Rest"},_) -> true | _ -> false) ->
			begin match follow t with
				| TAbstract({a_path=(["haxe";"extern"],"Rest")},[t]) ->
					(try List.map (fun e -> type_against t e,false) el with WithTypeError(ul,p) -> arg_error ul name false p)
				| _ ->
					assert false
			end
		| [],(_,false,_) :: _ ->
			call_error Not_enough_arguments callp
		| [],(name,true,t) :: args ->
			begin match loop [] args with
				| [] when not (inline && (ctx.g.doinline || force_inline)) && not ctx.com.config.pf_pad_nulls ->
					if is_pos_infos t then [mk_pos_infos t,true]
					else []
				| args ->
					let e_def = default_value name t in
					(e_def,true) :: args
			end
		| (_,p) :: _, [] ->
			begin match List.rev !skipped with
				| [] -> call_error Too_many_arguments p
				| (s,ul) :: _ -> arg_error ul s true p
			end
		| e :: el,(name,opt,t) :: args ->
			begin try
				let e = type_against t e in
				(e,opt) :: loop el args
			with
				WithTypeError (ul,p) ->
					if opt then
						let e_def = skip name ul t in
						(e_def,true) :: loop (e :: el) args
					else
						arg_error ul name false p
			end
	in
	let el = loop el args in
	el,TFun(args,r)

let unify_call_args ctx el args r p inline force_inline =
	let el,tf = unify_call_args' ctx el args r p inline force_inline in
	List.map fst el,tf

let unify_field_call ctx fa el args ret p inline =
	let map_cf cf0 map cf =
		let t = map (monomorphs cf.cf_params cf.cf_type) in
		begin match cf.cf_expr,cf.cf_kind with
		| None,Method MethInline when not ctx.com.config.pf_overload ->
			(* This is really awkward and shouldn't be here. We'll keep it for
			   3.2 in order to not break code that relied on the quirky behavior
			   in 3.1.3, but it should really be reviewed afterwards.
			   Related issue: https://github.com/HaxeFoundation/haxe/issues/3846
			*)
			cf.cf_expr <- cf0.cf_expr;
			cf.cf_kind <- cf0.cf_kind;
		| _ ->
			()
		end;
		t,cf
	in
	let expand_overloads map cf =
		(TFun(args,ret),cf) :: (List.map (map_cf cf map) cf.cf_overloads)
	in
	let candidates,co,cf,mk_fa = match fa with
		| FStatic(c,cf) ->
			expand_overloads (fun t -> t) cf,Some c,cf,(fun cf -> FStatic(c,cf))
		| FAnon cf ->
			expand_overloads (fun t -> t) cf,None,cf,(fun cf -> FAnon cf)
		| FInstance(c,tl,cf) ->
			let map = apply_params c.cl_params tl in
			let cfl = if cf.cf_name = "new" || not (Meta.has Meta.Overload cf.cf_meta && ctx.com.config.pf_overload) then
				List.map (map_cf cf map) cf.cf_overloads
			else
				List.map (fun (t,cf) -> map (monomorphs cf.cf_params t),cf) (Typeload.get_overloads c cf.cf_name)
			in
			(TFun(args,ret),cf) :: cfl,Some c,cf,(fun cf -> FInstance(c,tl,cf))
		| FClosure(co,cf) ->
			let c = match co with None -> None | Some (c,_) -> Some c in
			expand_overloads (fun t -> t) cf,c,cf,(fun cf -> match co with None -> FAnon cf | Some (c,tl) -> FInstance(c,tl,cf))
		| _ ->
			error "Invalid field call" p
	in
	let is_forced_inline = is_forced_inline co cf in
	let is_overload = Meta.has Meta.Overload cf.cf_meta in
	let rec loop candidates = match candidates with
		| [] -> [],[]
		| (t,cf) :: candidates ->
			begin try
				begin match follow t with
					| TFun(args,ret) ->
						let el,tf = unify_call_args' ctx el args ret p inline is_forced_inline in
						let mk_call ethis p_field =
							let ef = mk (TField(ethis,mk_fa cf)) tf p_field in
							make_call ctx ef (List.map fst el) ret p
						in
						let candidate = (el,tf,mk_call) in
						if ctx.com.config.pf_overload && is_overload then begin
							let candidates,failures = loop candidates in
							candidate :: candidates,failures
						end else
							[candidate],[]
					| _ ->
						assert false
				end
			with Error (Call_error _,_) as err ->
				let candidates,failures = loop candidates in
				candidates,err :: failures
			end
	in
	let candidates,failures = loop candidates in
	let fail () = match List.rev failures with
		| err :: _ -> raise err
		| _ -> assert false
	in
	if is_overload && ctx.com.config.pf_overload then begin match Codegen.Overloads.reduce_compatible candidates with
		| [] -> fail()
		| [el,tf,mk_call] -> List.map fst el,tf,mk_call
		| _ -> error "Ambiguous overload" p
	end else begin match List.rev candidates with
		| [] -> fail()
		| (el,tf,mk_call) :: _ -> List.map fst el,tf,mk_call
	end

let fast_enum_field e ef p =
	let et = mk (TTypeExpr (TEnumDecl e)) (TAnon { a_fields = PMap.empty; a_status = ref (EnumStatics e) }) p in
	TField (et,FEnum (e,ef))

let rec type_module_type ctx t tparams p =
	match t with
	| TClassDecl c ->
		let t_tmp = {
			t_path = [],"Class<" ^ (s_type_path c.cl_path) ^ ">" ;
			t_module = c.cl_module;
			t_doc = None;
			t_pos = c.cl_pos;
			t_type = TAnon {
				a_fields = c.cl_statics;
				a_status = ref (Statics c);
			};
			t_private = true;
			t_params = [];
			t_meta = no_meta;
		} in
		mk (TTypeExpr (TClassDecl c)) (TType (t_tmp,[])) p
	| TEnumDecl e ->
		let types = (match tparams with None -> List.map (fun _ -> mk_mono()) e.e_params | Some l -> l) in
		mk (TTypeExpr (TEnumDecl e)) (TType (e.e_type,types)) p
	| TTypeDecl s ->
		let t = apply_params s.t_params (List.map (fun _ -> mk_mono()) s.t_params) s.t_type in
		Codegen.DeprecationCheck.check_typedef ctx.com s p;
		(match follow t with
		| TEnum (e,params) ->
			type_module_type ctx (TEnumDecl e) (Some params) p
		| TInst (c,params) ->
			type_module_type ctx (TClassDecl c) (Some params) p
		| TAbstract (a,params) ->
			type_module_type ctx (TAbstractDecl a) (Some params) p
		| _ ->
			error (s_type_path s.t_path ^ " is not a value") p)
	| TAbstractDecl { a_impl = Some c } ->
		type_module_type ctx (TClassDecl c) tparams p
	| TAbstractDecl a ->
		if not (Meta.has Meta.RuntimeValue a.a_meta) then error (s_type_path a.a_path ^ " is not a value") p;
		let t_tmp = {
			t_path = [],"Abstract<" ^ (s_type_path a.a_path) ^ ">";
			t_module = a.a_module;
			t_doc = None;
			t_pos = a.a_pos;
			t_type = TAnon {
				a_fields = PMap.empty;
				a_status = ref (AbstractStatics a);
			};
			t_private = true;
			t_params = [];
			t_meta = no_meta;
		} in
		mk (TTypeExpr (TAbstractDecl a)) (TType (t_tmp,[])) p

let type_type ctx tpath p =
	type_module_type ctx (Typeload.load_type_def ctx p { tpackage = fst tpath; tname = snd tpath; tparams = []; tsub = None }) None p

let get_constructor ctx c params p =
	match c.cl_kind with
	| KAbstractImpl a ->
		let f = (try PMap.find "_new" c.cl_statics with Not_found -> error (s_type_path a.a_path ^ " does not have a constructor") p) in
		let ct = field_type ctx c params f p in
		apply_params a.a_params params ct, f
	| _ ->
		let ct, f = (try Type.get_constructor (fun f -> field_type ctx c params f p) c with Not_found -> error (s_type_path c.cl_path ^ " does not have a constructor") p) in
		apply_params c.cl_params params ct, f

let make_call ctx e params t p =
	try
		let ethis,cl,f = match e.eexpr with
			| TField (ethis,fa) ->
				let co,cf = match fa with
					| FInstance(c,_,cf) | FStatic(c,cf) -> Some c,cf
					| FAnon cf -> None,cf
					| _ -> raise Exit
				in
				ethis,co,cf
			| _ ->
				raise Exit
		in
		if f.cf_kind <> Method MethInline then raise Exit;
		let config = match cl with
			| Some ({cl_kind = KAbstractImpl _}) when Meta.has Meta.Impl f.cf_meta ->
				let t = if f.cf_name = "_new" then
					t
				else if params = [] then
					error "Invalid abstract implementation function" f.cf_pos
				else
					follow (List.hd params).etype
				in
				begin match t with
					| TAbstract(a,pl) ->
						let has_params = a.a_params <> [] || f.cf_params <> [] in
						let monos = List.map (fun _ -> mk_mono()) f.cf_params in
						let map_type = fun t -> apply_params a.a_params pl (apply_params f.cf_params monos t) in
						Some (has_params,map_type)
					| _ ->
						None
				end
			| _ ->
				None
		in
		ignore(follow f.cf_type); (* force evaluation *)
		let params = List.map (ctx.g.do_optimize ctx) params in
		let force_inline = is_forced_inline cl f in
		(match f.cf_expr with
		| Some { eexpr = TFunction fd } ->
			(match Optimizer.type_inline ctx f fd ethis params t config p force_inline with
			| None ->
				if force_inline then error "Inline could not be done" p;
				raise Exit;
			| Some e -> e)
		| _ ->
			(*
				we can't inline because there is most likely a loop in the typing.
				this can be caused by mutually recursive vars/functions, some of them
				being inlined or not. In that case simply ignore inlining.
			*)
			raise Exit)
	with Exit ->
		mk (TCall (e,params)) t p

let mk_array_get_call ctx (cf,tf,r,e1,e2o) c ebase p = match cf.cf_expr with
	| None ->
		if not (Meta.has Meta.NoExpr cf.cf_meta) && ctx.com.display = DMNone then display_error ctx "Recursive array get method" p;
		mk (TArray(ebase,e1)) r p
	| Some _ ->
		let et = type_module_type ctx (TClassDecl c) None p in
		let ef = mk (TField(et,(FStatic(c,cf)))) tf p in
		make_call ctx ef [ebase;e1] r p

let mk_array_set_call ctx (cf,tf,r,e1,e2o) c ebase p =
	let evalue = match e2o with None -> assert false | Some e -> e in
	match cf.cf_expr with
		| None ->
			if not (Meta.has Meta.NoExpr cf.cf_meta) && ctx.com.display = DMNone then display_error ctx "Recursive array set method" p;
			let ea = mk (TArray(ebase,e1)) r p in
			mk (TBinop(OpAssign,ea,evalue)) r p
		| Some _ ->
			let et = type_module_type ctx (TClassDecl c) None p in
			let ef = mk (TField(et,(FStatic(c,cf)))) tf p in
			make_call ctx ef [ebase;e1;evalue] r p

let rec acc_get ctx g p =
	match g with
	| AKNo f -> error ("Field " ^ f ^ " cannot be accessed for reading") p
	| AKExpr e -> e
	| AKSet _ | AKAccess _ -> assert false
	| AKUsing (et,c,cf,e) when ctx.in_display ->
		(* Generate a TField node so we can easily match it for position/usage completion (issue #1968) *)
		let ec = type_module_type ctx (TClassDecl c) None p in
		let t = match follow et.etype with
			| TFun (_ :: args,ret) -> TFun(args,ret)
			| _ -> et.etype
		in
		mk (TField(ec,FStatic(c,cf))) t et.epos
	| AKUsing (et,_,cf,e) ->
		(* build a closure with first parameter applied *)
		(match follow et.etype with
		| TFun (_ :: args,ret) ->
			begin match follow e.etype,cf.cf_kind with
				| TAbstract _,Method MethInline -> error "Cannot create closure on abstract inline method" e.epos
				| _ -> ()
			end;
			let tcallb = TFun (args,ret) in
			let twrap = TFun ([("_e",false,e.etype)],tcallb) in
			(* arguments might not have names in case of variable fields of function types, so we generate one (issue #2495) *)
			let args = List.map (fun (n,o,t) ->
				let t = if o then ctx.t.tnull t else t in
				o,if n = "" then gen_local ctx t else alloc_var n t
			) args in
			let ve = alloc_var "_e" e.etype in
			let ecall = make_call ctx et (List.map (fun v -> mk (TLocal v) v.v_type p) (ve :: List.map snd args)) ret p in
			let ecallb = mk (TFunction {
				tf_args = List.map (fun (o,v) -> v,if o then Some TNull else None) args;
				tf_type = ret;
				tf_expr = mk (TReturn (Some ecall)) t_dynamic p;
			}) tcallb p in
			let ewrap = mk (TFunction {
				tf_args = [ve,None];
				tf_type = tcallb;
				tf_expr = mk (TReturn (Some ecallb)) t_dynamic p;
			}) twrap p in
			make_call ctx ewrap [e] tcallb p
		| _ -> assert false)
	| AKInline (e,f,fmode,t) ->
		(* do not create a closure for static calls *)
		let cmode = (match fmode with FStatic _ -> fmode | FInstance (c,tl,f) -> FClosure (Some (c,tl),f) | _ -> assert false) in
		ignore(follow f.cf_type); (* force computing *)
		(match f.cf_expr with
		| None ->
			if ctx.com.display <> DMNone then
				mk (TField (e,cmode)) t p
			else
				error "Recursive inline is not supported" p
		| Some { eexpr = TFunction _ } ->
			let chk_class c = (c.cl_extern || Meta.has Meta.Extern f.cf_meta) && not (Meta.has Meta.Runtime f.cf_meta) in
			let wrap_extern c =
				let c2 =
					let m = c.cl_module in
					let mpath = (fst m.m_path @ ["_" ^ snd m.m_path],(snd m.m_path) ^ "_Impl_") in
					try
						let rec loop mtl = match mtl with
							| (TClassDecl c) :: _ when c.cl_path = mpath -> c
							| _ :: mtl -> loop mtl
							| [] -> raise Not_found
						in
						loop c.cl_module.m_types
					with Not_found ->
						let c2 = mk_class c.cl_module mpath c.cl_pos in
						c.cl_module.m_types <- (TClassDecl c2) :: c.cl_module.m_types;
						c2
				in
				let cf = try
					PMap.find f.cf_name c2.cl_statics
				with Not_found ->
					let cf = {f with cf_kind = Method MethNormal} in
					c2.cl_statics <- PMap.add cf.cf_name cf c2.cl_statics;
					c2.cl_ordered_statics <- cf :: c2.cl_ordered_statics;
					cf
				in
				let e_t = type_module_type ctx (TClassDecl c2) None p in
				mk (TField(e_t,FStatic(c2,cf))) t p
			in
			let e_def = mk (TField (e,cmode)) t p in
			begin match follow e.etype with
				| TInst (c,_) when chk_class c ->
					display_error ctx "Can't create closure on an extern inline member method" p;
					e_def
				| TAnon a ->
					begin match !(a.a_status) with
						| Statics c when chk_class c -> wrap_extern c
						| _ -> e_def
					end
				| _ -> e_def
			end
		| Some e ->
			let rec loop e = Type.map_expr loop { e with epos = p } in
			loop e)
	| AKMacro _ ->
		assert false

let error_require r p =
	if r = "" then
		error "This field is not available with the current compilation flags" p
	else
	let r = if r = "sys" then
		"a system platform (php,neko,cpp,etc.)"
	else try
		if String.sub r 0 5 <> "flash" then raise Exit;
		let _, v = ExtString.String.replace (String.sub r 5 (String.length r - 5)) "_" "." in
		"flash version " ^ v ^ " (use -swf-version " ^ v ^ ")"
	with _ ->
		"'" ^ r ^ "' to be enabled"
	in
	error ("Accessing this field requires " ^ r) p

let get_this ctx p =
	match ctx.curfun with
	| FunStatic ->
		error "Cannot access this from a static function" p
	| FunMemberClassLocal | FunMemberAbstractLocal ->
		let v = match ctx.vthis with
			| None ->
				let v = if ctx.curfun = FunMemberAbstractLocal then
					PMap.find "this" ctx.locals
				else
					gen_local ctx ctx.tthis
				in
				ctx.vthis <- Some v;
				v
			| Some v ->
				ctx.locals <- PMap.add v.v_name v ctx.locals;
				v
		in
		mk (TLocal v) ctx.tthis p
	| FunMemberAbstract ->
		let v = (try PMap.find "this" ctx.locals with Not_found -> assert false) in
		mk (TLocal v) v.v_type p
	| FunConstructor | FunMember ->
		mk (TConst TThis) ctx.tthis p

let field_access ctx mode f fmode t e p =
	let fnormal() = AKExpr (mk (TField (e,fmode)) t p) in
	let normal() =
		match follow e.etype with
		| TAnon a ->
			(match !(a.a_status) with
			| EnumStatics en ->
				let c = (try PMap.find f.cf_name en.e_constrs with Not_found -> assert false) in
				let fmode = FEnum (en,c) in
				AKExpr (mk (TField (e,fmode)) t p)
			| _ -> fnormal())
		| _ -> fnormal()
	in
	match f.cf_kind with
	| Method m ->
		if mode = MSet && m <> MethDynamic && not ctx.untyped then error "Cannot rebind this method : please use 'dynamic' before method declaration" p;
		begin match ctx.curfun,e.eexpr with
		| (FunMemberAbstract | FunMemberAbstractLocal),TTypeExpr(TClassDecl ({cl_kind = KAbstractImpl a} as c)) when c == ctx.curclass && Meta.has Meta.Impl f.cf_meta ->
			let e = mk (TField(e,fmode)) t p in
			let ethis = get_this ctx p in
			let ethis = {ethis with etype = TAbstract(a,List.map snd a.a_params)} in
			AKUsing(e,ctx.curclass,f,ethis)
		| _ ->
			(match m, mode with
			| MethInline, _ -> AKInline (e,f,fmode,t)
			| MethMacro, MGet -> display_error ctx "Macro functions must be called immediately" p; normal()
			| MethMacro, MCall -> AKMacro (e,f)
			| _ , MGet ->
				let cmode = (match fmode with
					| FInstance(_, _, cf) | FStatic(_, cf) when Meta.has Meta.Generic cf.cf_meta -> display_error ctx "Cannot create closure on generic function" p; fmode
					| FInstance (c,tl,cf) -> FClosure (Some (c,tl),cf)
					| FStatic _ | FEnum _ -> fmode
					| FAnon f -> FClosure (None, f)
					| FDynamic _ | FClosure _ -> assert false
				) in
				AKExpr (mk (TField (e,cmode)) t p)
			| _ -> normal())
		end
	| Var v ->
		match (match mode with MGet | MCall -> v.v_read | MSet -> v.v_write) with
		| AccNo ->
			(match follow e.etype with
			| TInst (c,_) when is_parent c ctx.curclass || can_access ctx c { f with cf_public = false } false -> normal()
			| TAnon a ->
				(match !(a.a_status) with
				| Opened when mode = MSet ->
					f.cf_kind <- Var { v with v_write = AccNormal };
					normal()
				| Statics c2 when ctx.curclass == c2 || can_access ctx c2 { f with cf_public = false } true -> normal()
				| _ -> if ctx.untyped then normal() else AKNo f.cf_name)
			| _ ->
				if ctx.untyped then normal() else AKNo f.cf_name)
		| AccNormal ->
			(*
				if we are reading from a read-only variable on an anonymous object, it might actually be a method, so make sure to create a closure
			*)
			let is_maybe_method() =
				match v.v_write, follow t, follow e.etype with
				| (AccNo | AccNever), TFun _, TAnon a ->
					(match !(a.a_status) with
					| Statics _ | EnumStatics _ -> false
					| _ -> true)
				| _ -> false
			in
			if mode = MGet && is_maybe_method() then
				AKExpr (mk (TField (e,FClosure (None,f))) t p)
			else
				normal()
		| AccCall ->
			let m = (match mode with MSet -> "set_" | _ -> "get_") ^ f.cf_name in
			let is_abstract_this_access () = match e.eexpr,ctx.curfun with
				| TTypeExpr (TClassDecl ({cl_kind = KAbstractImpl _} as c)),(FunMemberAbstract | FunMemberAbstractLocal) ->
					c == ctx.curclass
				| _ ->
					false
			in
			if m = ctx.curfield.cf_name && (match e.eexpr with TConst TThis -> true | TTypeExpr (TClassDecl c) when c == ctx.curclass -> true | _ -> false) then
				let prefix = (match ctx.com.platform with Flash when Common.defined ctx.com Define.As3 -> "$" | _ -> "") in
				if is_extern_field f then begin
					display_error ctx "This field cannot be accessed because it is not a real variable" p;
					display_error ctx "Add @:isVar here to enable it" f.cf_pos;
				end;
				AKExpr (mk (TField (e,if prefix = "" then fmode else FDynamic (prefix ^ f.cf_name))) t p)
			else if is_abstract_this_access() then begin
				let this = get_this ctx p in
				if mode = MSet then begin
					let c,a = match ctx.curclass with {cl_kind = KAbstractImpl a} as c -> c,a | _ -> assert false in
					let f = PMap.find m c.cl_statics in
					(* we don't have access to the type parameters here, right? *)
					(* let t = apply_params a.a_params pl (field_type ctx c [] f p) in *)
					let t = (field_type ctx c [] f p) in
					let ef = mk (TField (e,FStatic (c,f))) t p in
					AKUsing (ef,c,f,this)
				end else
					AKExpr (make_call ctx (mk (TField (e,quick_field_dynamic e.etype m)) (tfun [this.etype] t) p) [this] t p)
			end else if mode = MSet then
				AKSet (e,t,f)
			else
				AKExpr (make_call ctx (mk (TField (e,quick_field_dynamic e.etype m)) (tfun [] t) p) [] t p)
		| AccResolve ->
			let fstring = mk (TConst (TString f.cf_name)) ctx.t.tstring p in
			let tresolve = tfun [ctx.t.tstring] t in
			AKExpr (make_call ctx (mk (TField (e,FDynamic "resolve")) tresolve p) [fstring] t p)
		| AccNever ->
			if ctx.untyped then normal() else AKNo f.cf_name
		| AccInline ->
			AKInline (e,f,fmode,t)
		| AccRequire (r,msg) ->
			match msg with
			| None -> error_require r p
			| Some msg -> error msg p

let rec using_field ctx mode e i p =
	if mode = MSet then raise Not_found;
	(* do not try to find using fields if the type is a monomorph, which could lead to side-effects *)
	let is_dynamic = match follow e.etype with
		| TMono _ -> raise Not_found
		| t -> t == t_dynamic
	in
	let check_constant_struct = ref false in
	let rec loop = function
	| [] ->
		raise Not_found
	| c :: l ->
		try
			let cf = PMap.find i c.cl_statics in
			if Meta.has Meta.NoUsing cf.cf_meta || not (can_access ctx c cf true) then raise Not_found;
			let monos = List.map (fun _ -> mk_mono()) cf.cf_params in
			let map = apply_params cf.cf_params monos in
			let t = map cf.cf_type in
			begin match follow t with
				| TFun((_,_,(TType({t_path = ["haxe";"macro"],"ExprOf"},[t0]) | t0)) :: args,r) ->
					if is_dynamic && follow t0 != t_dynamic then raise Not_found;
					let e = Codegen.AbstractCast.cast_or_unify_raise ctx t0 e p in
					(* early constraints check is possible because e.etype has no monomorphs *)
					List.iter2 (fun m (name,t) -> match follow t with
						| TInst ({ cl_kind = KTypeParameter constr },_) when constr <> [] && not (has_mono m) ->
							List.iter (fun tc -> Type.unify m (map tc)) constr
						| _ -> ()
					) monos cf.cf_params;
					let et = type_module_type ctx (TClassDecl c) None p in
					AKUsing (mk (TField (et,FStatic (c,cf))) t p,c,cf,e)
				| _ ->
					raise Not_found
			end
		with Not_found ->
			loop l
		| Unify_error el | Error (Unify el,_) ->
			if List.exists (function Has_extra_field _ -> true | _ -> false) el then check_constant_struct := true;
			loop l
	in
	try loop ctx.m.module_using with Not_found ->
	try
		let acc = loop ctx.g.global_using in
		(match acc with
		| AKUsing (_,c,_,_) -> add_dependency ctx.m.curmod c.cl_module
		| _ -> assert false);
		acc
	with Not_found ->
	if not !check_constant_struct then raise Not_found;
	remove_constant_flag e.etype (fun ok -> if ok then using_field ctx mode e i p else raise Not_found)

let rec type_ident_raise ?(imported_enums=true) ctx i p mode =
	match i with
	| "true" ->
		if mode = MGet then
			AKExpr (mk (TConst (TBool true)) ctx.t.tbool p)
		else
			AKNo i
	| "false" ->
		if mode = MGet then
			AKExpr (mk (TConst (TBool false)) ctx.t.tbool p)
		else
			AKNo i
	| "this" ->
		(match mode, ctx.curclass.cl_kind with
		| MSet, KAbstractImpl _ ->
			(match ctx.curfield.cf_kind with
			| Method MethInline -> ()
			| Method _ when ctx.curfield.cf_name = "_new" -> ()
			| _ -> error "You can only modify 'this' inside an inline function" p);
			AKExpr (get_this ctx p)
		| (MCall, KAbstractImpl _) | (MGet, _)-> AKExpr(get_this ctx p)
		| _ -> AKNo i)
	| "super" ->
		let t = (match ctx.curclass.cl_super with
			| None -> error "Current class does not have a superclass" p
			| Some (c,params) -> TInst(c,params)
		) in
		(match ctx.curfun with
		| FunMember | FunConstructor -> ()
		| FunMemberAbstract -> error "Cannot access super inside an abstract function" p
		| FunStatic -> error "Cannot access super inside a static function" p;
		| FunMemberClassLocal | FunMemberAbstractLocal -> error "Cannot access super inside a local function" p);
		if mode <> MSet && ctx.in_super_call then ctx.in_super_call <- false;
		AKExpr (mk (TConst TSuper) t p)
	| "null" ->
		if mode = MGet then
			AKExpr (null (mk_mono()) p)
		else
			AKNo i
	| _ ->
	try
		let v = PMap.find i ctx.locals in
		(match v.v_extra with
		| Some (params,e) ->
			let t = monomorphs params v.v_type in
			(match e with
			| Some ({ eexpr = TFunction f } as e) ->
				begin match mode with
					| MSet -> error "Cannot set inline closure" p
					| MGet -> error "Cannot create closure on inline closure" p
					| MCall ->
						(* create a fake class with a fake field to emulate inlining *)
						let c = mk_class ctx.m.curmod (["local"],v.v_name) e.epos in
						let cf = { (mk_field v.v_name v.v_type e.epos) with cf_params = params; cf_expr = Some e; cf_kind = Method MethInline } in
						c.cl_extern <- true;
						c.cl_fields <- PMap.add cf.cf_name cf PMap.empty;
						AKInline (mk (TConst TNull) (TInst (c,[])) p, cf, FInstance(c,[],cf), t)
				end
			| _ ->
				AKExpr (mk (TLocal v) t p))
		| _ ->
			AKExpr (mk (TLocal v) v.v_type p))
	with Not_found -> try
		(* member variable lookup *)
		if ctx.curfun = FunStatic then raise Not_found;
		let c , t , f = class_field ctx ctx.curclass (List.map snd ctx.curclass.cl_params) i p in
		field_access ctx mode f (match c with None -> FAnon f | Some (c,tl) -> FInstance (c,tl,f)) t (get_this ctx p) p
	with Not_found -> try
		(* lookup using on 'this' *)
		if ctx.curfun = FunStatic then raise Not_found;
		(match using_field ctx mode (mk (TConst TThis) ctx.tthis p) i p with
		| AKUsing (et,c,f,_) -> AKUsing (et,c,f,get_this ctx p)
		| _ -> assert false)
	with Not_found -> try
		(* static variable lookup *)
		let f = PMap.find i ctx.curclass.cl_statics in
		let e = type_type ctx ctx.curclass.cl_path p in
		(* check_locals_masking already done in type_type *)
		field_access ctx mode f (FStatic (ctx.curclass,f)) (field_type ctx ctx.curclass [] f p) e p
	with Not_found -> try
		if not imported_enums then raise Not_found;
		let wrap e = if mode = MSet then
				AKNo i
			else
				AKExpr e
		in
		(* lookup imported enums *)
		let rec loop l =
			match l with
			| [] -> raise Not_found
			| t :: l ->
				match t with
				| TAbstractDecl ({a_impl = Some c} as a) when Meta.has Meta.Enum a.a_meta ->
					begin try
						let cf = PMap.find i c.cl_statics in
						if not (Meta.has Meta.Enum cf.cf_meta) then
							loop l
						else begin
							let et = type_module_type ctx (TClassDecl c) None p in
							AKInline(et,cf,FStatic(c,cf),monomorphs cf.cf_params cf.cf_type)
						end
					with Not_found ->
						loop l
					end
				| TClassDecl _ | TAbstractDecl _ ->
					loop l
				| TTypeDecl t ->
					(match follow t.t_type with
					| TEnum (e,_) -> loop ((TEnumDecl e) :: l)
					| _ -> loop l)
				| TEnumDecl e ->
					try
						let ef = PMap.find i e.e_constrs in
						let et = type_module_type ctx t None p in
						let monos = List.map (fun _ -> mk_mono()) e.e_params in
						let monos2 = List.map (fun _ -> mk_mono()) ef.ef_params in
						wrap (mk (TField (et,FEnum (e,ef))) (enum_field_type ctx e ef monos monos2 p) p)
					with
						Not_found -> loop l
		in
		(try loop (List.rev ctx.m.curmod.m_types) with Not_found -> loop ctx.m.module_types)
	with Not_found ->
		(* lookup imported globals *)
		let t, name = PMap.find i ctx.m.module_globals in
		let e = type_module_type ctx t None p in
		type_field ctx e name p mode

and type_field ?(resume=false) ctx e i p mode =
	let no_field() =
		if resume then raise Not_found;
		let t = match follow e.etype with
			| TAnon a -> (match !(a.a_status) with
				| Statics {cl_kind = KAbstractImpl a} -> TAbstract(a,[])
				| _ -> e.etype)
			| TInst({cl_kind = KAbstractImpl a},_) -> TAbstract(a,[])
			| _ -> e.etype
		in
		let has_special_field a =
			List.exists (fun (_,cf) -> cf.cf_name = i) a.a_ops
			|| List.exists (fun (_,_,cf) -> cf.cf_name = i) a.a_unops
			|| List.exists (fun cf -> cf.cf_name = i) a.a_array
		in
		if not ctx.untyped then begin
			match t with
			| TAbstract(a,_) when has_special_field a ->
				(* the abstract field is not part of the field list, which is only true when it has no expression (issue #2344) *)
				display_error ctx ("Field " ^ i ^ " cannot be called directly because it has no expression") p;
			| _ ->
				display_error ctx (string_error i (string_source t) (s_type (print_context()) t ^ " has no field " ^ i)) p;
		end;
		AKExpr (mk (TField (e,FDynamic i)) (mk_mono()) p)
	in
	match follow e.etype with
	| TInst (c,params) ->
		let rec loop_dyn c params =
			match c.cl_dynamic with
			| Some t ->
				let t = apply_params c.cl_params params t in
				if (mode = MGet || mode = MCall) && PMap.mem "resolve" c.cl_fields then begin
					let f = PMap.find "resolve" c.cl_fields in
					begin match f.cf_kind with
						| Method MethMacro -> display_error ctx "The macro accessor is not allowed for field resolve" f.cf_pos
						| _ -> ()
					end;
					let texpect = tfun [ctx.t.tstring] t in
					let tfield = apply_params c.cl_params params (monomorphs f.cf_params f.cf_type) in
					(try Type.unify tfield texpect
					with Unify_error l ->
						display_error ctx "Field resolve has an invalid type" f.cf_pos;
						display_error ctx (error_msg (Unify [Cannot_unify(tfield,texpect)])) f.cf_pos);
					AKExpr (make_call ctx (mk (TField (e,FInstance (c,params,f))) tfield p) [Codegen.type_constant ctx.com (String i) p] t p)
				end else
					AKExpr (mk (TField (e,FDynamic i)) t p)
			| None ->
				match c.cl_super with
				| None -> raise Not_found
				| Some (c,params) -> loop_dyn c params
		in
		(try
			let c2, t , f = class_field ctx c params i p in
			if e.eexpr = TConst TSuper then (match mode,f.cf_kind with
				| MGet,Var {v_read = AccCall }
				| MSet,Var {v_write = AccCall }
				| MCall,Var {v_read = AccCall } ->
					()
				| MCall, Var _ ->
					display_error ctx "Cannot access superclass variable for calling: needs to be a proper method" p
				| MCall, _ ->
					()
				| MGet,Var _
				| MSet,Var _ when (match c2 with Some ({ cl_extern = true; cl_path = ("flash" :: _,_) }, _) -> true | _ -> false) ->
					()
				| _, Method _ ->
					display_error ctx "Cannot create closure on super method" p
				| _ ->
					display_error ctx "Normal variables cannot be accessed with 'super', use 'this' instead" p);
			if not (can_access ctx c f false) && not ctx.untyped then display_error ctx ("Cannot access private field " ^ i) p;
			field_access ctx mode f (match c2 with None -> FAnon f | Some (c,tl) -> FInstance (c,tl,f)) (apply_params c.cl_params params t) e p
		with Not_found -> try
			using_field ctx mode e i p
		with Not_found -> try
			loop_dyn c params
		with Not_found -> try
			(* if we have an abstract constraint we have to check its static fields and recurse (issue #2343) *)
			begin match c.cl_kind with
				| KTypeParameter tl ->
					let rec loop tl = match tl with
						| t :: tl ->
							begin match follow t with
								| TAbstract({a_impl = Some c},tl) when PMap.mem i c.cl_statics ->
									let e = mk_cast e t p in
									type_field ctx e i p mode;
								| _ ->
									loop tl
							end
						| [] ->
							raise Not_found
					in
					loop tl
				| _ ->
					raise Not_found
			end
		with Not_found ->
			if PMap.mem i c.cl_statics then error ("Cannot access static field " ^ i ^ " from a class instance") p;
			no_field())
	| TDynamic t ->
		(try
			using_field ctx mode e i p
		with Not_found ->
			AKExpr (mk (TField (e,FDynamic i)) t p))
	| TAnon a ->
		(try
			let f = PMap.find i a.a_fields in
			if not f.cf_public && not ctx.untyped then begin
				match !(a.a_status) with
				| Closed | Extend _ -> () (* always allow anon private fields access *)
				| Statics c when can_access ctx c f true -> ()
				| _ -> display_error ctx ("Cannot access private field " ^ i) p
			end;
			let fmode, ft = (match !(a.a_status) with
				| Statics c -> FStatic (c,f), field_type ctx c [] f p
				| EnumStatics e -> FEnum (e,try PMap.find f.cf_name e.e_constrs with Not_found -> assert false), Type.field_type f
				| _ ->
					match f.cf_params with
					| [] ->
						FAnon f, Type.field_type f
					| l ->
						(* handle possible constraints *)
						let monos = List.map (fun _ -> mk_mono()) l in
						let t = apply_params f.cf_params monos f.cf_type in
						add_constraint_checks ctx [] [] f monos p;
						FAnon f, t
			) in
			field_access ctx mode f fmode ft e p
		with Not_found ->
			if is_closed a then try
				using_field ctx mode e i p
			with Not_found ->
				no_field()
			else
			let f = {
				cf_name = i;
				cf_type = mk_mono();
				cf_doc = None;
				cf_meta = no_meta;
				cf_public = true;
				cf_pos = p;
				cf_kind = Var { v_read = AccNormal; v_write = (match mode with MSet -> AccNormal | MGet | MCall -> AccNo) };
				cf_expr = None;
				cf_params = [];
				cf_overloads = [];
			} in
			a.a_fields <- PMap.add i f a.a_fields;
			field_access ctx mode f (FAnon f) (Type.field_type f) e p
		)
	| TMono r ->
		let f = {
			cf_name = i;
			cf_type = mk_mono();
			cf_doc = None;
			cf_meta = no_meta;
			cf_public = true;
			cf_pos = p;
			cf_kind = Var { v_read = AccNormal; v_write = (match mode with MSet -> AccNormal | MGet | MCall -> AccNo) };
			cf_expr = None;
			cf_params = [];
			cf_overloads = [];
		} in
		let x = ref Opened in
		let t = TAnon { a_fields = PMap.add i f PMap.empty; a_status = x } in
		ctx.opened <- x :: ctx.opened;
		r := Some t;
		field_access ctx mode f (FAnon f) (Type.field_type f) e p
	| TAbstract (a,pl) ->
		let static_abstract_access_through_instance = ref false in
		(try
			let c = (match a.a_impl with None -> raise Not_found | Some c -> c) in
			let f = PMap.find i c.cl_statics in
			if not (can_access ctx c f true) && not ctx.untyped then display_error ctx ("Cannot access private field " ^ i) p;
			let field_type f =
				if not (Meta.has Meta.Impl f.cf_meta) then begin
					static_abstract_access_through_instance := true;
					raise Not_found;
				end;
				let t = field_type ctx c [] f p in
				apply_params a.a_params pl t
			in
			let et = type_module_type ctx (TClassDecl c) None p in
			let field_expr f t = mk (TField (et,FStatic (c,f))) t p in
			(match mode, f.cf_kind with
			| (MGet | MCall), Var {v_read = AccCall } ->
				(* getter call *)
				let f = PMap.find ("get_" ^ f.cf_name) c.cl_statics in
				let t = field_type f in
				let r = match follow t with TFun(_,r) -> r | _ -> raise Not_found in
				let ef = field_expr f t in
				AKExpr(make_call ctx ef [e] r p)
			| MSet, Var {v_write = AccCall } ->
				let f = PMap.find ("set_" ^ f.cf_name) c.cl_statics in
				let t = field_type f in
				let ef = field_expr f t in
				AKUsing (ef,c,f,e)
			| (MGet | MCall), Var {v_read = AccNever} ->
				AKNo f.cf_name
			| (MGet | MCall), _ ->
				let rec loop cfl = match cfl with
					| [] -> error (Printf.sprintf "Field %s cannot be called on %s" f.cf_name (s_type (print_context()) e.etype)) p
					| cf :: cfl ->
						match follow (apply_params a.a_params pl (monomorphs cf.cf_params cf.cf_type)) with
							| TFun((_,_,t1) :: _,_) when type_iseq t1 (Abstract.get_underlying_type a pl) ->
								cf
							| _ ->
								loop cfl
				in
				let f = match f.cf_overloads with
					| [] -> f
					| cfl -> loop (f :: cfl)
				in
				let t = field_type f in
				begin match follow t with
					| TFun((_,_,t1) :: _,_) -> ()
					| _ -> error ("Invalid call to static function " ^ i ^ " through abstract instance") p
				end;
				let ef = field_expr f t in
				AKUsing (ef,c,f,e)
			| MSet, _ ->
				error "This operation is unsupported" p)
		with Not_found -> try
			let _,el,_ = Meta.get Meta.Forward a.a_meta in
			if not (List.exists (fun e -> match fst e with
				| EConst(Ident s | String s) -> s = i
				| _ -> error "Identifier or string expected as argument to @:forward" (pos e)
			) el) && el <> [] then raise Not_found;
			type_field ctx {e with etype = apply_params a.a_params pl a.a_this} i p mode;
		with Not_found -> try
			using_field ctx mode e i p
		with Not_found -> try
			(match ctx.curfun, e.eexpr with
			| FunMemberAbstract, TConst (TThis) -> type_field ctx {e with etype = apply_params a.a_params pl a.a_this} i p mode;
			| _ -> raise Not_found)
(* 		with Not_found -> try
			let c = (match a.a_impl with None -> raise Not_found | Some c -> c) in
			let cf = PMap.find "resolve" c.cl_statics in
			if not (Meta.has Meta.Resolve cf.cf_meta) then raise Not_found;
			let et = type_module_type ctx (TClassDecl c) None p in
			let t = apply_params a.a_params pl (field_type ctx c [] cf p) in
			let ef = mk (TField (et,FStatic (c,cf))) t p in
			AKExpr ((!build_call_ref) ctx (AKUsing(ef,c,cf,e)) [EConst (String i),p] NoValue p) *)
		with Not_found ->
			if !static_abstract_access_through_instance then error ("Invalid call to static function " ^ i ^ " through abstract instance") p
			else no_field())
	| _ ->
		try using_field ctx mode e i p with Not_found -> no_field()

let type_bind ctx (e : texpr) params p =
	let args,ret = match follow e.etype with TFun(args, ret) -> args, ret | _ -> error "First parameter of callback is not a function" p in
	let vexpr v = mk (TLocal v) v.v_type p in
	let acount = ref 0 in
	let alloc_name n =
		if n = "" || String.length n > 2 then begin
			incr acount;
			"a" ^ string_of_int !acount;
		end else
			n
	in
	let rec loop args params given_args missing_args ordered_args = match args, params with
		| [], [] -> given_args,missing_args,ordered_args
		| [], _ -> error "Too many callback arguments" p
		| (n,o,t) :: args , [] when o ->
			let a = if is_pos_infos t then
					let infos = mk_infos ctx p [] in
					ordered_args @ [type_expr ctx infos (WithType t)]
				else if ctx.com.config.pf_pad_nulls then
					(ordered_args @ [(mk (TConst TNull) t_dynamic p)])
				else
					ordered_args
			in
			loop args [] given_args missing_args a
		| (n,o,t) :: _ , (EConst(Ident "_"),p) :: _ when not ctx.com.config.pf_can_skip_non_nullable_argument && o && not (is_nullable t) ->
			error "Usage of _ is not supported for optional non-nullable arguments" p
		| (n,o,t) :: args , ([] as params)
		| (n,o,t) :: args , (EConst(Ident "_"),_) :: params ->
			let v = alloc_var (alloc_name n) (if o then ctx.t.tnull t else t) in
			loop args params given_args (missing_args @ [v,o]) (ordered_args @ [vexpr v])
		| (n,o,t) :: args , param :: params ->
			let e = type_expr ctx param (WithType t) in
			unify ctx e.etype t p;
			let v = alloc_var (alloc_name n) t in
			loop args params (given_args @ [v,o,Some e]) missing_args (ordered_args @ [vexpr v])
	in
	let given_args,missing_args,ordered_args = loop args params [] [] [] in
	let rec gen_loc_name n =
		let name = if n = 0 then "f" else "f" ^ (string_of_int n) in
		if List.exists (fun (n,_,_) -> name = n) args then gen_loc_name (n + 1) else name
	in
	let loc = alloc_var (gen_loc_name 0) e.etype in
	let given_args = (loc,false,Some e) :: given_args in
	let inner_fun_args l = List.map (fun (v,o) -> v.v_name, o, v.v_type) l in
	let t_inner = TFun(inner_fun_args missing_args, ret) in
	let call = make_call ctx (vexpr loc) ordered_args ret p in
	let e_ret = match follow ret with
		| TAbstract ({a_path = [],"Void"},_) ->
			call
		| TMono _ ->
			mk (TReturn (Some call)) t_dynamic p;
		| _ ->
			mk (TReturn (Some call)) t_dynamic p;
	in
	let func = mk (TFunction {
		tf_args = List.map (fun (v,o) -> v, if o then Some TNull else None) missing_args;
		tf_type = ret;
		tf_expr = e_ret;
	}) t_inner p in
	let outer_fun_args l = List.map (fun (v,o,_) -> v.v_name, o, v.v_type) l in
	let func = mk (TFunction {
		tf_args = List.map (fun (v,_,_) -> v,None) given_args;
		tf_type = t_inner;
		tf_expr = mk (TReturn (Some func)) t_inner p;
	}) (TFun(outer_fun_args given_args, t_inner)) p in
	make_call ctx func (List.map (fun (_,_,e) -> (match e with Some e -> e | None -> assert false)) given_args) t_inner p

(*
	We want to try unifying as an integer and apply side effects.
	However, in case the value is not a normal Monomorph but one issued
	from a Dynamic relaxation, we will instead unify with float since
	we don't want to accidentaly truncate the value
*)
let unify_int ctx e k =
	let is_dynamic t =
		match follow t with
		| TDynamic _ -> true
		| _ -> false
	in
	let is_dynamic_array t =
		match follow t with
		| TInst (_,[p]) -> is_dynamic p
		| _ -> true
	in
	let is_dynamic_field t f =
		match follow t with
		| TAnon a ->
			(try is_dynamic (PMap.find f a.a_fields).cf_type with Not_found -> false)
		| TInst (c,tl) ->
			(try is_dynamic (apply_params c.cl_params tl ((let _,t,_ = Type.class_field c tl f in t))) with Not_found -> false)
		| _ ->
			true
	in
	let is_dynamic_return t =
		match follow t with
		| TFun (_,r) -> is_dynamic r
		| _ -> true
	in
	(*
		This is some quick analysis that matches the most common cases of dynamic-to-mono convertions
	*)
	let rec maybe_dynamic_mono e =
		match e.eexpr with
		| TLocal _ -> is_dynamic e.etype
		| TArray({ etype = t } as e,_) -> is_dynamic_array t || maybe_dynamic_rec e t
		| TField({ etype = t } as e,f) -> is_dynamic_field t (field_name f) || maybe_dynamic_rec e t
		| TCall({ etype = t } as e,_) -> is_dynamic_return t || maybe_dynamic_rec e t
		| TParenthesis e | TMeta(_,e) -> maybe_dynamic_mono e
		| TIf (_,a,Some b) -> maybe_dynamic_mono a || maybe_dynamic_mono b
		| _ -> false
	and maybe_dynamic_rec e t =
		match follow t with
		| TMono _ | TDynamic _ -> maybe_dynamic_mono e
		(* we might have inferenced a tmono into a single field *)
		| TAnon a when !(a.a_status) = Opened -> maybe_dynamic_mono e
		| _ -> false
	in
	match k with
	| KUnk | KDyn when maybe_dynamic_mono e ->
		unify ctx e.etype ctx.t.tfloat e.epos;
		false
	| _ ->
		unify ctx e.etype ctx.t.tint e.epos;
		true

 let type_generic_function ctx (e,fa) el ?(using_param=None) with_type p =
	let c,tl,cf,stat = match fa with
		| FInstance(c,tl,cf) -> c,tl,cf,false
		| FStatic(c,cf) -> c,[],cf,true
		| _ -> assert false
	in
	if cf.cf_params = [] then error "Function has no type parameters and cannot be generic" p;
	let monos = List.map (fun _ -> mk_mono()) cf.cf_params in
	let map t = apply_params cf.cf_params monos t in
	let map t = if stat then map t else apply_params c.cl_params tl (map t) in
	let t = map cf.cf_type in
	let args,ret = match t,using_param with
		| TFun((_,_,ta) :: args,ret),Some e ->
			let ta = if not (Meta.has Meta.Impl cf.cf_meta) then ta
			else match follow ta with TAbstract(a,tl) -> Abstract.get_underlying_type a tl | _ -> assert false
			in
			(* manually unify first argument *)
			unify ctx e.etype ta p;
			args,ret
		| TFun(args,ret),None -> args,ret
		| _ ->  error "Invalid field type for generic call" p
	in
	begin match with_type with
		| WithType t -> unify ctx ret t p
		| WithTypeResume t -> (try unify_raise ctx ret t p with Error (Unify l,_) -> raise (WithTypeError(l,p)))
		| _ -> ()
	end;
	let el,_ = unify_call_args ctx el args ret p false false in
	begin try
		check_constraints ctx cf.cf_name cf.cf_params monos map false p
	with Unify_error l ->
		display_error ctx (error_msg (Unify l)) p
	end;
	let el = match using_param with None -> el | Some e -> e :: el in
	(try
		let gctx = Codegen.make_generic ctx cf.cf_params monos p in
		let name = cf.cf_name ^ "_" ^ gctx.Codegen.name in
		let unify_existing_field tcf pcf = try
			unify_raise ctx tcf t p
		with Error(Unify _,_) as err ->
			display_error ctx ("Cannot create field " ^ name ^ " due to type mismatch") p;
			display_error ctx "Conflicting field was defined here" pcf;
			raise err
		in
		let cf2 = try
			let cf2 = if stat then
				let cf2 = PMap.find name c.cl_statics in
				unify_existing_field cf2.cf_type cf2.cf_pos;
				cf2
			else
				let cf2 = PMap.find name c.cl_fields in
				unify_existing_field cf2.cf_type cf2.cf_pos;
				cf2
			in
			cf2
		with Not_found ->
			let cf2 = mk_field name t cf.cf_pos in
			if stat then begin
				c.cl_statics <- PMap.add name cf2 c.cl_statics;
				c.cl_ordered_statics <- cf2 :: c.cl_ordered_statics
			end else begin
				if List.memq cf c.cl_overrides then c.cl_overrides <- cf2 :: c.cl_overrides;
				c.cl_fields <- PMap.add name cf2 c.cl_fields;
				c.cl_ordered_fields <- cf2 :: c.cl_ordered_fields
			end;
			ignore(follow cf.cf_type);
			cf2.cf_expr <- (match cf.cf_expr with
				| None -> error "Recursive @:generic function" p
				| Some e -> Some (Codegen.generic_substitute_expr gctx e));
			cf2.cf_kind <- cf.cf_kind;
			cf2.cf_public <- cf.cf_public;
			let metadata = List.filter (fun (m,_,_) -> match m with
				| Meta.Generic -> false
				| _ -> true
			) cf.cf_meta in
			cf2.cf_meta <- (Meta.NoCompletion,[],p) :: (Meta.NoUsing,[],p) :: (Meta.GenericInstance,[],p) :: metadata;
			cf2
		in
		let e = if stat then type_type ctx c.cl_path p else e in
		let fa = if stat then FStatic (c,cf2) else FInstance (c,tl,cf2) in
		let e = mk (TField(e,fa)) cf2.cf_type p in
		make_call ctx e el ret p
	with Codegen.Generic_Exception (msg,p) ->
		error msg p)

let call_to_string ctx c e =
	let et = type_module_type ctx (TClassDecl c) None e.epos in
	let cf = PMap.find "toString" c.cl_statics in
	make_call ctx (mk (TField(et,FStatic(c,cf))) cf.cf_type e.epos) [e] ctx.t.tstring e.epos

let rec type_binop ctx op e1 e2 is_assign_op with_type p =
	match op with
	| OpAssign ->
		let e1 = type_access ctx (fst e1) (snd e1) MSet in
		let tt = (match e1 with AKNo _ | AKInline _ | AKUsing _ | AKMacro _ | AKAccess _ -> Value | AKSet(_,t,_) -> WithType t | AKExpr e -> WithType e.etype) in
		let e2 = type_expr ctx e2 tt in
		(match e1 with
		| AKNo s -> error ("Cannot access field or identifier " ^ s ^ " for writing") p
		| AKExpr e1  ->
			let e2 = Codegen.AbstractCast.cast_or_unify ctx e1.etype e2 p in
			check_assign ctx e1;
			(match e1.eexpr , e2.eexpr with
			| TLocal i1 , TLocal i2 when i1 == i2 -> error "Assigning a value to itself" p
			| TField ({ eexpr = TConst TThis },FInstance (_,_,f1)) , TField ({ eexpr = TConst TThis },FInstance (_,_,f2)) when f1 == f2 ->
				error "Assigning a value to itself" p
			| _ , _ -> ());
			mk (TBinop (op,e1,e2)) e1.etype p
		| AKSet (e,t,cf) ->
			let e2 = Codegen.AbstractCast.cast_or_unify ctx t e2 p in
			make_call ctx (mk (TField (e,quick_field_dynamic e.etype ("set_" ^ cf.cf_name))) (tfun [t] t) p) [e2] t p
		| AKAccess(a,tl,c,ebase,ekey) ->
			mk_array_set_call ctx (Codegen.AbstractCast.find_array_access ctx a tl ekey (Some e2) p) c ebase p
		| AKUsing(ef,_,_,et) ->
			(* this must be an abstract setter *)
			let ret = match follow ef.etype with
				| TFun([_;(_,_,t)],ret) ->
					unify ctx e2.etype t p;
					ret
				| _ ->  error "Invalid field type for abstract setter" p
			in
			make_call ctx ef [et;e2] ret p
		| AKInline _ | AKMacro _ ->
			assert false)
	| OpAssignOp op ->
		(match type_access ctx (fst e1) (snd e1) MSet with
		| AKNo s -> error ("Cannot access field or identifier " ^ s ^ " for writing") p
		| AKExpr e ->
			let eop = type_binop ctx op e1 e2 true with_type p in
			(match eop.eexpr with
			| TBinop (_,_,e2) ->
				unify ctx eop.etype e.etype p;
				check_assign ctx e;
				mk (TBinop (OpAssignOp op,e,e2)) e.etype p;
			| TMeta((Meta.RequiresAssign,_,_),e2) ->
				unify ctx e2.etype e.etype p;
				check_assign ctx e;
				mk (TBinop (OpAssign,e,e2)) e.etype p;
			| _ ->
				(* this must be an abstract cast *)
				check_assign ctx e;
				eop)
		| AKSet (e,t,cf) ->
			let l = save_locals ctx in
			let v = gen_local ctx e.etype in
			let ev = mk (TLocal v) e.etype p in
			let get = type_binop ctx op (EField ((EConst (Ident v.v_name),p),cf.cf_name),p) e2 true with_type p in
			let e' = match get.eexpr with
				| TBinop _ ->
					unify ctx get.etype t p;
					make_call ctx (mk (TField (ev,quick_field_dynamic ev.etype ("set_" ^ cf.cf_name))) (tfun [t] t) p) [get] t p
				| _ ->
					(* abstract setter *)
					get
			in
			l();
			mk (TBlock [
				mk (TVar (v,Some e)) ctx.t.tvoid p;
				e'
			]) t p
		| AKUsing(ef,c,cf,et) ->
			(* abstract setter + getter *)
			let ta = match c.cl_kind with KAbstractImpl a -> TAbstract(a, List.map (fun _ -> mk_mono()) a.a_params) | _ -> assert false in
			let ret = match follow ef.etype with
				| TFun([_;_],ret) -> ret
				| _ ->  error "Invalid field type for abstract setter" p
			in
			let l = save_locals ctx in
			let v,is_temp = match et.eexpr with
				| TLocal v when not (v.v_name = "this") -> v,false
				| _ -> gen_local ctx ta,true
			in
			let ev = mk (TLocal v) ta p in
			(* this relies on the fact that cf_name is set_name *)
			let getter_name = String.sub cf.cf_name 4 (String.length cf.cf_name - 4) in
			let get = type_binop ctx op (EField ((EConst (Ident v.v_name),p),getter_name),p) e2 true with_type p in
			unify ctx get.etype ret p;
			l();
			let e_call = make_call ctx ef [ev;get] ret p in
			if is_temp then
				mk (TBlock [
					mk (TVar (v,Some et)) ctx.t.tvoid p;
					e_call
				]) ret p
			else
				e_call
		| AKAccess(a,tl,c,ebase,ekey) ->
			let cf_get,tf_get,r_get,ekey,_ = Codegen.AbstractCast.find_array_access ctx a tl ekey None p in
			(* bind complex keys to a variable so they do not make it into the output twice *)
			let ekey,l = match Optimizer.make_constant_expression ctx ekey with
				| Some e -> e, fun () -> None
				| None ->
					let save = save_locals ctx in
					let v = gen_local ctx ekey.etype in
					let e = mk (TLocal v) ekey.etype p in
					e, fun () -> (save(); Some (mk (TVar (v,Some ekey)) ctx.t.tvoid p))
			in
			let eget = mk_array_get_call ctx (cf_get,tf_get,r_get,ekey,None) c ebase p in
			let eget = type_binop2 ctx op eget e2 true (WithType eget.etype) p in
			unify ctx eget.etype r_get p;
			let cf_set,tf_set,r_set,ekey,eget = Codegen.AbstractCast.find_array_access ctx a tl ekey (Some eget) p in
			let eget = match eget with None -> assert false | Some e -> e in
			let et = type_module_type ctx (TClassDecl c) None p in
			begin match cf_set.cf_expr,cf_get.cf_expr with
				| None,None ->
					let ea = mk (TArray(ebase,ekey)) r_get p in
					mk (TBinop(OpAssignOp op,ea,type_expr ctx e2 (WithType r_get))) r_set p
				| Some _,Some _ ->
					let ef_set = mk (TField(et,(FStatic(c,cf_set)))) tf_set p in
					(match l() with
					| None -> make_call ctx ef_set [ebase;ekey;eget] r_set p
					| Some e ->
						mk (TBlock [
							e;
							make_call ctx ef_set [ebase;ekey;eget] r_set p
						]) r_set p)
				| _ ->
					error "Invalid array access getter/setter combination" p
			end;
		| AKInline _ | AKMacro _ ->
			assert false)
	| _ ->
		(* If the with_type is an abstract which has exactly one applicable @:op method, we can promote it
		   to the individual arguments (issue #2786). *)
		let wt = match with_type with
			| WithType t | WithTypeResume t ->
				begin match follow t with
					| TAbstract(a,_) ->
						begin match List.filter (fun (o,_) -> o = OpAssignOp(op) || o == op) a.a_ops with
							| [_] -> with_type
							| _ -> Value
						end
					| _ ->
						Value
				end
			| _ ->
				Value
		in
		let e1 = type_expr ctx e1 wt in
		type_binop2 ctx op e1 e2 is_assign_op wt p

and type_binop2 ctx op (e1 : texpr) (e2 : Ast.expr) is_assign_op wt p =
	let e2 = type_expr ctx e2 (if op == OpEq || op == OpNotEq then WithType e1.etype else wt) in
	let tint = ctx.t.tint in
	let tfloat = ctx.t.tfloat in
	let tstring = ctx.t.tstring in
	let to_string e =
		let rec loop t = match classify t with
			| KAbstract ({a_impl = Some c},_) when PMap.mem "toString" c.cl_statics ->
				call_to_string ctx c e
			| KInt | KFloat | KString -> e
			| KUnk | KDyn | KParam _ | KOther ->
				let std = type_type ctx ([],"Std") e.epos in
				let acc = acc_get ctx (type_field ctx std "string" e.epos MCall) e.epos in
				ignore(follow acc.etype);
				let acc = (match acc.eexpr with TField (e,FClosure (Some (c,tl),f)) -> { acc with eexpr = TField (e,FInstance (c,tl,f)) } | _ -> acc) in
				make_call ctx acc [e] ctx.t.tstring e.epos
			| KAbstract (a,tl) ->
				loop (Abstract.get_underlying_type a tl)
		in
		loop e.etype
	in
	let mk_op e1 e2 t =
		if op = OpAdd && (classify t) = KString then
			let e1 = to_string e1 in
			let e2 = to_string e2 in
			mk (TBinop (op,e1,e2)) t p
		else
			mk (TBinop (op,e1,e2)) t p
	in
	let make e1 e2 = match op with
	| OpAdd ->
		mk_op e1 e2 (match classify e1.etype, classify e2.etype with
		| KInt , KInt ->
			tint
		| KFloat , KInt
		| KInt, KFloat
		| KFloat, KFloat ->
			tfloat
		| KUnk , KInt ->
			if unify_int ctx e1 KUnk then tint else tfloat
		| KUnk , KFloat
		| KUnk , KString  ->
			unify ctx e1.etype e2.etype e1.epos;
			e1.etype
		| KInt , KUnk ->
			if unify_int ctx e2 KUnk then tint else tfloat
		| KFloat , KUnk
		| KString , KUnk ->
			unify ctx e2.etype e1.etype e2.epos;
			e2.etype
		| _ , KString
		| KString , _ ->
			tstring
		| _ , KDyn ->
			e2.etype
		| KDyn , _ ->
			e1.etype
		| KUnk , KUnk ->
			let ok1 = unify_int ctx e1 KUnk in
			let ok2 = unify_int ctx e2 KUnk in
			if ok1 && ok2 then tint else tfloat
		| KParam t1, KParam t2 when Type.type_iseq t1 t2 ->
			t1
		| KParam t, KInt | KInt, KParam t ->
			t
		| KParam _, KFloat | KFloat, KParam _ | KParam _, KParam _ ->
			tfloat
		| KParam t, KUnk ->
			unify ctx e2.etype tfloat e2.epos;
			tfloat
		| KUnk, KParam t ->
			unify ctx e1.etype tfloat e1.epos;
			tfloat
		| KAbstract _,_
		| _,KAbstract _
		| KParam _, _
		| _, KParam _
		| KOther, _
		| _ , KOther ->
			let pr = print_context() in
			error ("Cannot add " ^ s_type pr e1.etype ^ " and " ^ s_type pr e2.etype) p
		)
	| OpAnd
	| OpOr
	| OpXor
	| OpShl
	| OpShr
	| OpUShr ->
		let i = tint in
		unify ctx e1.etype i e1.epos;
		unify ctx e2.etype i e2.epos;
		mk_op e1 e2 i
	| OpMod
	| OpMult
	| OpDiv
	| OpSub ->
		let result = ref (if op = OpDiv then tfloat else tint) in
		(match classify e1.etype, classify e2.etype with
		| KFloat, KFloat ->
			result := tfloat
		| KParam t1, KParam t2 when Type.type_iseq t1 t2 ->
			if op <> OpDiv then result := t1
		| KParam _, KParam _ ->
			result := tfloat
		| KParam t, KInt | KInt, KParam t ->
			if op <> OpDiv then result := t
		| KParam _, KFloat | KFloat, KParam _ ->
			result := tfloat
		| KFloat, k ->
			ignore(unify_int ctx e2 k);
			result := tfloat
		| k, KFloat ->
			ignore(unify_int ctx e1 k);
			result := tfloat
		| k1 , k2 ->
			let ok1 = unify_int ctx e1 k1 in
			let ok2 = unify_int ctx e2 k2 in
			if not ok1 || not ok2  then result := tfloat;
		);
		mk_op e1 e2 !result
	| OpEq
	| OpNotEq ->
		let e1,e2 = try
			(* we only have to check one type here, because unification fails if one is Void and the other is not *)
			(match follow e2.etype with TAbstract({a_path=[],"Void"},_) -> error "Cannot compare Void" p | _ -> ());
			Codegen.AbstractCast.cast_or_unify_raise ctx e2.etype e1 p,e2
		with Error (Unify _,_) ->
			e1,Codegen.AbstractCast.cast_or_unify ctx e1.etype e2 p
		in
		mk_op e1 e2 ctx.t.tbool
	| OpGt
	| OpGte
	| OpLt
	| OpLte ->
		(match classify e1.etype, classify e2.etype with
		| KInt , KInt | KInt , KFloat | KFloat , KInt | KFloat , KFloat | KString , KString -> ()
		| KInt , KUnk -> ignore(unify_int ctx e2 KUnk)
		| KFloat , KUnk | KString , KUnk -> unify ctx e2.etype e1.etype e2.epos
		| KUnk , KInt -> ignore(unify_int ctx e1 KUnk)
		| KUnk , KFloat | KUnk , KString -> unify ctx e1.etype e2.etype e1.epos
		| KUnk , KUnk ->
			ignore(unify_int ctx e1 KUnk);
			ignore(unify_int ctx e2 KUnk);
		| KDyn , KInt | KDyn , KFloat | KDyn , KString -> ()
		| KInt , KDyn | KFloat , KDyn | KString , KDyn -> ()
		| KDyn , KDyn -> ()
		| KParam _ , x | x , KParam _ when x <> KString && x <> KOther -> ()
		| KAbstract _,_
		| _,KAbstract _
		| KDyn , KUnk
		| KUnk , KDyn
		| KString , KInt
		| KString , KFloat
		| KInt , KString
		| KFloat , KString
		| KParam _ , _
		| _ , KParam _
		| KOther , _
		| _ , KOther ->
			let pr = print_context() in
			error ("Cannot compare " ^ s_type pr e1.etype ^ " and " ^ s_type pr e2.etype) p
		);
		mk_op e1 e2 ctx.t.tbool
	| OpBoolAnd
	| OpBoolOr ->
		let b = ctx.t.tbool in
		unify ctx e1.etype b p;
		unify ctx e2.etype b p;
		mk_op e1 e2 b
	| OpInterval ->
		let t = Typeload.load_core_type ctx "IntIterator" in
		unify ctx e1.etype tint e1.epos;
		unify ctx e2.etype tint e2.epos;
		mk (TNew ((match t with TInst (c,[]) -> c | _ -> assert false),[],[e1;e2])) t p
	| OpArrow ->
		error "Unexpected =>" p
	| OpAssign
	| OpAssignOp _ ->
		assert false
	in
	let find_overload a c tl left =
		let map = apply_params a.a_params tl in
		let make op_cf cf e1 e2 tret =
			if cf.cf_expr = None then begin
				if not (Meta.has Meta.NoExpr cf.cf_meta) then display_error ctx "Recursive operator method" p;
				if not (Meta.has Meta.CoreType a.a_meta) then begin
					(* for non core-types we require that the return type is compatible to the native result type *)
					let e' = make {e1 with etype = Abstract.follow_with_abstracts e1.etype} {e1 with etype = Abstract.follow_with_abstracts e2.etype} in
					let t_expected = e'.etype in
					begin try
						unify_raise ctx tret t_expected p
					with Error (Unify _,_) ->
						match follow tret with
							| TAbstract(a,tl) when type_iseq (Abstract.get_underlying_type a tl) t_expected ->
								()
							| _ ->
								let st = s_type (print_context()) in
								error (Printf.sprintf "The result of this operation (%s) is not compatible with declared return type %s" (st t_expected) (st tret)) p
					end;
				end;
				let e = Codegen.binop op e1 e2 tret p in
				mk_cast e tret p
				(* Codegen.maybe_cast e tret *)
			end else begin
				let e = make_static_call ctx c cf map [e1;e2] tret p in
				e
			end
		in
		(* special case for == and !=: if the second type is a monomorph, assume that we want to unify
		   it with the first type to preserve comparison semantics. *)
		let is_eq_op = match op with OpEq | OpNotEq -> true | _ -> false in
		if is_eq_op then begin match follow e1.etype,follow e2.etype with
			| TMono _,_ | _,TMono _ ->
				Type.unify e1.etype e2.etype
			| _ ->
				()
		end;
 		let rec loop ol = match ol with
			| (op_cf,cf) :: ol when op_cf <> op && (not is_assign_op || op_cf <> OpAssignOp(op)) ->
				loop ol
			| (op_cf,cf) :: ol ->
				let is_impl = Meta.has Meta.Impl cf.cf_meta in
				begin match follow cf.cf_type with
					| TFun([(_,_,t1);(_,_,t2)],tret) ->
						let check e1 e2 swapped =
							let map_arguments () =
								let monos = List.map (fun _ -> mk_mono()) cf.cf_params in
								let map t = map (apply_params cf.cf_params monos t) in
								let t1 = map t1 in
								let t2 = map t2 in
								let tret = map tret in
								monos,t1,t2,tret
							in
							let monos,t1,t2,tret = map_arguments() in
							let make e1 e2 = make op_cf cf e1 e2 tret in
							let t1 = if is_impl then Abstract.follow_with_abstracts t1 else t1 in
							let e1,e2 = if left || not left && swapped then begin
								Type.type_eq EqStrict (if is_impl then Abstract.follow_with_abstracts e1.etype else e1.etype) t1;
								e1,Codegen.AbstractCast.cast_or_unify_raise ctx t2 e2 p
							end else begin
								Type.type_eq EqStrict e2.etype t2;
								Codegen.AbstractCast.cast_or_unify_raise ctx t1 e1 p,e2
							end in
							check_constraints ctx "" cf.cf_params monos (apply_params a.a_params tl) false cf.cf_pos;
							let check_null e t = if is_eq_op then match e.eexpr with
								| TConst TNull when not (is_explicit_null t) -> raise (Unify_error [])
								| _ -> ()
							in
							(* If either expression is `null` we only allow operator resolving if the argument type
							   is explicitly Null<T> (issue #3376) *)
							if is_eq_op then begin
								check_null e2 t2;
								check_null e1 t1;
							end;
							let e = if not swapped then
								make e1 e2
							else if not (Optimizer.has_side_effect e1) && not (Optimizer.has_side_effect e2) then
								make e1 e2
							else
								let v1,v2 = gen_local ctx t1, gen_local ctx t2 in
								let ev1,ev2 = mk (TVar(v1,Some e1)) ctx.t.tvoid p,mk (TVar(v2,Some e2)) ctx.t.tvoid p in
								let eloc1,eloc2 = mk (TLocal v1) v1.v_type p,mk (TLocal v2) v2.v_type p in
								let e = make eloc1 eloc2 in
								let e = mk (TBlock [
									ev2;
									ev1;
									e
								]) e.etype e.epos in
								e
							in
							if is_assign_op && op_cf = op then (mk (TMeta((Meta.RequiresAssign,[],p),e)) e.etype e.epos)
							else e
						in
						begin try
							check e1 e2 false
						with Error (Unify _,_) | Unify_error _ -> try
							if not (Meta.has Meta.Commutative cf.cf_meta) then raise Not_found;
							check e2 e1 true
						with Not_found | Error (Unify _,_) | Unify_error _ ->
							loop ol
						end
					| _ ->
						assert false
				end
			| [] ->
				raise Not_found
		in
		loop (if left then a.a_ops else List.filter (fun (_,cf) -> not (Meta.has Meta.Impl cf.cf_meta)) a.a_ops)
	in
	try
		begin match follow e1.etype with
			| TAbstract({a_impl = Some c} as a,tl) -> find_overload a c tl true
			| _ -> raise Not_found
		end
	with Not_found -> try
		begin match follow e2.etype with
			| TAbstract({a_impl = Some c} as a,tl) -> find_overload a c tl false
			| _ -> raise Not_found
		end
	with Not_found ->
		make e1 e2

and type_unop ctx op flag e p =
	let set = (op = Increment || op = Decrement) in
	let acc = type_access ctx (fst e) (snd e) (if set then MSet else MGet) in
	let access e =
		let make e =
			let t = (match op with
			| Not ->
				unify ctx e.etype ctx.t.tbool e.epos;
				ctx.t.tbool
			| Increment
			| Decrement
			| Neg
			| NegBits ->
				if set then check_assign ctx e;
				(match classify e.etype with
				| KFloat -> ctx.t.tfloat
				| KParam t ->
					unify ctx e.etype ctx.t.tfloat e.epos;
					t
				| k ->
					if unify_int ctx e k then ctx.t.tint else ctx.t.tfloat)
			) in
			mk (TUnop (op,flag,e)) t p
		in
		try (match follow e.etype with
			| TAbstract ({a_impl = Some c} as a,pl) ->
				let rec loop opl = match opl with
					| [] -> raise Not_found
					| (op2,flag2,cf) :: opl when op == op2 && flag == flag2 ->
						let m = mk_mono() in
						let tcf = apply_params c.cl_params pl (monomorphs cf.cf_params cf.cf_type) in
						if Meta.has Meta.Impl cf.cf_meta then begin
							if type_iseq (tfun [apply_params a.a_params pl a.a_this] m) tcf then cf,tcf,m else loop opl
						end else
							if type_iseq (tfun [e.etype] m) tcf then cf,tcf,m else loop opl
					| _ :: opl -> loop opl
				in
				let cf,t,r = try loop a.a_unops with Not_found -> raise Not_found in
				(match cf.cf_expr with
				| None ->
					let e = {e with etype = apply_params a.a_params pl a.a_this} in
					let e = mk (TUnop(op,flag,e)) r p in
					(* unify ctx r e.etype p; *) (* TODO: I'm not sure why this was here (related to #2295) *)
					e
				| Some _ ->
					let et = type_module_type ctx (TClassDecl c) None p in
					let ef = mk (TField (et,FStatic (c,cf))) t p in
					make_call ctx ef [e] r p)
			| _ -> raise Not_found
		) with Not_found ->
			make e
	in
	let rec loop acc =
		match acc with
		| AKExpr e -> access e
		| AKInline _ | AKUsing _ when not set -> access (acc_get ctx acc p)
		| AKNo s ->
			error ("The field or identifier " ^ s ^ " is not accessible for " ^ (if set then "writing" else "reading")) p
		| AKAccess(a,tl,c,ebase,ekey) ->
			let e = mk_array_get_call ctx (Codegen.AbstractCast.find_array_access ctx a tl ekey None p) c ebase p in
			loop (AKExpr e)
		| AKInline _ | AKUsing _ | AKMacro _ ->
			error "This kind of operation is not supported" p
		| AKSet (e,t,cf) ->
			let l = save_locals ctx in
			let v = gen_local ctx e.etype in
			let ev = mk (TLocal v) e.etype p in
			let op = (match op with Increment -> OpAdd | Decrement -> OpSub | _ -> assert false) in
			let one = (EConst (Int "1"),p) in
			let eget = (EField ((EConst (Ident v.v_name),p),cf.cf_name),p) in
			match flag with
			| Prefix ->
				let get = type_binop ctx op eget one false Value p in
				unify ctx get.etype t p;
				l();
				mk (TBlock [
					mk (TVar (v,Some e)) ctx.t.tvoid p;
					make_call ctx (mk (TField (ev,quick_field_dynamic ev.etype ("set_" ^ cf.cf_name))) (tfun [t] t) p) [get] t p
				]) t p
			| Postfix ->
				let v2 = gen_local ctx t in
				let ev2 = mk (TLocal v2) t p in
				let get = type_expr ctx eget Value in
				let plusone = type_binop ctx op (EConst (Ident v2.v_name),p) one false Value p in
				unify ctx get.etype t p;
				l();
				mk (TBlock [
					mk (TVar (v,Some e)) ctx.t.tvoid p;
					mk (TVar (v2,Some get)) ctx.t.tvoid p;
					make_call ctx (mk (TField (ev,quick_field_dynamic ev.etype ("set_" ^ cf.cf_name))) (tfun [plusone.etype] t) p) [plusone] t p;
					ev2
				]) t p
	in
	loop acc

and type_switch_old ctx e cases def with_type p =
	let eval = type_expr ctx e Value in
	let el = ref [] in
	let type_case_code e =
		let e = (match e with
			| Some e -> type_expr ctx e with_type
			| None -> mk (TBlock []) ctx.com.basic.tvoid Ast.null_pos
		) in
		el := e :: !el;
		e
	in
	let consts = Hashtbl.create 0 in
	let exprs (el,_,e) =
		let el = List.map (fun e ->
			match type_expr ctx e (WithType eval.etype) with
			| { eexpr = TConst c } as e ->
				if Hashtbl.mem consts c then error "Duplicate constant in switch" e.epos;
				Hashtbl.add consts c true;
				e
			| e ->
				e
		) el in
		let locals = save_locals ctx in
		let e = type_case_code e in
		locals();
		el, e
	in
	let cases = List.map exprs cases in
	let def() = (match def with
		| None -> None
		| Some e ->
			let locals = save_locals ctx in
			let e = type_case_code e in
			locals();
			Some e
	) in
	let def = def() in
	let t = if with_type = NoValue then (mk_mono()) else unify_min ctx (List.rev !el) in
	mk (TSwitch (eval,cases,def)) t p

and type_ident ctx i p mode =
	try
		type_ident_raise ctx i p mode
	with Not_found -> try
		(* lookup type *)
		if is_lower_ident i then raise Not_found;
		let e = (try type_type ctx ([],i) p with Error (Module_not_found ([],name),_) when name = i -> raise Not_found) in
		AKExpr e
	with Not_found ->
		if ctx.untyped then begin
			if i = "__this__" then
				AKExpr (mk (TConst TThis) ctx.tthis p)
			else
				let t = mk_mono() in
				let v = alloc_unbound_var i t in
				AKExpr (mk (TLocal v) t p)
		end else begin
			if ctx.curfun = FunStatic && PMap.mem i ctx.curclass.cl_fields then error ("Cannot access " ^ i ^ " in static function") p;
			let err = Unknown_ident i in
			if ctx.in_display then raise (Error (err,p));
			if ctx.com.display <> DMNone then begin
				display_error ctx (error_msg err) p;
				let t = mk_mono() in
				AKExpr (mk (TLocal (add_local ctx i t)) t p)
			end else begin
				if List.exists (fun (i2,_) -> i2 = i) ctx.type_params then
					display_error ctx ("Type parameter " ^ i ^ " is only available at compilation and is not a runtime value") p
				else
					display_error ctx (error_msg err) p;
				AKExpr (mk (TConst TNull) t_dynamic p)
			end
		end

and type_access ctx e p mode =
	match e with
	| EConst (Ident s) ->
		type_ident ctx s p mode
	| EField (e1,"new") ->
		let e1 = type_expr ctx e1 Value in
		begin match e1.eexpr with
			| TTypeExpr (TClassDecl c) ->
				if mode = MSet then error "Cannot set constructor" p;
				if mode = MCall then error ("Cannot call constructor like this, use 'new " ^ (s_type_path c.cl_path) ^ "()' instead") p;
				let monos = List.map (fun _ -> mk_mono()) c.cl_params in
				let ct, cf = get_constructor ctx c monos p in
				let args = match follow ct with TFun(args,ret) -> args | _ -> assert false in
				let vl = List.map (fun (n,_,t) -> alloc_var n t) args in
				let vexpr v = mk (TLocal v) v.v_type p in
				let el = List.map vexpr vl in
				let ec,t = match c.cl_kind with
					| KAbstractImpl a ->
						let e = type_module_type ctx (TClassDecl c) None p in
						let e = mk (TField (e,(FStatic (c,cf)))) ct p in
						let t = TAbstract(a,monos) in
						make_call ctx e el t p,t
					| _ ->
						let t = TInst(c,monos) in
						mk (TNew(c,monos,el)) t p,t
				in
				AKExpr(mk (TFunction {
					tf_args = List.map (fun v -> v,None) vl;
					tf_type = t;
					tf_expr = mk (TReturn (Some ec)) t p;
				}) (tfun (List.map (fun v -> v.v_type) vl) t) p)
			| _ -> error "Binding new is only allowed on class types" p
		end;
	| EField _ ->
		let fields ?(resume=false) path e =
			let resume = ref resume in
			let force = ref false in
			let e = List.fold_left (fun e (f,_,p) ->
				let e = acc_get ctx (e MGet) p in
				let f = type_field ~resume:(!resume) ctx e f p in
				force := !resume;
				resume := false;
				f
			) e path in
			if !force then ignore(e MCall); (* not necessarily a call, but prevent #2602 among others *)
			e
		in
		let type_path path =
			let rec loop acc path =
				match path with
				| [] ->
					(match List.rev acc with
					| [] -> assert false
					| (name,flag,p) :: path ->
						try
							fields path (type_access ctx (EConst (Ident name)) p)
						with
							Error (Unknown_ident _,p2) as e when p = p2 ->
								try
									let path = ref [] in
									let name , _ , _ = List.find (fun (name,flag,p) ->
										if flag then
											true
										else begin
											path := name :: !path;
											false
										end
									) (List.rev acc) in
									raise (Error (Module_not_found (List.rev !path,name),p))
								with
									Not_found ->
										if ctx.in_display then raise (Parser.TypePath (List.map (fun (n,_,_) -> n) (List.rev acc),None,false));
										raise e)
				| (_,false,_) as x :: path ->
					loop (x :: acc) path
				| (name,true,p) as x :: path ->
					let pack = List.rev_map (fun (x,_,_) -> x) acc in
					let def() =
						try
							let e = type_type ctx (pack,name) p in
							fields path (fun _ -> AKExpr e)
						with
							Error (Module_not_found m,_) when m = (pack,name) ->
								loop ((List.rev path) @ x :: acc) []
					in
					match path with
					| (sname,true,p) :: path ->
						let get_static resume t =
							fields ~resume ((sname,true,p) :: path) (fun _ -> AKExpr (type_module_type ctx t None p))
						in
						let check_module m v =
							try
								let md = Typeload.load_module ctx m p in
								(* first look for existing subtype *)
								(try
									let t = List.find (fun t -> not (t_infos t).mt_private && t_path t = (fst m,sname)) md.m_types in
									Some (fields path (fun _ -> AKExpr (type_module_type ctx t None p)))
								with Not_found -> try
								(* then look for main type statics *)
									if fst m = [] then raise Not_found; (* ensure that we use def() to resolve local types first *)
									let t = List.find (fun t -> not (t_infos t).mt_private && t_path t = m) md.m_types in
									Some (get_static false t)
								with Not_found ->
									None)
							with Error (Module_not_found m2,_) when m = m2 ->
								None
						in
						let rec loop pack =
							match check_module (pack,name) sname with
							| Some r -> r
							| None ->
								match List.rev pack with
								| [] -> def()
								| _ :: l -> loop (List.rev l)
						in
						(match pack with
						| [] ->
							(try
								let t = List.find (fun t -> snd (t_infos t).mt_path = name) (ctx.m.curmod.m_types @ ctx.m.module_types) in
								(* if the static is not found, look for a subtype instead - #1916 *)
								get_static true t
							with Not_found ->
								loop (fst ctx.m.curmod.m_path))
						| _ ->
							match check_module (pack,name) sname with
							| Some r -> r
							| None -> def());
					| _ -> def()
			in
			match path with
			| [] -> assert false
			| (name,_,p) :: pnext ->
				try
					fields pnext (fun _ -> type_ident_raise ctx name p MGet)
				with
					Not_found -> loop [] path
		in
		let rec loop acc e =
			let p = pos e in
			match fst e with
			| EField (e,s) ->
				loop ((s,not (is_lower_ident s),p) :: acc) e
			| EConst (Ident i) ->
				type_path ((i,not (is_lower_ident i),p) :: acc)
			| _ ->
				fields acc (type_access ctx (fst e) (snd e))
		in
		loop [] (e,p) mode
	| EArray (e1,e2) ->
		let e1 = type_expr ctx e1 Value in
		let e2 = type_expr ctx e2 Value in
		let has_abstract_array_access = ref false in
		(try (match follow e1.etype with
		| TAbstract ({a_impl = Some c} as a,pl) when a.a_array <> [] ->
			begin match mode with
			| MSet ->
				(* resolve later *)
				AKAccess (a,pl,c,e1,e2)
			| _ ->
				has_abstract_array_access := true;
				let e = mk_array_get_call ctx (Codegen.AbstractCast.find_array_access ctx a pl e2 None p) c e1 p in
				AKExpr e
			end
		| _ -> raise Not_found)
		with Not_found ->
		unify ctx e2.etype ctx.t.tint e2.epos;
		let rec loop et =
			match follow et with
			| TInst ({ cl_array_access = Some t; cl_params = pl },tl) ->
				apply_params pl tl t
			| TInst ({ cl_super = Some (c,stl); cl_params = pl },tl) ->
				apply_params pl tl (loop (TInst (c,stl)))
			| TInst ({ cl_path = [],"ArrayAccess" },[t]) ->
				t
			| TInst ({ cl_path = [],"Array"},[t]) when t == t_dynamic ->
				t_dynamic
			| TAbstract(a,tl) when Meta.has Meta.ArrayAccess a.a_meta ->
				loop (apply_params a.a_params tl a.a_this)
			| _ ->
				let pt = mk_mono() in
				let t = ctx.t.tarray pt in
				(try unify_raise ctx et t p
				with Error(Unify _,_) -> if not ctx.untyped then begin
					if !has_abstract_array_access then error ("No @:arrayAccess function accepts an argument of " ^ (s_type (print_context()) e2.etype)) e1.epos
					else error ("Array access is not allowed on " ^ (s_type (print_context()) e1.etype)) e1.epos
				end);
				pt
		in
		let pt = loop e1.etype in
		AKExpr (mk (TArray (e1,e2)) pt p))
	| _ ->
		AKExpr (type_expr ctx (e,p) Value)

and type_vars ctx vl p in_block =
	let save = if in_block then (fun() -> ()) else save_locals ctx in
	let vl = List.map (fun (v,t,e) ->
		try
			let t = Typeload.load_type_opt ctx p t in
			let e = (match e with
				| None -> None
				| Some e ->
					let e = type_expr ctx e (WithType t) in
					let e = Codegen.AbstractCast.cast_or_unify ctx t e p in
					Some e
			) in
			if v.[0] = '$' && ctx.com.display = DMNone then error "Variables names starting with a dollar are not allowed" p;
			add_local ctx v t, e
		with
			Error (e,p) ->
				display_error ctx (error_msg e) p;
				add_local ctx v t_dynamic, None
	) vl in
	save();

	match vl with
	| [v,eo] ->
		mk (TVar (v,eo)) ctx.t.tvoid p
	| _ ->
		let e = mk (TBlock (List.map (fun (v,e) -> (mk (TVar (v,e)) ctx.t.tvoid p)) vl)) ctx.t.tvoid p in
		mk (TMeta((Meta.MergeBlock,[],p), e)) e.etype e.epos

and with_type_error ctx with_type msg p =
	match with_type with
	| WithTypeResume _ -> raise (WithTypeError ([Unify_custom msg],p))
	| _ -> display_error ctx msg p

and format_string ctx s p =
	let e = ref None in
	let pmin = ref p.pmin in
	let min = ref (p.pmin + 1) in
	let add enext len =
		let p = { p with pmin = !min; pmax = !min + len } in
		min := !min + len;
		match !e with
		| None -> e := Some (enext,p)
		| Some prev ->
			e := Some (EBinop (OpAdd,prev,(enext,p)),punion (pos prev) p)
	in
	let add_sub start pos =
		let len = pos - start in
		if len > 0 || !e = None then add (EConst (String (String.sub s start len))) len
	in
	let warn_escape = Common.defined ctx.com Define.FormatWarning in
	let warn pos len =
		ctx.com.warning "This string is formated" { p with pmin = !pmin + 1 + pos; pmax = !pmin + 1 + pos + len }
	in
	let len = String.length s in
	let rec parse start pos =
		if pos = len then add_sub start pos else
		let c = String.unsafe_get s pos in
		let pos = pos + 1 in
		if c = '\'' then begin
			incr pmin;
			incr min;
		end;
		if c <> '$' || pos = len then parse start pos else
		match String.unsafe_get s pos with
		| '$' ->
			if warn_escape then warn pos 1;
			(* double $ *)
			add_sub start pos;
			parse (pos + 1) (pos + 1)
		| '{' ->
			parse_group start pos '{' '}' "brace"
		| 'a'..'z' | 'A'..'Z' | '_' ->
			add_sub start (pos - 1);
			incr min;
			let rec loop i =
				if i = len then i else
				let c = String.unsafe_get s i in
				match c with
				| 'a'..'z' | 'A'..'Z' | '0'..'9' | '_' -> loop (i+1)
				| _ -> i
			in
			let iend = loop (pos + 1) in
			let len = iend - pos in
			if warn_escape then warn pos len;
			add (EConst (Ident (String.sub s pos len))) len;
			parse (pos + len) (pos + len)
		| _ ->
			(* keep as-it *)
			parse start pos
	and parse_group start pos gopen gclose gname =
		add_sub start (pos - 1);
		let rec loop groups i =
			if i = len then
				match groups with
				| [] -> assert false
				| g :: _ -> error ("Unclosed " ^ gname) { p with pmin = !pmin + g + 1; pmax = !pmin + g + 2 }
			else
				let c = String.unsafe_get s i in
				if c = gopen then
					loop (i :: groups) (i + 1)
				else if c = gclose then begin
					let groups = List.tl groups in
					if groups = [] then i else loop groups (i + 1)
				end else
					loop groups (i + 1)
		in
		let send = loop [pos] (pos + 1) in
		let slen = send - pos - 1 in
		let scode = String.sub s (pos + 1) slen in
		if warn_escape then warn (pos + 1) slen;
		min := !min + 2;
		if slen > 0 then
			add (fst (parse_expr_string ctx scode { p with pmin = !pmin + pos + 2; pmax = !pmin + send + 1 } true)) slen;
		min := !min + 1;
		parse (send + 1) (send + 1)
	in
	parse 0 0;
	match !e with
	| None -> assert false
	| Some e -> e

and type_block ctx el with_type p =
	let merge e = match e.eexpr with
		| TMeta((Meta.MergeBlock,_,_), {eexpr = TBlock el}) ->
			el
		| _ -> [e]
	in
	let rec loop = function
		| [] -> []
		| (EVars vl,p) :: l ->
			let e = type_vars ctx vl p true in
			merge e @ loop l
		| [e] ->
			(try
				merge (type_expr ctx e with_type)
			with
				Error (e,p) -> display_error ctx (error_msg e) p; [])
		| e :: l ->
			try
				let e = type_expr ctx e NoValue in
				merge e @ loop l
			with
				Error (e,p) -> display_error ctx (error_msg e) p; loop l
	in
	let l = loop el in
	let rec loop = function
		| [] -> ctx.t.tvoid
		| [e] -> e.etype
		| _ :: l -> loop l
	in
	mk (TBlock l) (loop l) p

and type_expr ctx (e,p) (with_type:with_type) =
	match e with
	| EField ((EConst (String s),p),"code") ->
		if UTF8.length s <> 1 then error "String must be a single UTF8 char" p;
		mk (TConst (TInt (Int32.of_int (UChar.code (UTF8.get s 0))))) ctx.t.tint p
	| EField(_,n) when n.[0] = '$' ->
		error "Field names starting with $ are not allowed" p
	| EConst (Ident s) ->
		if s = "super" && with_type <> NoValue then error "Cannot use super as value" p;
		(try
			acc_get ctx (type_ident_raise ~imported_enums:false ctx s p MGet) p
		with Not_found -> try
			(match with_type with
			| WithType t | WithTypeResume t ->
				(match follow t with
				| TEnum (e,pl) ->
					(try
						let ef = PMap.find s e.e_constrs in
						let monos = List.map (fun _ -> mk_mono()) ef.ef_params in
						mk (fast_enum_field e ef p) (enum_field_type ctx e ef pl monos p) p
					with Not_found ->
						if ctx.untyped then raise Not_found;
						with_type_error ctx with_type (string_error s e.e_names ("Identifier '" ^ s ^ "' is not part of enum " ^ s_type_path e.e_path)) p;
						mk (TConst TNull) t p)
				| TAbstract (a,pl) when has_meta Meta.Enum a.a_meta ->
					let cimpl = (match a.a_impl with None -> assert false | Some c -> c) in
					(try
						let cf = PMap.find s cimpl.cl_statics in
						acc_get ctx (type_field ctx (mk (TTypeExpr (TClassDecl cimpl)) (TAnon { a_fields = PMap.add cf.cf_name cf PMap.empty; a_status = ref (Statics cimpl) }) p) s p MGet) p
					with Not_found ->
						if ctx.untyped then raise Not_found;
						with_type_error ctx with_type (string_error s (List.map (fun f -> f.cf_name) cimpl.cl_ordered_statics) ("Identifier '" ^ s ^ "' is not part of enum " ^ s_type_path a.a_path)) p;
						mk (TConst TNull) t p)
				| _ -> raise Not_found)
			| _ ->
				raise Not_found)
		with Not_found ->
			acc_get ctx (type_access ctx e p MGet) p)
	| EField _
	| EArray _ ->
		acc_get ctx (type_access ctx e p MGet) p
	| EConst (Regexp (r,opt)) ->
		let str = mk (TConst (TString r)) ctx.t.tstring p in
		let opt = mk (TConst (TString opt)) ctx.t.tstring p in
		let t = Typeload.load_core_type ctx "EReg" in
		mk (TNew ((match t with TInst (c,[]) -> c | _ -> assert false),[],[str;opt])) t p
	| EConst (String s) when Lexer.is_fmt_string p ->
		type_expr ctx (format_string ctx s p) with_type
	| EConst c ->
		Codegen.type_constant ctx.com c p
	| EBinop (op,e1,e2) ->
		type_binop ctx op e1 e2 false with_type p
	| EBlock [] when with_type <> NoValue ->
		type_expr ctx (EObjectDecl [],p) with_type
	| EBlock l ->
		let locals = save_locals ctx in
		let e = type_block ctx l with_type p in
		locals();
		e
	| EParenthesis e ->
		let e = type_expr ctx e with_type in
		mk (TParenthesis e) e.etype p
	| EObjectDecl fl ->
		let dynamic_parameter = ref None in
		let a = (match with_type with
		| WithType t | WithTypeResume t ->
			(match follow t with
			| TAnon a when not (PMap.is_empty a.a_fields) -> Some a
			(* issues with https://github.com/HaxeFoundation/haxe/issues/3437 *)
(* 			| TAbstract (a,tl) when not (Meta.has Meta.CoreType a.a_meta) && a.a_from <> [] ->
				begin match follow (Abstract.get_underlying_type a tl) with
					| TAnon a when not (PMap.is_empty a.a_fields) -> Some a
					| _ -> None
				end *)
			| TDynamic t when (follow t != t_dynamic) ->
				dynamic_parameter := Some t;
				Some {
					a_status = ref Closed;
					a_fields = PMap.empty;
				}
			| _ -> None)
		| _ -> None
		) in
		let wrap_quoted_meta e =
			mk (TMeta((Meta.QuotedField,[],e.epos),e)) e.etype e.epos
		in
		(match a with
		| None ->
			let rec loop (l,acc) (f,e) =
				let f,is_quoted,is_valid = Parser.unquote_ident f in
				if PMap.mem f acc then error ("Duplicate field in object declaration : " ^ f) p;
				let e = type_expr ctx e Value in
				(match follow e.etype with TAbstract({a_path=[],"Void"},_) -> error "Fields of type Void are not allowed in structures" e.epos | _ -> ());
				let cf = mk_field f e.etype e.epos in
				let e = if is_quoted then wrap_quoted_meta e else e in
				((f,e) :: l, if is_valid then begin
					if String.length f > 0 && f.[0] = '$' then error "Field names starting with a dollar are not allowed" p;
					PMap.add f cf acc
				end else acc)
			in
			let fields , types = List.fold_left loop ([],PMap.empty) fl in
			let x = ref Const in
			ctx.opened <- x :: ctx.opened;
			mk (TObjectDecl (List.rev fields)) (TAnon { a_fields = types; a_status = x }) p
		| Some a ->
			let fields = ref PMap.empty in
			let extra_fields = ref [] in
			let fl = List.map (fun (n, e) ->
				let n,is_quoted,is_valid = Parser.unquote_ident n in
				if PMap.mem n !fields then error ("Duplicate field in object declaration : " ^ n) p;
				let e = try
					let t = (match !dynamic_parameter with Some t -> t | None -> (PMap.find n a.a_fields).cf_type) in
					let e = type_expr ctx e (match with_type with WithTypeResume _ -> WithTypeResume t | _ -> WithType t) in
					let e = Codegen.AbstractCast.cast_or_unify ctx t e p in
					(try type_eq EqStrict e.etype t; e with Unify_error _ -> mk (TCast (e,None)) t e.epos)
				with Not_found ->
					if is_valid then
						extra_fields := n :: !extra_fields;
					type_expr ctx e Value
				in
				if is_valid then begin
					if String.length n > 0 && n.[0] = '$' then error "Field names starting with a dollar are not allowed" p;
					let cf = mk_field n e.etype e.epos in
					fields := PMap.add n cf !fields;
				end;
				let e = if is_quoted then wrap_quoted_meta e else e in
				(n,e)
			) fl in
			let t = (TAnon { a_fields = !fields; a_status = ref Const }) in
			if not ctx.untyped then begin
				let unify_error l p =
					match with_type with
					| WithTypeResume _ -> raise (WithTypeError (l,p))
					| _ -> raise (Error (Unify l,p))
				in
				(match PMap.foldi (fun n cf acc -> if not (Meta.has Meta.Optional cf.cf_meta) && not (PMap.mem n !fields) then n :: acc else acc) a.a_fields [] with
					| [] -> ()
					| [n] -> unify_error [Unify_custom ("Object requires field " ^ n)] p
					| nl -> unify_error [Unify_custom ("Object requires fields: " ^ (String.concat ", " nl))] p);
				(match !extra_fields with
				| [] -> ()
				| _ -> unify_error (List.map (fun n -> has_extra_field t n) !extra_fields) p);
			end;
			if !(a.a_status) <> Const then a.a_status := Closed;
			mk (TObjectDecl fl) t p)
	| EArrayDecl [(EFor _,_) | (EWhile _,_) as e] ->
		let v = gen_local ctx (mk_mono()) in
		let et = ref (EConst(Ident "null"),p) in
		let rec map_compr (e,p) =
			match e with
			| EFor(it,e2) -> (EFor (it, map_compr e2),p)
			| EWhile(cond,e2,flag) -> (EWhile (cond,map_compr e2,flag),p)
			| EIf (cond,e2,None) -> (EIf (cond,map_compr e2,None),p)
			| EBlock [e] -> (EBlock [map_compr e],p)
			| EParenthesis e2 -> (EParenthesis (map_compr e2),p)
			| EBinop(OpArrow,a,b) ->
				et := (ENew({tpackage=[];tname="Map";tparams=[];tsub=None},[]),p);
				(ECall ((EField ((EConst (Ident v.v_name),p),"set"),p),[a;b]),p)
			| _ ->
				et := (EArrayDecl [],p);
				(ECall ((EField ((EConst (Ident v.v_name),p),"push"),p),[(e,p)]),p)
		in
		let e = map_compr e in
		let ea = type_expr ctx !et with_type in
		unify ctx v.v_type ea.etype p;
		let efor = type_expr ctx e NoValue in
		mk (TBlock [
			mk (TVar (v,Some ea)) ctx.t.tvoid p;
			efor;
			mk (TLocal v) v.v_type p;
		]) v.v_type p
	| EArrayDecl ((EBinop(OpArrow,_,_),_) as e1 :: el) ->
		let keys = Hashtbl.create 0 in
		let (tkey,tval),resume =
			let get_map_params t = match follow t with
				| TAbstract({a_path=[],"Map"},[tk;tv]) -> tk,tv
				| _ -> mk_mono(),mk_mono()
			in
			match with_type with
			| WithType t -> get_map_params t,false
			| WithTypeResume t -> get_map_params t,true
			| _ -> (mk_mono(),mk_mono()),false
		in
		let unify_with_resume ctx e t p =
			if resume then try Codegen.AbstractCast.cast_or_unify_raise ctx t e p with Error (Unify l,p) -> raise (WithTypeError(l,p))
			else Codegen.AbstractCast.cast_or_unify ctx t e p
		in
		let type_arrow e1 e2 =
			let e1 = type_expr ctx e1 (WithType tkey) in
			try
				let p = Hashtbl.find keys e1.eexpr in
				display_error ctx "Duplicate key" e1.epos;
				error "Previously defined here" p
			with Not_found ->
				Hashtbl.add keys e1.eexpr e1.epos;
				let e1 = unify_with_resume ctx e1 tkey e1.epos in
				let e2 = type_expr ctx e2 (WithType tval) in
				let e2 = unify_with_resume ctx e2 tval e2.epos in
				e1,e2
		in
		let m = Typeload.load_module ctx ([],"Map") null_pos in
		let a,c = match m.m_types with
			| (TAbstractDecl ({a_impl = Some c} as a)) :: _ -> a,c
			| _ -> assert false
		in
		let tmap = TAbstract(a,[tkey;tval]) in
		let cf = PMap.find "set" c.cl_statics in
		let el = e1 :: el in
		let v = gen_local ctx tmap in
		let ev = mk (TLocal v) tmap p in
		let ec = type_module_type ctx (TClassDecl c) None p in
		let ef = mk (TField(ec,FStatic(c,cf))) (tfun [tkey;tval] ctx.t.tvoid) p in
		let el = ev :: List.fold_left (fun acc e -> match fst e with
			| EBinop(OpArrow,e1,e2) ->
				let e1,e2 = type_arrow e1 e2 in
				(make_call ctx ef [ev;e1;e2] ctx.com.basic.tvoid p) :: acc
			| _ ->
				error "Expected a => b" (snd e)
		) [] el in
		let enew = mk (TNew(c,[tkey;tval],[])) tmap p in
		let el = (mk (TVar (v,Some enew)) t_dynamic p) :: (List.rev el) in
		mk (TBlock el) tmap p
	| EArrayDecl el ->
		let tp = (match with_type with
		| WithType t | WithTypeResume t ->
			(match follow t with
			| TInst ({ cl_path = [],"Array" },[tp]) ->
				(match follow tp with
				| TMono _ -> None
				| _ -> Some tp)
			| TAnon _ ->
				(try
					Some (get_iterable_param t)
				with Not_found ->
					None)
			| t ->
				if t == t_dynamic then Some t else None)
		| _ ->
			None
		) in
		(match tp with
		| None ->
			let el = List.map (fun e -> type_expr ctx e Value) el in
			let t = try
				unify_min_raise ctx el
			with Error (Unify l,p) ->
				if ctx.untyped then t_dynamic else begin
					display_error ctx "Arrays of mixed types are only allowed if the type is forced to Array<Dynamic>" p;
					raise (Error (Unify l, p))
				end
			in
			mk (TArrayDecl el) (ctx.t.tarray t) p
		| Some t ->
			let el = List.map (fun e ->
				let e = type_expr ctx e (match with_type with WithTypeResume _ -> WithTypeResume t | _ -> WithType t) in
				(match with_type with
				| WithTypeResume _ -> (try Codegen.AbstractCast.cast_or_unify_raise ctx t e p with Error (Unify l,p) -> raise (WithTypeError (l,p)))
				| _ -> Codegen.AbstractCast.cast_or_unify ctx t e p);
			) el in
			mk (TArrayDecl el) (ctx.t.tarray t) p)
	| EVars vl ->
		type_vars ctx vl p false
	| EFor (it,e2) ->
		let i, pi, e1 = (match it with
			| (EIn ((EConst (Ident i),pi),e),_) -> i, pi, e
			| _ -> error "For expression should be 'v in expr'" (snd it)
		) in
		let e1 = type_expr ctx e1 Value in
		let old_loop = ctx.in_loop in
		let old_locals = save_locals ctx in
		ctx.in_loop <- true;
		let e = (match Optimizer.optimize_for_loop ctx (i,pi) e1 e2 p with
			| Some e -> e
			| None ->
				let t, pt = Typeload.t_iterator ctx in
				let i = add_local ctx i pt in
				let e1 = (match follow e1.etype with
				| TMono _
				| TDynamic _ ->
					display_error ctx "You can't iterate on a Dynamic value, please specify Iterator or Iterable" e1.epos;
					e1
				| TLazy _ ->
					assert false
				| _ ->
					(try
						Codegen.AbstractCast.cast_or_unify_raise ctx t e1 p
					with Error (Unify _,_) ->
						let acc = build_call ctx (type_field ctx e1 "iterator" e1.epos MCall) [] Value e1.epos in
						try
							unify_raise ctx acc.etype t acc.epos;
							acc
						with Error (Unify(l),p) ->
							display_error ctx "Field iterator has an invalid type" acc.epos;
							display_error ctx (error_msg (Unify l)) p;
							mk (TConst TNull) t_dynamic p
					)
				) in
				let e2 = type_expr ctx e2 NoValue in
				(try Optimizer.optimize_for_loop_iterator ctx i e1 e2 p with Exit -> mk (TFor (i,e1,e2)) ctx.t.tvoid p)
		) in
		ctx.in_loop <- old_loop;
		old_locals();
		e
	| EIn _ ->
		error "This expression is not allowed outside a for loop" p
	| ETernary (e1,e2,e3) ->
		type_expr ctx (EIf (e1,e2,Some e3),p) with_type
	| EIf (e,e1,e2) ->
		let e = type_expr ctx e Value in
		let e = Codegen.AbstractCast.cast_or_unify ctx ctx.t.tbool e p in
		let e1 = type_expr ctx e1 with_type in
		(match e2 with
		| None ->
			mk (TIf (e,e1,None)) ctx.t.tvoid p
		| Some e2 ->
			let e2 = type_expr ctx e2 with_type in
			let e1,e2,t = match with_type with
				| NoValue -> e1,e2,ctx.t.tvoid
				| Value -> e1,e2,unify_min ctx [e1; e2]
				| WithType t | WithTypeResume t when (match follow t with TMono _ -> true | _ -> false) -> e1,e2,unify_min ctx [e1; e2]
				| WithType t | WithTypeResume t ->
					begin try
					let e1 = Codegen.AbstractCast.cast_or_unify_raise ctx t e1 e1.epos in
					let e2 = Codegen.AbstractCast.cast_or_unify_raise ctx t e2 e2.epos in
					e1,e2,t
					with Error (Unify l,p) -> match with_type with
						| WithTypeResume _ -> raise (WithTypeError (l,p))
						| _ ->
							display_error ctx (error_msg (Unify l)) p;
							e1,e2,t
					end;
			in
			mk (TIf (e,e1,Some e2)) t p)
	| EWhile (cond,e,NormalWhile) ->
		let old_loop = ctx.in_loop in
		let cond = type_expr ctx cond Value in
		let cond = Codegen.AbstractCast.cast_or_unify ctx ctx.t.tbool cond p in
		ctx.in_loop <- true;
		let e = type_expr ctx e NoValue in
		ctx.in_loop <- old_loop;
		mk (TWhile (cond,e,NormalWhile)) ctx.t.tvoid p
	| EWhile (cond,e,DoWhile) ->
		let old_loop = ctx.in_loop in
		ctx.in_loop <- true;
		let e = type_expr ctx e NoValue in
		ctx.in_loop <- old_loop;
		let cond = type_expr ctx cond Value in
		let cond = Codegen.AbstractCast.cast_or_unify ctx ctx.t.tbool cond p in
		mk (TWhile (cond,e,DoWhile)) ctx.t.tvoid p
	| ESwitch (e1,cases,def) ->
		begin try
			let dt = match_expr ctx e1 cases def with_type p in
			let wrap e1 = if not dt.dt_is_complex then e1 else mk (TMeta((Meta.Ast,[e,p],p),e1)) e1.etype e1.epos in
			wrap (Codegen.PatternMatchConversion.to_typed_ast ctx dt p)
		with Exit ->
			type_switch_old ctx e1 cases def with_type p
		end
	| EReturn e ->
		let e , t = (match e with
			| None ->
				let v = ctx.t.tvoid in
				unify ctx v ctx.ret p;
				None , v
			| Some e ->
				let e = type_expr ctx e (WithType ctx.ret) in
				let e = Codegen.AbstractCast.cast_or_unify ctx ctx.ret e p in
				Some e , e.etype
		) in
		mk (TReturn e) t_dynamic p
	| EBreak ->
		if not ctx.in_loop then display_error ctx "Break outside loop" p;
		mk TBreak t_dynamic p
	| EContinue ->
		if not ctx.in_loop then display_error ctx "Continue outside loop" p;
		mk TContinue t_dynamic p
	| ETry (e1,[]) ->
		type_expr ctx e1 with_type
	| ETry (e1,catches) ->
		let e1 = type_expr ctx e1 with_type in
		let rec check_unreachable cases t p = match cases with
			| (v,e) :: cases ->
				let unreachable () =
					display_error ctx "This block is unreachable" p;
					let st = s_type (print_context()) in
					display_error ctx (Printf.sprintf "%s can be assigned to %s, which is handled here" (st t) (st v.v_type)) e.epos
				in
				begin try
					begin match follow t,follow v.v_type with
						| TDynamic _, TDynamic _ ->
							unreachable()
						| TDynamic _,_ ->
							()
						| _ ->
							Type.unify t v.v_type;
							unreachable()
					end
				with Unify_error _ ->
					check_unreachable cases t p
				end
			| [] ->
				()
		in
		let check_catch_type path params =
			List.iter (fun pt ->
				if pt != t_dynamic then error "Catch class parameter must be Dynamic" p;
			) params;
			(match path with
			| x :: _ , _ -> x
			| [] , name -> name)
		in
		let catches = List.fold_left (fun acc (v,t,e) ->
			let t = Typeload.load_complex_type ctx (pos e) t in
			let rec loop t = match follow t with
				| TInst ({ cl_kind = KTypeParameter _} as c,_) when not (Typeload.is_generic_parameter ctx c) ->
					error "Cannot catch non-generic type parameter" p
				| TInst ({ cl_path = path },params)
				| TEnum ({ e_path = path },params) ->
					check_catch_type path params,t
				| TAbstract(a,params) when Meta.has Meta.RuntimeValue a.a_meta ->
					check_catch_type a.a_path params,t
				| TAbstract(a,tl) when not (Meta.has Meta.CoreType a.a_meta) ->
					loop (Abstract.get_underlying_type a tl)
				| TDynamic _ -> "",t
				| _ -> error "Catch type must be a class, an enum or Dynamic" (pos e)
			in
			let name,t2 = loop t in
			if v.[0] = '$' then display_error ctx "Catch variable names starting with a dollar are not allowed" p;
			check_unreachable acc t2 (pos e);
			let locals = save_locals ctx in
			let v = add_local ctx v t in
			let e = type_expr ctx e with_type in
			v.v_type <- t2;
			locals();
			if with_type <> NoValue then unify ctx e.etype e1.etype e.epos;
			if PMap.mem name ctx.locals then error ("Local variable " ^ name ^ " is preventing usage of this type here") e.epos;
			(v , e) :: acc
		) [] catches in
		mk (TTry (e1,List.rev catches)) (if with_type = NoValue then ctx.t.tvoid else e1.etype) p
	| EThrow e ->
		let e = type_expr ctx e Value in
		mk (TThrow e) (mk_mono()) p
	| ECall (((EConst (Ident s),pc) as e),el) ->
		(try
			let en,t = (match with_type with
				| WithType t | WithTypeResume t ->
					(match follow t with
					| TEnum (e,pl) -> e,t
					| _ -> raise Exit)
				| _ -> raise Exit
			) in
			let old = ctx.on_error,ctx.m.curmod.m_types in
			ctx.m.curmod.m_types <- ctx.m.curmod.m_types @ [(TEnumDecl en)];
			let restore = fun () ->
				ctx.m.curmod.m_types <- snd old;
				ctx.on_error <- fst old;
			in
			ctx.on_error <- (fun ctx msg ep ->
				(* raise Not_found only if the error is actually about the outside identifier (issue #2148) *)
				if ep = pc then
					raise Not_found
				else begin
					restore();
					ctx.on_error ctx msg ep;
				end
			);
			begin try
				let e = type_call ctx e el with_type p in
				restore();
				e
			with Not_found ->
				restore();
				if ctx.untyped then raise Exit; (* __js__, etc. *)
				with_type_error ctx with_type (string_error s en.e_names ("Identifier '" ^ s ^ "' is not part of enum " ^ s_type_path en.e_path)) p;
				mk (TConst TNull) t p
			| err ->
				restore();
				raise err
			end
		with Exit ->
			type_call ctx e el with_type p)
	| ECall (e,el) ->
		type_call ctx e el with_type p
	| ENew (t,el) ->
		let unify_constructor_call c params f ct = match follow ct with
			| TFun (args,r) ->
				(try
					let el,_,_ = unify_field_call ctx (FInstance(c,params,f)) el args r p false in
					el
				with Error (e,p) ->
					display_error ctx (error_msg e) p;
					[])
			| _ ->
				error "Constructor is not a function" p
		in
		let t = try
			ctx.call_argument_stack <- el :: ctx.call_argument_stack;
			let t = follow (Typeload.load_instance ctx t p true) in
			ctx.call_argument_stack <- List.tl ctx.call_argument_stack;
			(* Try to properly build @:generic classes here (issue #2016) *)
			begin match t with
				| TInst({cl_kind = KGeneric } as c,tl) -> follow (Codegen.build_generic ctx c p tl)
				| _ -> t
			end
		with Codegen.Generic_Exception _ ->
			(* Try to infer generic parameters from the argument list (issue #2044) *)
			match Typeload.resolve_typedef (Typeload.load_type_def ctx p t) with
			| TClassDecl ({cl_constructor = Some cf} as c) ->
				let monos = List.map (fun _ -> mk_mono()) c.cl_params in
				let ct, f = get_constructor ctx c monos p in
				ignore (unify_constructor_call c monos f ct);
				Codegen.build_generic ctx c p monos
			| mt ->
				error ((s_type_path (t_infos mt).mt_path) ^ " cannot be constructed") p
		in
		let build_constructor_call c tl =
			let ct, f = get_constructor ctx c tl p in
			if (Meta.has Meta.CompilerGenerated f.cf_meta) then display_error ctx (s_type_path c.cl_path ^ " does not have a constructor") p;
			if not (can_access ctx c f true || is_parent c ctx.curclass) && not ctx.untyped then display_error ctx "Cannot access private constructor" p;
			(match f.cf_kind with
			| Var { v_read = AccRequire (r,msg) } -> (match msg with Some msg -> error msg p | None -> error_require r p)
			| _ -> ());
			let el = unify_constructor_call c tl f ct in
			el,f,ct
		in
		(match t with
		| TInst ({cl_kind = KTypeParameter tl} as c,params) ->
			if not (Typeload.is_generic_parameter ctx c) then error "Only generic type parameters can be constructed" p;
			let el = List.map (fun e -> type_expr ctx e Value) el in
			let ct = (tfun (List.map (fun e -> e.etype) el) ctx.t.tvoid) in
			if not (List.exists (fun t -> match follow t with
				| TAnon a ->
					(try
						unify ctx (PMap.find "new" a.a_fields).cf_type ct p;
						true
					with Not_found ->
						 false)
				| _ -> false
			) tl) then error (s_type_path c.cl_path ^ " does not have a constructor") p;
			mk (TNew (c,params,el)) t p
		| TAbstract({a_impl = Some c} as a,tl) when not (Meta.has Meta.MultiType a.a_meta) ->
			let el,cf,ct = build_constructor_call c tl in
			let ta = TAnon { a_fields = c.cl_statics; a_status = ref (Statics c) } in
			let e = mk (TTypeExpr (TClassDecl c)) ta p in
			let e = mk (TField (e,(FStatic (c,cf)))) ct p in
			make_call ctx e el t p
		| TInst (c,params) | TAbstract({a_impl = Some c},params) ->
			let el,_,_ = build_constructor_call c params in
			mk (TNew (c,params,el)) t p
		| _ ->
			error (s_type (print_context()) t ^ " cannot be constructed") p)
	| EUnop (op,flag,e) ->
		type_unop ctx op flag e p
	| EFunction (name,f) ->
		let params = Typeload.type_function_params ctx f (match name with None -> "localfun" | Some n -> n) p in
		if params <> [] then begin
			if name = None then display_error ctx "Type parameters not supported in unnamed local functions" p;
			if with_type <> NoValue then error "Type parameters are not supported for rvalue functions" p
		end;
		List.iter (fun tp -> if tp.tp_constraints <> [] then display_error ctx "Type parameter constraints are not supported for local functions" p) f.f_params;
		let inline, v = (match name with
			| None -> false, None
			| Some v when ExtString.String.starts_with v "inline_" -> true, Some (String.sub v 7 (String.length v - 7))
			| Some v -> false, Some v
		) in
		let old_tp,old_in_loop = ctx.type_params,ctx.in_loop in
		ctx.type_params <- params @ ctx.type_params;
		if not inline then ctx.in_loop <- false;
		let rt = Typeload.load_type_opt ctx p f.f_type in
		let args = List.map (fun (s,opt,t,c) ->
			let t = Typeload.load_type_opt ctx p t in
			let t, c = Typeload.type_function_arg ctx t c opt p in
			s , c, t
		) f.f_args in
		(match with_type with
		| WithType t | WithTypeResume t ->
			let rec loop t =
				(match follow t with
				| TFun (args2,tr) when List.length args2 = List.length args ->
					List.iter2 (fun (_,_,t1) (_,_,t2) ->
						match follow t1 with
						| TMono _ -> unify ctx t2 t1 p
						| _ -> ()
					) args args2;
					(* unify for top-down inference unless we are expecting Void *)
					begin match follow tr,follow rt with
						| TAbstract({a_path = [],"Void"},_),_ -> ()
						| _,TMono _ -> unify ctx rt tr p
						| _ -> ()
					end
				| TAbstract(a,tl) ->
					loop (Abstract.get_underlying_type a tl)
				| _ -> ())
			in
			loop t
		| NoValue ->
			if name = None then display_error ctx "Unnamed lvalue functions are not supported" p
		| _ ->
			());
		let ft = TFun (fun_args args,rt) in

		let v = (match v with
			| None -> None
			| Some v ->
				if v.[0] = '$' then display_error ctx "Variable names starting with a dollar are not allowed" p;
				Some (add_local ctx v ft)
		) in
		let curfun = match ctx.curfun with
			| FunStatic -> FunStatic
			| FunMemberAbstract -> FunMemberAbstractLocal
			| _ -> FunMemberClassLocal
		in
		let e , fargs = Typeload.type_function ctx args rt curfun f false p in
		ctx.type_params <- old_tp;
		ctx.in_loop <- old_in_loop;
		let f = {
			tf_args = fargs;
			tf_type = rt;
			tf_expr = e;
		} in
		let e = mk (TFunction f) ft p in
		(match v with
		| None -> e
		| Some v ->
			if params <> [] || inline then v.v_extra <- Some (params,if inline then Some e else None);
			let rec loop = function
				| Filters.Block f | Filters.Loop f | Filters.Function f -> f loop
				| Filters.Use v2 | Filters.Assign v2 when v == v2 -> raise Exit
				| Filters.Use _ | Filters.Assign _ | Filters.Declare _ -> ()
			in
			let is_rec = (try Filters.local_usage loop e; false with Exit -> true) in
			let decl = (if is_rec then begin
				if inline then display_error ctx "Inline function cannot be recursive" e.epos;
				let vnew = add_local ctx v.v_name ft in
				mk (TVar (vnew,Some (mk (TBlock [
					mk (TVar (v,Some (mk (TConst TNull) ft p))) ctx.t.tvoid p;
					mk (TBinop (OpAssign,mk (TLocal v) ft p,e)) ft p;
					mk (TLocal v) ft p
				]) ft p))) ctx.t.tvoid p
			end else if inline then
				mk (TBlock []) ctx.t.tvoid p (* do not add variable since it will be inlined *)
			else
				mk (TVar (v,Some e)) ctx.t.tvoid p
			) in
			if with_type <> NoValue && not inline then mk (TBlock [decl;mk (TLocal v) v.v_type p]) v.v_type p else decl)
	| EUntyped e ->
		let old = ctx.untyped in
		ctx.untyped <- true;
		if not (Meta.has Meta.HasUntyped ctx.curfield.cf_meta) then ctx.curfield.cf_meta <- (Meta.HasUntyped,[],p) :: ctx.curfield.cf_meta;
		let e = type_expr ctx e with_type in
		ctx.untyped <- old;
		{
			eexpr = e.eexpr;
			etype = mk_mono();
			epos = e.epos;
		}
	| ECast (e,None) ->
		let e = type_expr ctx e Value in
		mk (TCast (e,None)) (mk_mono()) p
	| ECast (e, Some t) ->
		let t = Typeload.load_complex_type ctx (pos e) t in
		let rec loop t = match follow t with
			| TInst (_,params) | TEnum (_,params) ->
				List.iter (fun pt ->
					if follow pt != t_dynamic then error "Cast type parameters must be Dynamic" p;
				) params;
				(match follow t with
				| TInst (c,_) ->
					(match c.cl_kind with KTypeParameter _ -> error "Can't cast to a type parameter" p | _ -> ());
					TClassDecl c
				| TEnum (e,_) -> TEnumDecl e
				| _ -> assert false);
			| TAbstract (a,params) when Meta.has Meta.RuntimeValue a.a_meta ->
				List.iter (fun pt ->
					if follow pt != t_dynamic then error "Cast type parameters must be Dynamic" p;
				) params;
				TAbstractDecl a
			| TAbstract (a,params) ->
				loop (Abstract.get_underlying_type a params)
			| _ ->
				error "Cast type must be a class or an enum" p
		in
		let texpr = loop t in
		mk (TCast (type_expr ctx e Value,Some texpr)) t p
	| EDisplay (e,iscall) ->
		handle_display ctx e iscall p
	| EDisplayNew t ->
		let t = Typeload.load_instance ctx t p true in
		(match follow t with
		| TInst (c,params) | TAbstract({a_impl = Some c},params) ->
			let ct, f = get_constructor ctx c params p in
			raise (DisplayTypes (ct :: List.map (fun f -> f.cf_type) f.cf_overloads))
		| _ ->
			error "Not a class" p)
	| ECheckType (e,t) ->
		let t = Typeload.load_complex_type ctx p t in
		let e = type_expr ctx e (WithType t) in
		let e = Codegen.AbstractCast.cast_or_unify ctx t e p in
		if e.etype == t then e else mk (TCast (e,None)) t p
	| EMeta (m,e1) ->
		let old = ctx.meta in
		ctx.meta <- m :: ctx.meta;
		let e () = type_expr ctx e1 with_type in
		let e = match m with
			| (Meta.ToString,_,_) ->
				let e = e() in
				(match follow e.etype with
					| TAbstract({a_impl = Some c},_) when PMap.mem "toString" c.cl_statics -> call_to_string ctx c e
					| _ -> e)
			| (Meta.This,_,_) ->
				let e = List.hd ctx.this_stack in
				let rec loop e = match e.eexpr with
					| TConst TThis -> get_this ctx e.epos
					| _ -> Type.map_expr loop e
				in
				loop e
			| (Meta.Analyzer,_,_) ->
				let e = e() in
				{e with eexpr = TMeta(m,e)}
			| (Meta.MergeBlock,_,_) ->
				begin match fst e1 with
				| EBlock el -> type_block ctx el with_type p
				| _ -> e()
				end
			| (Meta.StoredTypedExpr,_,_) ->
				let id = match e1 with (EConst (Int s),_) -> int_of_string s | _ -> assert false in
				get_stored_typed_expr ctx.com id
			| (Meta.NoPrivateAccess,_,_) ->
				ctx.meta <- List.filter (fun(m,_,_) -> m <> Meta.PrivateAccess) ctx.meta;
				e()
			| _ -> e()
		in
		ctx.meta <- old;
		e

and get_next_stored_typed_expr_id =
	let uid = ref 0 in
	(fun() -> incr uid; !uid)

and get_stored_typed_expr com id =
	let vars = Hashtbl.create 0 in
	let copy_var v =
		let v2 = alloc_var v.v_name v.v_type in
		v2.v_meta <- v.v_meta;
		Hashtbl.add vars v.v_id v2;
		v2;
	in
	let rec build_expr e =
		match e.eexpr with
		| TVar (v,eo) ->
			let v2 = copy_var v in
			{e with eexpr = TVar(v2, Option.map build_expr eo)}
		| TFor (v,e1,e2) ->
			let v2 = copy_var v in
			{e with eexpr = TFor(v2, build_expr e1, build_expr e2)}
		| TTry (e1,cl) ->
			let cl = List.map (fun (v,e) ->
				let v2 = copy_var v in
				v2, build_expr e
			) cl in
			{e with eexpr = TTry(build_expr e1, cl)}
		| TFunction f ->
			let args = List.map (fun (v,c) -> copy_var v, c) f.tf_args in
			let f = {
				tf_args = args;
				tf_type = f.tf_type;
				tf_expr = build_expr f.tf_expr;
			} in
			{e with eexpr = TFunction f}
		| TLocal v ->
			(try
				let v2 = Hashtbl.find vars v.v_id in
				{e with eexpr = TLocal v2}
			with _ ->
				e)
		| _ ->
			map_expr build_expr e
	in
	let e = PMap.find id com.stored_typed_exprs in
	build_expr  e


and handle_display ctx e_ast iscall p =
	let old = ctx.in_display in
	ctx.in_display <- true;
	let get_submodule_fields path =
		let m = Hashtbl.find ctx.g.modules path in
		let tl = List.filter (fun t -> path <> (t_infos t).mt_path && not (t_infos t).mt_private) m.m_types in
		let tl = List.map (fun mt ->
			let infos = t_infos mt in
			(snd infos.mt_path),type_of_module_type mt,Some FKType,infos.mt_doc
		) tl in
		tl
	in
	let e = try
		type_expr ctx e_ast Value
	with Error (Unknown_ident n,_) when not iscall ->
		raise (Parser.TypePath ([n],None,false))
	| Error (Unknown_ident "trace",_) ->
		raise (DisplayTypes [tfun [t_dynamic] ctx.com.basic.tvoid])
	| Error (Type_not_found (path,_),_) as err ->
		begin try
			raise (DisplayFields (get_submodule_fields path))
		with Not_found ->
			raise err
		end
	in
	ctx.in_display <- old;
	let handle_field cf =
		if ctx.com.display = DMPosition then
			raise (DisplayPosition [cf.cf_pos]);
		cf.cf_meta <- (Meta.Usage,[],p) :: cf.cf_meta;
	in
	match ctx.com.display with
	| DMResolve _ ->
		assert false
	| DMType ->
		raise (DisplayTypes [e.etype])
	| DMUsage | DMPosition ->
		begin match e.eexpr with
		| TField(_,FEnum(_,ef)) ->
			if ctx.com.display = DMPosition then
				raise (DisplayPosition [ef.ef_pos]);
			ef.ef_meta <- (Meta.Usage,[],p) :: ef.ef_meta;
		| TField(_,(FAnon cf | FInstance (_,_,cf) | FStatic (_,cf) | FClosure (_,cf))) ->
			handle_field cf;
		| TLocal v ->
			v.v_meta <- (Meta.Usage,[],p) :: v.v_meta;
		| TTypeExpr mt ->
			let ti = t_infos mt in
			if ctx.com.display = DMPosition then
				raise (DisplayPosition [ti.mt_pos]);
			ti.mt_meta <- (Meta.Usage,[],p) :: ti.mt_meta;
		| TNew(c,tl,_) ->
			begin try
				let _,cf = get_constructor ctx c tl p in
				handle_field cf;
			with Not_found ->
				()
			end
		| _ ->
			()
		end;
		e
	| DMToplevel ->
		collect_toplevel_identifiers ctx;
	| DMDefault | DMNone ->
		let opt_args args ret = TFun(List.map(fun (n,o,t) -> n,true,t) args,ret) in
		let e = match e.eexpr with
			| TField (e1,fa) ->
				if field_name fa = "bind" then (match follow e1.etype with
					| TFun(args,ret) -> {e1 with etype = opt_args args ret}
					| _ -> e)
				else
					e
			| _ ->
				e
		in
		let opt_type t =
			match t with
			| TLazy f ->
				Typeload.return_partial_type := true;
				let t = (!f)() in
				Typeload.return_partial_type := false;
				t
			| _ ->
				t
		in
		let merge_core_doc c =
			let c_core = Typeload.load_core_class ctx c in
			if c.cl_doc = None then c.cl_doc <- c_core.cl_doc;
			let maybe_merge cf_map cf =
				if cf.cf_doc = None then try cf.cf_doc <- (PMap.find cf.cf_name cf_map).cf_doc with Not_found -> ()
			in
			List.iter (maybe_merge c_core.cl_fields) c.cl_ordered_fields;
			List.iter (maybe_merge c_core.cl_statics) c.cl_ordered_statics;
			match c.cl_constructor,c_core.cl_constructor with
				| Some ({cf_doc = None} as cf),Some cf2 -> cf.cf_doc <- cf2.cf_doc
				| _ -> ()
		in
		let rec get_fields t =
			match follow t with
			| TInst (c,params) ->
				if Meta.has Meta.CoreApi c.cl_meta then merge_core_doc c;
				let priv = is_parent c ctx.curclass in
				let merge ?(cond=(fun _ -> true)) a b =
					PMap.foldi (fun k f m -> if cond f then PMap.add k f m else m) a b
				in
				let rec loop c params =
					let m = List.fold_left (fun m (i,params) ->
						merge m (loop i params)
					) PMap.empty c.cl_implements in
					let m = (match c.cl_super with
						| None -> m
						| Some (csup,cparams) -> merge m (loop csup cparams)
					) in
					let m = merge ~cond:(fun f -> priv || can_access ctx c f false) c.cl_fields m in
					let m = (match c.cl_kind with
						| KTypeParameter pl -> List.fold_left (fun acc t -> merge acc (get_fields t)) m pl
						| _ -> m
					) in
					PMap.map (fun f -> { f with cf_type = apply_params c.cl_params params (opt_type f.cf_type); cf_public = true; }) m
				in
				loop c params
			| TAbstract({a_impl = Some c} as a,pl) ->
				if Meta.has Meta.CoreApi c.cl_meta then merge_core_doc c;
				ctx.m.module_using <- c :: ctx.m.module_using;
				let fields = try
					let _,el,_ = Meta.get Meta.Forward a.a_meta in
					let sl = ExtList.List.filter_map (fun e -> match fst e with
						| EConst(Ident s) -> Some s
						| _ -> None
					) el in
					let fields = get_fields (apply_params a.a_params pl a.a_this) in
					if sl = [] then fields else PMap.fold (fun cf acc ->
						if List.mem cf.cf_name sl then
							PMap.add cf.cf_name cf acc
						else
							acc
					) fields PMap.empty
				with Not_found ->
					PMap.empty
				in
				PMap.fold (fun f acc ->
					if f.cf_name <> "_new" && can_access ctx c f true && Meta.has Meta.Impl f.cf_meta && not (Meta.has Meta.Enum f.cf_meta) then begin
						let f = prepare_using_field f in
						let t = apply_params a.a_params pl (follow f.cf_type) in
						PMap.add f.cf_name { f with cf_public = true; cf_type = opt_type t } acc
					end else
						acc
				) c.cl_statics fields
			| TAnon a ->
				(match !(a.a_status) with
				| Statics c ->
					if Meta.has Meta.CoreApi c.cl_meta then merge_core_doc c;
					let is_abstract_impl = match c.cl_kind with KAbstractImpl _ -> true | _ -> false in
					let pm = match c.cl_constructor with None -> PMap.empty | Some cf -> PMap.add "new" cf PMap.empty in
					PMap.fold (fun f acc ->
						if can_access ctx c f true && (not is_abstract_impl || not (Meta.has Meta.Impl f.cf_meta) || Meta.has Meta.Enum f.cf_meta) then
							PMap.add f.cf_name { f with cf_public = true; cf_type = opt_type f.cf_type } acc else acc
					) a.a_fields pm
				| _ ->
					a.a_fields)
			| TFun (args,ret) ->
				let t = opt_args args ret in
				let cf = mk_field "bind" (tfun [t] t) p in
				PMap.add "bind" cf PMap.empty
			| _ ->
				PMap.empty
		in
		let fields = get_fields e.etype in
		(*
			add 'using' methods compatible with this type
		*)
		let rec loop acc = function
			| [] -> acc
			| c :: l ->
				let acc = ref (loop acc l) in
				let rec dup t = Type.map dup t in
				List.iter (fun f ->
					if not (Meta.has Meta.NoUsing f.cf_meta) then
					let f = { f with cf_type = opt_type f.cf_type } in
					let monos = List.map (fun _ -> mk_mono()) f.cf_params in
					let map = apply_params f.cf_params monos in
					match follow (map f.cf_type) with
					| TFun((_,_,TType({t_path=["haxe";"macro"], "ExprOf"}, [t])) :: args, ret)
					| TFun((_,_,t) :: args, ret) ->
						(try
							unify_raise ctx (dup e.etype) t e.epos;
							List.iter2 (fun m (name,t) -> match follow t with
								| TInst ({ cl_kind = KTypeParameter constr },_) when constr <> [] ->
									List.iter (fun tc -> unify_raise ctx m (map tc) e.epos) constr
								| _ -> ()
							) monos f.cf_params;
							if not (can_access ctx c f true) || follow e.etype == t_dynamic && follow t != t_dynamic then
								()
							else begin
								let f = prepare_using_field f in
								let f = { f with cf_params = []; cf_public = true; cf_type = TFun(args,ret) } in
								acc := PMap.add f.cf_name f (!acc)
							end
						with Error (Unify _,_) -> ())
					| _ -> ()
				) c.cl_ordered_statics;
				!acc
		in
		let use_methods = match follow e.etype with TMono _ -> PMap.empty | _ -> loop (loop PMap.empty ctx.g.global_using) ctx.m.module_using in
		let fields = PMap.fold (fun f acc -> PMap.add f.cf_name f acc) fields use_methods in
		let fields = PMap.fold (fun f acc -> if Meta.has Meta.NoCompletion f.cf_meta then acc else f :: acc) fields [] in
		let t = if iscall then
			let rec loop t = match follow t with
				| TFun _ -> t
				| TAbstract(a,tl) when Meta.has Meta.Callable a.a_meta -> loop (Abstract.get_underlying_type a tl)
				| _ -> t_dynamic
			in
			loop e.etype
		else
			let get_field acc f =
				List.fold_left (fun acc f ->
					let kind = match f.cf_kind with Method _ -> FKMethod | Var _ -> FKVar in
					if f.cf_public then (f.cf_name,f.cf_type,Some kind,f.cf_doc) :: acc else acc
				) acc (f :: f.cf_overloads)
			in
			let fields = List.fold_left get_field [] fields in
			let fields = try
				let sl = string_list_of_expr_path_raise e_ast in
				fields @ get_submodule_fields (List.tl sl,List.hd sl)
			with Exit | Not_found ->
				fields
			in
			if fields = [] then
				e.etype
			else
				raise (DisplayFields fields)
		in
		(match follow t with
		| TMono _ | TDynamic _ when ctx.in_macro -> mk (TConst TNull) t p
		| _ -> raise (DisplayTypes [t]))


and type_call ctx e el (with_type:with_type) p =
	let def () = (match e with
		| EField ((EConst (Ident "super"),_),_) , _ -> ctx.in_super_call <- true
		| _ -> ());
		build_call ctx (type_access ctx (fst e) (snd e) MCall) el with_type p
	in
	match e, el with
	| (EConst (Ident "trace"),p) , e :: el ->
		if Common.defined ctx.com Define.NoTraces then
			null ctx.t.tvoid p
		else
		let params = (match el with [] -> [] | _ -> ["customParams",(EArrayDecl el , p)]) in
		let infos = mk_infos ctx p params in
		if (platform ctx.com Js || platform ctx.com Python) && el = [] && has_dce ctx.com then
			let e = type_expr ctx e Value in
			let infos = type_expr ctx infos Value in
			let e = match follow e.etype with
				| TAbstract({a_impl = Some c},_) when PMap.mem "toString" c.cl_statics ->
					call_to_string ctx c e
				| _ ->
					e
			in
			let v_trace = alloc_unbound_var "`trace" t_dynamic in
			mk (TCall (mk (TLocal v_trace) t_dynamic p,[e;infos])) ctx.t.tvoid p
		else
			let me = Meta.ToString,[],pos e in
			type_expr ctx (ECall ((EField ((EField ((EConst (Ident "haxe"),p),"Log"),p),"trace"),p),[(EMeta (me,e),pos e);infos]),p) NoValue
	| (EConst(Ident "callback"),p1),args ->
		let ecb = try Some (type_ident_raise ctx "callback" p1 MCall) with Not_found -> None in
		(match ecb with
		| Some ecb ->
			build_call ctx ecb args with_type p
		| None ->
			display_error ctx "callback syntax has changed to func.bind(args)" p;
			let e = type_expr ctx e Value in
			type_bind ctx e args p)
	| (EField ((EConst (Ident "super"),_),_),_), _ ->
		def()
	| (EField (e,"bind"),p), args ->
		let e = type_expr ctx e Value in
		(match follow e.etype with
			| TFun _ -> type_bind ctx e args p
			| _ -> def ())
	| (EConst (Ident "$type"),_) , [e] ->
		let e = type_expr ctx e Value in
		ctx.com.warning (s_type (print_context()) e.etype) e.epos;
		e
	| (EField(e,"match"),p), [epat] ->
		let et = type_expr ctx e Value in
		(match follow et.etype with
			| TEnum _ as t ->
				let e = match_expr ctx e [[epat],None,Some (EConst(Ident "true"),p)] (Some (Some (EConst(Ident "false"),p))) (WithType ctx.t.tbool) p in
				let locals = !get_pattern_locals_ref ctx epat t in
				PMap.iter (fun _ (_,p) -> display_error ctx "Capture variables are not allowed" p) locals;
				Codegen.PatternMatchConversion.to_typed_ast ctx e p
			| _ -> def ())
	| (EConst (Ident "__unprotect__"),_) , [(EConst (String _),_) as e] ->
		let e = type_expr ctx e Value in
		if Common.platform ctx.com Flash then
			let t = tfun [e.etype] e.etype in
			let v_unprotect = alloc_unbound_var "__unprotect__" t in
			mk (TCall (mk (TLocal v_unprotect) t p,[e])) e.etype e.epos
		else
			e
	| (EConst (Ident "super"),sp) , el ->
		if ctx.curfun <> FunConstructor then error "Cannot call super constructor outside class constructor" p;
		let el, t = (match ctx.curclass.cl_super with
		| None -> error "Current class does not have a super" p
		| Some (c,params) ->
			let ct, f = get_constructor ctx c params p in
			if (Meta.has Meta.CompilerGenerated f.cf_meta) then display_error ctx (s_type_path c.cl_path ^ " does not have a constructor") p;
			let el = (match follow ct with
			| TFun (args,r) ->
				let el,_,_ = unify_field_call ctx (FInstance(c,params,f)) el args r p false in
				el
			| _ ->
				error "Constructor is not a function" p
			) in
			el , TInst (c,params)
		) in
		mk (TCall (mk (TConst TSuper) t sp,el)) ctx.t.tvoid p
	| _ ->
		def ()

and build_call ctx acc el (with_type:with_type) p =
	let push_this e =
		match e.eexpr with
			| TConst (TInt _ | TFloat _ | TString _ | TBool _) ->
				(Interp.make_ast e),fun () -> ()
			| _ ->
				ctx.this_stack <- e :: ctx.this_stack;
				let er = EMeta((Meta.This,[],e.epos), (EConst(Ident "this"),e.epos)),e.epos in
				er,fun () -> ctx.this_stack <- List.tl ctx.this_stack
	in
	match acc with
 	| AKInline (ethis,f,fmode,t) when Meta.has Meta.Generic f.cf_meta ->
		type_generic_function ctx (ethis,fmode) el with_type p
	| AKInline (ethis,f,fmode,t) ->
		(match follow t with
			| TFun (args,r) ->
				let _,_,mk_call = unify_field_call ctx fmode el args r p true in
				mk_call ethis p
			| _ ->
				error (s_type (print_context()) t ^ " cannot be called") p
		)
	| AKUsing (et,cl,ef,eparam) when Meta.has Meta.Generic ef.cf_meta ->
		(match et.eexpr with
		| TField(ec,fa) ->
			type_generic_function ctx (ec,fa) el ~using_param:(Some eparam) with_type p
		| _ -> assert false)
	| AKUsing (et,cl,ef,eparam) ->
		begin match ef.cf_kind with
		| Method MethMacro ->
			let ethis = type_module_type ctx (TClassDecl cl) None p in
			let eparam,f = push_this eparam in
			let e = build_call ctx (AKMacro (ethis,ef)) (eparam :: el) with_type p in
			f();
			e
		| _ ->
			let t = follow (field_type ctx cl [] ef p) in
			(* for abstracts we have to apply their parameters to the static function *)
			let t,tthis = match follow eparam.etype with
				| TAbstract(a,tl) when Meta.has Meta.Impl ef.cf_meta -> apply_params a.a_params tl t,apply_params a.a_params tl a.a_this
				| te -> t,te
			in
			let params,args,r,eparam = match t with
				| TFun ((_,_,t1) :: args,r) ->
					unify ctx tthis t1 eparam.epos;
					let ef = prepare_using_field ef in
					begin match unify_call_args ctx el args r p (ef.cf_kind = Method MethInline) (is_forced_inline (Some cl) ef) with
					| el,TFun(args,r) -> el,args,r,eparam
					| _ -> assert false
					end
				| _ -> assert false
			in
			make_call ctx et (eparam :: params) r p
		end
	| AKMacro (ethis,cf) ->
		if ctx.macro_depth > 300 then error "Stack overflow" p;
		ctx.macro_depth <- ctx.macro_depth + 1;
		ctx.with_type_stack <- with_type :: ctx.with_type_stack;
		let ethis_f = ref (fun () -> ()) in
		let f = (match ethis.eexpr with
		| TTypeExpr (TClassDecl c) ->
			(match ctx.g.do_macro ctx MExpr c.cl_path cf.cf_name el p with
			| None -> (fun() -> type_expr ctx (EConst (Ident "null"),p) Value)
			| Some (EMeta((Meta.MergeBlock,_,_),(EBlock el,_)),_) -> (fun () -> let e = type_block ctx el with_type p in mk (TMeta((Meta.MergeBlock,[],p), e)) e.etype e.epos)
			| Some (EVars vl,p) -> (fun() -> type_vars ctx vl p true)
			| Some e -> (fun() -> type_expr ctx e with_type))
		| _ ->
			(* member-macro call : since we will make a static call, let's found the actual class and not its subclass *)
			(match follow ethis.etype with
			| TInst (c,_) ->
				let rec loop c =
					if PMap.mem cf.cf_name c.cl_fields then
						let eparam,f = push_this ethis in
						ethis_f := f;
						let e = match ctx.g.do_macro ctx MExpr c.cl_path cf.cf_name (eparam :: el) p with
							| None -> (fun() -> type_expr ctx (EConst (Ident "null"),p) Value)
							| Some e -> (fun() -> type_expr ctx e Value)
						in
						e
					else
						match c.cl_super with
						| None -> assert false
						| Some (csup,_) -> loop csup
				in
				loop c
			| _ -> assert false))
		in
		ctx.macro_depth <- ctx.macro_depth - 1;
		ctx.with_type_stack <- List.tl ctx.with_type_stack;
		let old = ctx.on_error in
		ctx.on_error <- (fun ctx msg ep ->
			(* display additional info in the case the error is not part of our original call *)
			if ep.pfile <> p.pfile || ep.pmax < p.pmin || ep.pmin > p.pmax then begin
				Typeload.locate_macro_error := false;
				old ctx msg ep;
				Typeload.locate_macro_error := true;
				ctx.com.error "Called from macro here" p;
			end else
				old ctx msg ep;
		);
		let e = try
			f()
		with Error (m,p) ->
			ctx.on_error <- old;
			!ethis_f();
			raise (Fatal_error ((error_msg m),p))
		in
		ctx.on_error <- old;
		!ethis_f();
		e
	| AKNo _ | AKSet _ | AKAccess _ ->
		ignore(acc_get ctx acc p);
		assert false
	| AKExpr e ->
		let rec loop t = match follow t with
		| TFun (args,r) ->
			begin match e.eexpr with
				| TField(e1,fa) when not (match fa with FEnum _ -> true | _ -> false) ->
					begin match fa with
						| FInstance(_,_,cf) | FStatic(_,cf) when Meta.has Meta.Generic cf.cf_meta ->
							type_generic_function ctx (e1,fa) el with_type p
						| _ ->
							let _,_,mk_call = unify_field_call ctx fa el args r p false in
							mk_call e1 e.epos
					end
				| _ ->
					let el, tfunc = unify_call_args ctx el args r p false false in
					let r = match tfunc with TFun(_,r) -> r | _ -> assert false in
					mk (TCall ({e with etype = tfunc},el)) r p
			end
		| TAbstract(a,tl) when Meta.has Meta.Callable a.a_meta ->
			loop (Abstract.get_underlying_type a tl)
		| TMono _ ->
			let t = mk_mono() in
			let el = List.map (fun e -> type_expr ctx e Value) el in
			unify ctx (tfun (List.map (fun e -> e.etype) el) t) e.etype e.epos;
			mk (TCall (e,el)) t p
		| t ->
			let el = List.map (fun e -> type_expr ctx e Value) el in
			let t = if t == t_dynamic then
				t_dynamic
			else if ctx.untyped then
				mk_mono()
			else
				error (s_type (print_context()) e.etype ^ " cannot be called") e.epos
			in
			mk (TCall (e,el)) t p
		in
		loop e.etype

(* ---------------------------------------------------------------------- *)
(* FINALIZATION *)

let get_main ctx =
	match ctx.com.main_class with
	| None -> None
	| Some cl ->
		let t = Typeload.load_type_def ctx null_pos { tpackage = fst cl; tname = snd cl; tparams = []; tsub = None } in
		let fmode, ft, r = (match t with
		| TEnumDecl _ | TTypeDecl _ | TAbstractDecl _ ->
			error ("Invalid -main : " ^ s_type_path cl ^ " is not a class") null_pos
		| TClassDecl c ->
			try
				let f = PMap.find "main" c.cl_statics in
				let t = Type.field_type f in
				(match follow t with
				| TFun ([],r) -> FStatic (c,f), t, r
				| _ -> error ("Invalid -main : " ^ s_type_path cl ^ " has invalid main function") c.cl_pos);
			with
				Not_found -> error ("Invalid -main : " ^ s_type_path cl ^ " does not have static function main") c.cl_pos
		) in
		let emain = type_type ctx cl null_pos in
		Some (mk (TCall (mk (TField (emain,fmode)) ft null_pos,[])) r null_pos)

let finalize ctx =
	flush_pass ctx PFinal "final"

type state =
	| Generating
	| Done
	| NotYet

let generate ctx =
	let types = ref [] in
	let states = Hashtbl.create 0 in
	let state p = try Hashtbl.find states p with Not_found -> NotYet in
	let statics = ref PMap.empty in

	let rec loop t =
		let p = t_path t in
		match state p with
		| Done -> ()
		| Generating ->
			ctx.com.warning ("Warning : maybe loop in static generation of " ^ s_type_path p) (t_infos t).mt_pos;
		| NotYet ->
			Hashtbl.add states p Generating;
			let t = (match t with
			| TClassDecl c ->
				walk_class p c;
				t
			| TEnumDecl _ | TTypeDecl _ | TAbstractDecl _ ->
				t
			) in
			Hashtbl.replace states p Done;
			types := t :: !types

	and loop_class p c =
		if c.cl_path <> p then loop (TClassDecl c)

	and loop_enum p e =
		if e.e_path <> p then loop (TEnumDecl e)

	and loop_abstract p a =
		if a.a_path <> p then loop (TAbstractDecl a)

	and walk_static_field p c cf =
		match cf.cf_expr with
		| None -> ()
		| Some e ->
			if PMap.mem (c.cl_path,cf.cf_name) (!statics) then
				()
			else begin
				statics := PMap.add (c.cl_path,cf.cf_name) () (!statics);
				walk_expr p e;
			end

	and walk_expr p e =
		match e.eexpr with
		| TTypeExpr t ->
			(match t with
			| TClassDecl c -> loop_class p c
			| TEnumDecl e -> loop_enum p e
			| TAbstractDecl a -> loop_abstract p a
			| TTypeDecl _ -> assert false)
		| TNew (c,_,_) ->
			iter (walk_expr p) e;
			loop_class p c;
			let rec loop c =
				if PMap.mem (c.cl_path,"new") (!statics) then
					()
				else begin
					statics := PMap.add (c.cl_path,"new") () !statics;
					(match c.cl_constructor with
					| Some { cf_expr = Some e } -> walk_expr p e
					| _ -> ());
					match c.cl_super with
					| None -> ()
					| Some (csup,_) -> loop csup
				end
			in
			loop c
		| TField(e1,FStatic(c,cf)) ->
			walk_expr p e1;
			walk_static_field p c cf;
		| _ ->
			iter (walk_expr p) e

	and walk_class p c =
		(match c.cl_super with None -> () | Some (c,_) -> loop_class p c);
		List.iter (fun (c,_) -> loop_class p c) c.cl_implements;
		(match c.cl_init with
		| None -> ()
		| Some e -> walk_expr p e);
		PMap.iter (fun _ f ->
			match f.cf_expr with
			| None -> ()
			| Some e ->
				match e.eexpr with
				| TFunction _ -> ()
				| _ -> walk_expr p e
		) c.cl_statics

	in
	let sorted_modules = List.sort (fun m1 m2 -> compare m1.m_path m2.m_path) (Hashtbl.fold (fun _ m acc -> m :: acc) ctx.g.modules []) in
	List.iter (fun m -> List.iter loop m.m_types) sorted_modules;
	get_main ctx, List.rev !types, sorted_modules

(* ---------------------------------------------------------------------- *)
(* MACROS *)

let macro_enable_cache = ref false
let macro_interp_cache = ref None
let delayed_macro_result = ref ((fun() -> assert false) : unit -> unit -> Interp.value)

let get_type_patch ctx t sub =
	let new_patch() =
		{ tp_type = None; tp_remove = false; tp_meta = [] }
	in
	let path = Ast.parse_path t in
	let h, tp = (try
		Hashtbl.find ctx.g.type_patches path
	with Not_found ->
		let h = Hashtbl.create 0 in
		let tp = new_patch() in
		Hashtbl.add ctx.g.type_patches path (h,tp);
		h, tp
	) in
	match sub with
	| None -> tp
	| Some k ->
		try
			Hashtbl.find h k
		with Not_found ->
			let tp = new_patch() in
			Hashtbl.add h k tp;
			tp

let macro_timer ctx path =
	Common.timer (if Common.defined ctx.com Define.MacroTimes then "macro " ^ path else "macro execution")

let typing_timer ctx f =
	let t = Common.timer "typing" in
	let old = ctx.com.error and oldp = ctx.pass in
	(*
		disable resumable errors... unless we are in display mode (we want to reach point of completion)
	*)
	if ctx.com.display = DMNone then ctx.com.error <- (fun e p -> raise (Error(Custom e,p)));
	if ctx.pass < PTypeField then ctx.pass <- PTypeField;
	let exit() =
		t();
		ctx.com.error <- old;
		ctx.pass <- oldp;
	in
	try
		let r = f() in
		exit();
		r
	with Error (ekind,p) ->
			exit();
			Interp.compiler_error (Typecore.error_msg ekind) p
		| WithTypeError (l,p) ->
			exit();
			Interp.compiler_error (Typecore.error_msg (Unify l)) p
		| e ->
			exit();
			raise e

let make_macro_api ctx p =
	let parse_expr_string s p inl =
		typing_timer ctx (fun() -> parse_expr_string ctx s p inl)
	in
	{
		Interp.pos = p;
		Interp.get_com = (fun() -> ctx.com);
		Interp.get_type = (fun s ->
			typing_timer ctx (fun() ->
				let path = parse_path s in
				let tp = match List.rev (fst path) with
					| s :: sl when String.length s > 0 && (match s.[0] with 'A'..'Z' -> true | _ -> false) ->
						{ tpackage = List.rev sl; tname = s; tparams = []; tsub = Some (snd path) }
					| _ ->
						{ tpackage = fst path; tname = snd path; tparams = []; tsub = None }
				in
				try
					let m = Some (Typeload.load_instance ctx tp p true) in
					m
				with Error (Module_not_found _,p2) when p == p2 ->
					None
			)
		);
		Interp.get_module = (fun s ->
			typing_timer ctx (fun() ->
				let path = parse_path s in
				let m = List.map type_of_module_type (Typeload.load_module ctx path p).m_types in
				m
			)
		);
		Interp.on_generate = (fun f ->
			Common.add_filter ctx.com (fun() ->
				let t = macro_timer ctx "onGenerate" in
				f (List.map type_of_module_type ctx.com.types);
				t()
			)
		);
		Interp.after_generate = (fun f ->
			Common.add_final_filter ctx.com (fun() ->
				let t = macro_timer ctx "afterGenerate" in
				f();
				t()
			)
		);
		Interp.on_type_not_found = (fun f ->
			ctx.com.load_extern_type <- ctx.com.load_extern_type @ [fun path p ->
				match f (s_type_path path) with
				| Interp.VNull -> None
				| td ->
					let (pack,name),tdef,p = Interp.decode_type_def td in
					Some (name,(pack,[tdef,p]))
			];
		);
		Interp.parse_string = parse_expr_string;
		Interp.type_expr = (fun e ->
			typing_timer ctx (fun() -> (type_expr ctx e Value))
		);
		Interp.store_typed_expr = (fun te ->
			let p = te.epos in
			let id = get_next_stored_typed_expr_id() in
			ctx.com.stored_typed_exprs <- PMap.add id te ctx.com.stored_typed_exprs;
			let eid = (EConst (Int (string_of_int id))), p in
			(EMeta ((Meta.StoredTypedExpr,[],p), eid)), p
		);
		Interp.get_display = (fun s ->
			let is_displaying = ctx.com.display <> DMNone in
			let old_resume = !Parser.resume_display in
			let old_error = ctx.on_error in
			let restore () =
				if not is_displaying then begin
					ctx.com.defines <- PMap.remove (fst (Define.infos Define.Display)) ctx.com.defines;
					ctx.com.display <- DMNone
				end;
				Parser.resume_display := old_resume;
				ctx.on_error <- old_error;
			in
			(* temporarily enter display mode with a fake position *)
			if not is_displaying then begin
				Common.define ctx.com Define.Display;
				ctx.com.display <- DMDefault;
			end;
			Parser.resume_display := {
				Ast.pfile = "macro";
				Ast.pmin = 0;
				Ast.pmax = 0;
			};
			ctx.on_error <- (fun ctx msg p -> raise (Error(Custom msg,p)));
			let str = try
				let e = parse_expr_string s Ast.null_pos true in
				let e = Optimizer.optimize_completion_expr e in
				ignore (type_expr ctx e Value);
				"NO COMPLETION"
			with DisplayFields fields ->
				let pctx = print_context() in
				String.concat "," (List.map (fun (f,t,_,_) -> f ^ ":" ^ s_type pctx t) fields)
			| DisplayTypes tl ->
				let pctx = print_context() in
				String.concat "," (List.map (s_type pctx) tl)
			| Parser.TypePath (p,sub,_) ->
				(match sub with
				| None ->
					"path(" ^ String.concat "." p ^ ")"
				| Some (c,_) ->
					"path(" ^ String.concat "." p ^ ":" ^ c ^ ")")
			| Typecore.Error (msg,p) ->
				"error(" ^ error_msg msg ^ ")"
			in
			restore();
			str
		);
		Interp.allow_package = (fun v -> Common.allow_package ctx.com v);
		Interp.type_patch = (fun t f s v ->
			typing_timer ctx (fun() ->
				let v = (match v with None -> None | Some s ->
					match parse_string ctx.com ("typedef T = " ^ s) null_pos false with
					| _,[ETypedef { d_data = ct },_] -> Some ct
					| _ -> assert false
				) in
				let tp = get_type_patch ctx t (Some (f,s)) in
				match v with
				| None -> tp.tp_remove <- true
				| Some _ -> tp.tp_type <- v
			);
		);
		Interp.meta_patch = (fun m t f s ->
			let m = (match parse_string ctx.com (m ^ " typedef T = T") null_pos false with
				| _,[ETypedef t,_] -> t.d_meta
				| _ -> assert false
			) in
			let tp = get_type_patch ctx t (match f with None -> None | Some f -> Some (f,s)) in
			tp.tp_meta <- tp.tp_meta @ m;
		);
		Interp.set_js_generator = (fun gen ->
			let js_ctx = Genjs.alloc_ctx ctx.com in
			ctx.com.js_gen <- Some (fun() ->
				let jsctx = Interp.enc_obj [
					"outputFile", Interp.enc_string ctx.com.file;
					"types", Interp.enc_array (List.map (fun t -> Interp.encode_type (type_of_module_type t)) ctx.com.types);
					"main", (match ctx.com.main with None -> Interp.VNull | Some e -> Interp.encode_texpr e);
					"generateValue", Interp.VFunction (Interp.Fun1 (fun v ->
						let e = Interp.decode_texpr v in
						let str = Genjs.gen_single_expr js_ctx e false in
						Interp.enc_string str
					));
					"isKeyword", Interp.VFunction (Interp.Fun1 (fun v ->
						Interp.VBool (Hashtbl.mem Genjs.kwds (Interp.dec_string v))
					));
					"hasFeature", Interp.VFunction (Interp.Fun1 (fun v ->
						Interp.VBool (Common.has_feature ctx.com (Interp.dec_string v))
					));
					"addFeature", Interp.VFunction (Interp.Fun1 (fun v ->
						Common.add_feature ctx.com (Interp.dec_string v);
						Interp.VNull
					));
					"quoteString", Interp.VFunction (Interp.Fun1 (fun v ->
						Interp.enc_string ("\"" ^ Ast.s_escape (Interp.dec_string v) ^ "\"")
					));
					"buildMetaData", Interp.VFunction (Interp.Fun1 (fun t ->
						match Codegen.build_metadata ctx.com (Interp.decode_tdecl t) with
						| None -> Interp.VNull
						| Some e -> Interp.encode_texpr e
					));
					"generateStatement", Interp.VFunction (Interp.Fun1 (fun v ->
						let e = Interp.decode_texpr v in
						let str = Genjs.gen_single_expr js_ctx e true in
						Interp.enc_string str
					));
					"setTypeAccessor", Interp.VFunction (Interp.Fun1 (fun callb ->
						js_ctx.Genjs.type_accessor <- (fun t ->
							let v = Interp.encode_type (type_of_module_type t) in
							let ret = Interp.call (Interp.get_ctx()) Interp.VNull callb [v] Nast.null_pos in
							Interp.dec_string ret
						);
						Interp.VNull
					));
					"setCurrentClass", Interp.VFunction (Interp.Fun1 (fun c ->
						Genjs.set_current_class js_ctx (match Interp.decode_tdecl c with TClassDecl c -> c | _ -> assert false);
						Interp.VNull
					));
				] in
				let t = macro_timer ctx "jsGenerator" in
				gen jsctx;
				t()
			);
		);
		Interp.get_local_type = (fun() ->
			match ctx.g.get_build_infos() with
			| Some (mt,tl,_) ->
				Some (match mt with
					| TClassDecl c -> TInst (c,tl)
					| TEnumDecl e -> TEnum (e,tl)
					| TTypeDecl t -> TType (t,tl)
					| TAbstractDecl a -> TAbstract(a,tl))
			| None ->
				if ctx.curclass == null_class then
					None
				else
					Some (TInst (ctx.curclass,[]))
		);
		Interp.get_expected_type = (fun() ->
			match ctx.with_type_stack with
				| (WithType t | WithTypeResume t) :: _ -> Some t
				| _ -> None
		);
		Interp.get_call_arguments = (fun() ->
			match ctx.call_argument_stack with
				| [] -> None
				| el :: _ -> Some el
		);
		Interp.get_local_method = (fun() ->
			ctx.curfield.cf_name;
		);
		Interp.get_local_using = (fun() ->
			ctx.m.module_using;
		);
		Interp.get_local_vars = (fun () ->
			ctx.locals;
		);
		Interp.get_build_fields = (fun() ->
			match ctx.g.get_build_infos() with
			| None -> Interp.VNull
			| Some (_,_,fields) -> Interp.enc_array (List.map Interp.encode_field fields)
		);
		Interp.get_pattern_locals = (fun e t ->
			!get_pattern_locals_ref ctx e t
		);
		Interp.define_type = (fun v ->
			let m, tdef, pos = (try Interp.decode_type_def v with Interp.Invalid_expr -> Interp.exc (Interp.VString "Invalid type definition")) in
			let add ctx =
				let prev = (try Some (Hashtbl.find ctx.g.modules m) with Not_found -> None) in
				let mnew = Typeload.type_module ctx m ctx.m.curmod.m_extra.m_file [tdef,pos] pos in
				add_dependency mnew ctx.m.curmod;
				(* if we defined a type in an existing module, let's move the types here *)
				(match prev with
				| None ->
					mnew.m_extra.m_kind <- MFake;
				| Some mold ->
					Hashtbl.replace ctx.g.modules mnew.m_path mold;
					mold.m_types <- mold.m_types @ mnew.m_types;
					mnew.m_extra.m_kind <- MSub;
					add_dependency mold mnew;
				);
			in
			add ctx;
			(* if we are adding a class which has a macro field, we also have to add it to the macro context (issue #1497) *)
			if not ctx.in_macro then match tdef,ctx.g.macros with
			| EClass c,Some (_,mctx) when List.exists (fun cff -> (Meta.has Meta.Macro cff.cff_meta || List.mem AMacro cff.cff_access)) c.d_data ->
				add mctx
			| _ ->
				()
		);
		Interp.define_module = (fun m types imports usings ->
			let types = List.map (fun v ->
				let _, tdef, pos = (try Interp.decode_type_def v with Interp.Invalid_expr -> Interp.exc (Interp.VString "Invalid type definition")) in
				tdef, pos
			) types in
			let pos = (match types with [] -> Ast.null_pos | (_,p) :: _ -> p) in
			let imports = List.map (fun (il,ik) -> EImport(il,ik),pos) imports in
			let usings = List.map (fun tp -> EUsing tp,pos) usings in
			let types = imports @ usings @ types in
			let m = Ast.parse_path m in
			let prev = (try Some (Hashtbl.find ctx.g.modules m) with Not_found -> None) in
			let mnew = Typeload.type_module ctx m ctx.m.curmod.m_extra.m_file types pos in
			add_dependency mnew ctx.m.curmod;
			(* if we defined a type in an existing module, let's move the types here *)
			(match prev with
			| None ->
				mnew.m_extra.m_kind <- MFake;
			| Some mold ->
				Hashtbl.replace ctx.g.modules mnew.m_path mold;
				mold.m_types <- mold.m_types @ mnew.m_types;
				mnew.m_extra.m_kind <- MSub;
				add_dependency mold mnew;
			);
		);
		Interp.module_dependency = (fun mpath file ismacro ->
			let m = typing_timer ctx (fun() -> Typeload.load_module ctx (parse_path mpath) p) in
			if ismacro then
				m.m_extra.m_macro_calls <- file :: List.filter ((<>) file) m.m_extra.m_macro_calls
			else
				add_dependency m (create_fake_module ctx file);
		);
		Interp.current_module = (fun() ->
			ctx.m.curmod
		);
		Interp.delayed_macro = (fun i ->
			let mctx = (match ctx.g.macros with None -> assert false | Some (_,mctx) -> mctx) in
			let f = (try DynArray.get mctx.g.delayed_macros i with _ -> failwith "Delayed macro retrieve failure") in
			f();
			let ret = !delayed_macro_result in
			delayed_macro_result := (fun() -> assert false);
			ret
		);
		Interp.use_cache = (fun() ->
			!macro_enable_cache
		);
		Interp.format_string = (fun s p ->
			format_string ctx s p
		);
		Interp.cast_or_unify = (fun t e p ->
			Codegen.AbstractCast.cast_or_unify_raise ctx t e p
		);
		Interp.add_global_metadata = (fun s1 s2 config ->
			let meta = (match parse_string ctx.com (s2 ^ " typedef T = T") null_pos false with
				| _,[ETypedef t,_] -> t.d_meta
				| _ -> assert false
			) in
			List.iter (fun m ->
				ctx.g.global_metadata <- (ExtString.String.nsplit s1 ".",m,config) :: ctx.g.global_metadata;
			) meta;
		);
	}

let rec init_macro_interp ctx mctx mint =
	let p = Ast.null_pos in
	ignore(Typeload.load_module mctx (["haxe";"macro"],"Expr") p);
	ignore(Typeload.load_module mctx (["haxe";"macro"],"Type") p);
	flush_macro_context mint ctx;
	Interp.init mint;
	if !macro_enable_cache && not (Common.defined mctx.com Define.NoMacroCache) then macro_interp_cache := Some mint

and flush_macro_context mint ctx =
	let mctx = (match ctx.g.macros with None -> assert false | Some (_,mctx) -> mctx) in
	finalize mctx;
	let _, types, modules = generate mctx in
	mctx.com.types <- types;
	mctx.com.Common.modules <- modules;
	(* if one of the type we are using has been modified, we need to create a new macro context from scratch *)
	let mint = if not (Interp.can_reuse mint types) then begin
		let com2 = mctx.com in
		let mint = Interp.create com2 (make_macro_api ctx Ast.null_pos) in
		let macro = ((fun() -> Interp.select mint), mctx) in
		ctx.g.macros <- Some macro;
		mctx.g.macros <- Some macro;
		init_macro_interp ctx mctx mint;
		mint
	end else mint in
	(* we should maybe ensure that all filters in Main are applied. Not urgent atm *)
	let expr_filters = [Codegen.AbstractCast.handle_abstract_casts mctx; Filters.captured_vars mctx.com; Filters.rename_local_vars mctx] in
	let type_filters = [Filters.add_field_inits mctx] in
	let ready = fun t ->
		Filters.apply_filters_once mctx expr_filters t;
		List.iter (fun f -> f t) type_filters
	in
	(try Interp.add_types mint types ready
	with Error (e,p) -> raise (Fatal_error(error_msg e,p)));
	Filters.next_compilation()

let create_macro_interp ctx mctx =
	let com2 = mctx.com in
	let mint, init = (match !macro_interp_cache with
		| None ->
			let mint = Interp.create com2 (make_macro_api ctx Ast.null_pos) in
			mint, (fun() -> init_macro_interp ctx mctx mint)
		| Some mint ->
			Interp.do_reuse mint (make_macro_api ctx Ast.null_pos);
			mint, (fun() -> ())
	) in
	let on_error = com2.error in
	com2.error <- (fun e p ->
		Interp.set_error (Interp.get_ctx()) true;
		macro_interp_cache := None;
		on_error e p
	);
	let macro = ((fun() -> Interp.select mint), mctx) in
	ctx.g.macros <- Some macro;
	mctx.g.macros <- Some macro;
	(* mctx.g.core_api <- ctx.g.core_api; // causes some issues because of optional args and Null type in Flash9 *)
	init()

let get_macro_context ctx p =
	let api = make_macro_api ctx p in
	match ctx.g.macros with
	| Some (select,ctx) ->
		select();
		api, ctx
	| None ->
		let com2 = Common.clone ctx.com in
		ctx.com.get_macros <- (fun() -> Some com2);
		com2.package_rules <- PMap.empty;
		com2.main_class <- None;
		com2.display <- DMNone;
		List.iter (fun p -> com2.defines <- PMap.remove (platform_name p) com2.defines) platforms;
		com2.defines_signature <- None;
		com2.class_path <- List.filter (fun s -> not (ExtString.String.exists s "/_std/")) com2.class_path;
		com2.class_path <- List.map (fun p -> p ^ "neko" ^ "/_std/") com2.std_path @ com2.class_path;
		let to_remove = List.map (fun d -> fst (Define.infos d)) [Define.NoTraces] in
		let to_remove = to_remove @ List.map (fun (_,d) -> "flash" ^ d) Common.flash_versions in
		com2.defines <- PMap.foldi (fun k v acc -> if List.mem k to_remove then acc else PMap.add k v acc) com2.defines PMap.empty;
		Common.define com2 Define.Macro;
		Common.init_platform com2 Neko;
		let mctx = ctx.g.do_create com2 in
		create_macro_interp ctx mctx;
		api, mctx

let load_macro ctx cpath f p =
	(*
		The time measured here takes into account both macro typing an init, but benchmarks
		shows that - unless you re doing heavy statics vars init - the time is mostly spent in
		typing the classes needed for macro execution.
	*)
	let t = macro_timer ctx "typing (+init)" in
	let api, mctx = get_macro_context ctx p in
	let mint = Interp.get_ctx() in
	let cpath, sub = (match List.rev (fst cpath) with
		| name :: pack when name.[0] >= 'A' && name.[0] <= 'Z' -> (List.rev pack,name), Some (snd cpath)
		| _ -> cpath, None
	) in
	let m = (try Hashtbl.find ctx.g.types_module cpath with Not_found -> cpath) in
	let mloaded = Typeload.load_module mctx m p in
	mctx.m <- {
		curmod = mloaded;
		module_types = [];
		module_using = [];
		module_globals = PMap.empty;
		wildcard_packages = [];
	};
	add_dependency ctx.m.curmod mloaded;
	let mt = Typeload.load_type_def mctx p { tpackage = fst cpath; tname = snd cpath; tparams = []; tsub = sub } in
	let cl, meth = (match mt with
		| TClassDecl c ->
			finalize mctx;
			c, (try PMap.find f c.cl_statics with Not_found -> error ("Method " ^ f ^ " not found on class " ^ s_type_path cpath) p)
		| _ -> error "Macro should be called on a class" p
	) in
	let meth = (match follow meth.cf_type with TFun (args,ret) -> args,ret,cl,meth | _ -> error "Macro call should be a method" p) in
	if not ctx.in_macro then flush_macro_context mint ctx;
	t();
	let call args =
		let t = macro_timer ctx (s_type_path cpath ^ "." ^ f) in
		incr stats.s_macros_called;
		let r = Interp.call_path (Interp.get_ctx()) ((fst cpath) @ [(match sub with None -> snd cpath | Some s -> s)]) f args api in
		t();
		r
	in
	mctx, meth, call

let type_macro ctx mode cpath f (el:Ast.expr list) p =
	let mctx, (margs,mret,mclass,mfield), call_macro = load_macro ctx cpath f p in
	let mpos = mfield.cf_pos in
	let ctexpr = { tpackage = ["haxe";"macro"]; tname = "Expr"; tparams = []; tsub = None } in
	let expr = Typeload.load_instance mctx ctexpr p false in
	(match mode with
	| MExpr ->
		unify mctx mret expr mpos;
	| MBuild ->
		let ctfields = { tpackage = []; tname = "Array"; tparams = [TPType (CTPath { tpackage = ["haxe";"macro"]; tname = "Expr"; tparams = []; tsub = Some "Field" })]; tsub = None } in
		let tfields = Typeload.load_instance mctx ctfields p false in
		unify mctx mret tfields mpos
	| MMacroType ->
		let cttype = { tpackage = ["haxe";"macro"]; tname = "Type"; tparams = []; tsub = None } in
		let ttype = Typeload.load_instance mctx cttype p false in
		try
			unify_raise mctx mret ttype mpos;
			(* TODO: enable this again in the future *)
			(* ctx.com.warning "Returning Type from @:genericBuild macros is deprecated, consider returning ComplexType instead" p; *)
		with Error (Unify _,_) ->
			let cttype = { tpackage = ["haxe";"macro"]; tname = "Expr"; tparams = []; tsub = Some ("ComplexType") } in
			let ttype = Typeload.load_instance mctx cttype p false in
			unify_raise mctx mret ttype mpos;
	);
	(*
		if the function's last argument is of Array<Expr>, split the argument list and use [] for unify_call_args
	*)
	let el,el2 = match List.rev margs with
		| (_,_,TInst({cl_path=([], "Array")},[e])) :: rest when (try Type.type_eq EqStrict e expr; true with Unify_error _ -> false) ->
			let rec loop (acc1,acc2) el1 el2 = match el1,el2 with
				| [],[] ->
					List.rev acc1, List.rev acc2
				| [], e2 :: [] ->
					(List.rev ((EArrayDecl [],p) :: acc1), [])
				| [], _ ->
					(* not enough arguments, will be handled by unify_call_args *)
					List.rev acc1, List.rev acc2
				| e1 :: l1, e2 :: [] ->
					loop (((EArrayDecl [],p) :: acc1), [e1]) l1 []
				| e1 :: l1, [] ->
					loop (acc1, e1 :: acc2) l1 []
				| e1 :: l1, e2 :: l2 ->
					loop (e1 :: acc1, acc2) l1 l2
			in
			loop ([],[]) el margs
		| _ ->
			el,[]
	in
	let todo = ref [] in
	let args =
		(*
			force default parameter types to haxe.macro.Expr, and if success allow to pass any value type since it will be encoded
		*)
		let eargs = List.map (fun (n,o,t) -> try unify_raise mctx t expr p; (n, o, t_dynamic), true with Error (Unify _,_) -> (n,o,t), false) margs in
		(*
			this is quite tricky here : we want to use unify_call_args which will type our AST expr
			but we want to be able to get it back after it's been padded with nulls
		*)
		let index = ref (-1) in
		let constants = List.map (fun e ->
			let p = snd e in
			let e = (try
				(match Codegen.type_constant_value ctx.com e with
				| { eexpr = TConst (TString _); epos = p } when Lexer.is_fmt_string p ->
					Lexer.remove_fmt_string p;
					todo := (fun() -> Lexer.add_fmt_string p) :: !todo;
				| _ -> ());
				e
			with Error (Custom _,_) ->
				(* if it's not a constant, let's make something that is typed as haxe.macro.Expr - for nice error reporting *)
				(EBlock [
					(EVars ["__tmp",Some (CTPath ctexpr),Some (EConst (Ident "null"),p)],p);
					(EConst (Ident "__tmp"),p);
				],p)
			) in
			(* let's track the index by doing [e][index] (we will keep the expression type this way) *)
			incr index;
			(EArray ((EArrayDecl [e],p),(EConst (Int (string_of_int (!index))),p)),p)
		) el in
		let elt, _ = unify_call_args mctx constants (List.map fst eargs) t_dynamic p false false in
		List.iter (fun f -> f()) (!todo);
		List.map2 (fun (_,ise) e ->
			let e, et = (match e.eexpr with
				(* get back our index and real expression *)
				| TArray ({ eexpr = TArrayDecl [e] }, { eexpr = TConst (TInt index) }) -> List.nth el (Int32.to_int index), e
				(* added by unify_call_args *)
				| TConst TNull -> (EConst (Ident "null"),e.epos), e
				| _ -> assert false
			) in
			if ise then
				Interp.encode_expr e
			else match Interp.eval_expr (Interp.get_ctx()) et with
				| None -> assert false
				| Some v -> v
		) eargs elt
	in
	let args = match el2 with
		| [] -> args
		| _ -> (match List.rev args with _::args -> List.rev args | [] -> []) @ [Interp.enc_array (List.map Interp.encode_expr el2)]
	in
	let call() =
		match call_macro args with
		| None -> None
		| Some v ->
			try
				Some (match mode with
				| MExpr -> Interp.decode_expr v
				| MBuild ->
					let fields = (match v with
						| Interp.VNull ->
							(match ctx.g.get_build_infos() with
							| None -> assert false
							| Some (_,_,fields) -> fields)
						| _ ->
							List.map Interp.decode_field (Interp.dec_array v)
					) in
					(EVars ["fields",Some (CTAnonymous fields),None],p)
				| MMacroType ->
					let t = if v = Interp.VNull then
						mk_mono()
					else try
						let ct = Interp.decode_ctype v in
						Typeload.load_complex_type ctx p ct;
					with Interp.Invalid_expr ->
						Interp.decode_type v
					in
					ctx.ret <- t;
					(EBlock [],p)
				)
			with Interp.Invalid_expr ->
				if v = Interp.VNull then
					error "Unexpected null value returned from macro" p
				else
					error "The macro didn't return a valid result" p
	in
	let e = (if ctx.in_macro then begin
		(*
			this is super-tricky : we can't evaluate a macro inside a macro because we might trigger some cycles.
			So instead, we generate a haxe.macro.Context.delayedCalled(i) expression that will only evaluate the
			macro if/when it is called.

			The tricky part is that the whole delayed-evaluation process has to use the same contextual informations
			as if it was evaluated now.
		*)
		let ctx = {
			ctx with locals = ctx.locals;
		} in
		let pos = DynArray.length mctx.g.delayed_macros in
		DynArray.add mctx.g.delayed_macros (fun() ->
			delayed_macro_result := (fun() ->
				let mint = Interp.get_ctx() in
				match call() with
				| None -> (fun() -> raise Interp.Abort)
				| Some e -> Interp.eval mint (Genneko.gen_expr mint.Interp.gen (type_expr ctx e Value))
			);
		);
		ctx.m.curmod.m_extra.m_time <- -1.; (* disable caching for modules having macro-in-macro *)
		let e = (EConst (Ident "__dollar__delay_call"),p) in
		Some (EUntyped (ECall (e,[EConst (Int (string_of_int pos)),p]),p),p)
	end else
		call()
	) in
	e

let call_macro ctx path meth args p =
	let mctx, (margs,_,mclass,mfield), call = load_macro ctx path meth p in
	let el, _ = unify_call_args mctx args margs t_dynamic p false false in
	call (List.map (fun e -> try Interp.make_const e with Exit -> error "Parameter should be a constant" e.epos) el)

let call_init_macro ctx e =
	let p = { pfile = "--macro"; pmin = 0; pmax = 0 } in
	let e = try
		parse_expr_string ctx e p false
	with err ->
		display_error ctx ("Could not parse `" ^ e ^ "`") p;
		raise err
	in
	match fst e with
	| ECall (e,args) ->
		let rec loop e =
			match fst e with
			| EField (e,f) -> f :: loop e
			| EConst (Ident i) -> [i]
			| _ -> error "Invalid macro call" p
		in
		let path, meth = (match loop e with
		| [meth] -> (["haxe";"macro"],"Compiler"), meth
		| meth :: cl :: path -> (List.rev path,cl), meth
		| _ -> error "Invalid macro call" p) in
		ignore(call_macro ctx path meth args p);
	| _ ->
		error "Invalid macro call" p

(* ---------------------------------------------------------------------- *)
(* TYPER INITIALIZATION *)

let rec create com =
	let ctx = {
		com = com;
		t = com.basic;
		g = {
			core_api = None;
			macros = None;
			modules = Hashtbl.create 0;
			types_module = Hashtbl.create 0;
			type_patches = Hashtbl.create 0;
			global_metadata = [];
			delayed = [];
			debug_delayed = [];
			delayed_macros = DynArray.create();
			doinline = not (Common.defined com Define.NoInline || com.display <> DMNone);
			hook_generate = [];
			get_build_infos = (fun() -> None);
			std = null_module;
			global_using = [];
			do_inherit = Codegen.on_inherit;
			do_create = create;
			do_macro = type_macro;
			do_load_module = Typeload.load_module;
			do_optimize = Optimizer.reduce_expression;
			do_build_instance = Codegen.build_instance;
		};
		m = {
			curmod = null_module;
			module_types = [];
			module_using = [];
			module_globals = PMap.empty;
			wildcard_packages = [];
		};
		meta = [];
		this_stack = [];
		with_type_stack = [];
		call_argument_stack = [];
		pass = PBuildModule;
		macro_depth = 0;
		untyped = false;
		curfun = FunStatic;
		in_loop = false;
		in_super_call = false;
		in_display = false;
		in_macro = Common.defined com Define.Macro;
		ret = mk_mono();
		locals = PMap.empty;
		type_params = [];
		curclass = null_class;
		curfield = null_field;
		tthis = mk_mono();
		opened = [];
		vthis = None;
		on_error = (fun ctx msg p -> ctx.com.error msg p);
	} in
	ctx.g.std <- (try
		Typeload.load_module ctx ([],"StdTypes") null_pos
	with
		Error (Module_not_found ([],"StdTypes"),_) -> error "Standard library not found" null_pos
	);
	(* We always want core types to be available so we add them as default imports (issue #1904 and #3131). *)
	ctx.m.module_types <- ctx.g.std.m_types;
	List.iter (fun t ->
		match t with
		| TAbstractDecl a ->
			(match snd a.a_path with
			| "Void" -> ctx.t.tvoid <- TAbstract (a,[]);
			| "Float" -> ctx.t.tfloat <- TAbstract (a,[]);
			| "Int" -> ctx.t.tint <- TAbstract (a,[])
			| "Bool" -> ctx.t.tbool <- TAbstract (a,[])
			| _ -> ());
		| TEnumDecl e ->
			()
		| TClassDecl c ->
			()
		| TTypeDecl td ->
			(match snd td.t_path with
			| "Null" ->
				let mk_null t =
					try
						if not (is_null ~no_lazy:true t) then TType (td,[t]) else t
					with Exit ->
						(* don't force lazy evaluation *)
						let r = ref (fun() -> assert false) in
						r := (fun() ->
							let t = (if not (is_null t) then TType (td,[t]) else t) in
							r := (fun() -> t);
							t
						);
						TLazy r
				in
				ctx.t.tnull <- mk_null;
			| _ -> ());
	) ctx.g.std.m_types;
	let m = Typeload.load_module ctx ([],"String") null_pos in
	(match m.m_types with
	| [TClassDecl c] -> ctx.t.tstring <- TInst (c,[])
	| _ -> assert false);
	let m = Typeload.load_module ctx ([],"Array") null_pos in
	(try
		List.iter (fun t -> (
			match t with
			| TClassDecl ({cl_path = ([],"Array")} as c) ->
				ctx.t.tarray <- (fun t -> TInst (c,[t]));
				raise Exit
			| _ -> ()
		)) m.m_types;
		assert false
	with Exit -> ());
	let m = Typeload.load_module ctx (["haxe"],"EnumTools") null_pos in
	(match m.m_types with
	| [TClassDecl c1;TClassDecl c2] -> ctx.g.global_using <- c1 :: c2 :: ctx.g.global_using
	| [TClassDecl c1] ->
		let m = Typeload.load_module ctx (["haxe"],"EnumValueTools") null_pos in
		(match m.m_types with
		| [TClassDecl c2 ] -> ctx.g.global_using <- c1 :: c2 :: ctx.g.global_using
		| _ -> assert false);
	| _ -> assert false);
	ctx

;;
unify_min_ref := unify_min;
make_call_ref := make_call;
get_constructor_ref := get_constructor;
cast_or_unify_ref := Codegen.AbstractCast.cast_or_unify_raise;
type_module_type_ref := type_module_type;
find_array_access_raise_ref := Codegen.AbstractCast.find_array_access_raise;
build_call_ref := build_call